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Abstract

Since the fractional Brownian motion is not a semi–martingale, the

usual Ito calculus cannot be used to define a full stochastic calculus.

However, in this work, we obtain the Itô formula, the Itô–Clark rep-

resentation formula and the Girsanov theorem for the functionals of a

fractional Brownian motion using the stochastic calculus of variations.

1 Introduction

In engineering applications of probability, stochastic processes are often used

to model the input of a system. For instance, the financial mathematics re-

quires stochastic models for the time evolution of assets and the queuing

networks analysis is based on models of the offered traffic. Hitherto, the

stochastic processes used in these fields are often supposed to be Marko-

vian. However, recent studies [8] show that real inputs exhibit long-range

dependence : the behavior of a real process after a given time t does not

only depend on the situation at t but also of the whole history of the process

up to time t. Moreover, it turns out that this property is far from being

negligible because of the effects it induces on the expected behavior of the

global system [12].

Another property that have the processes encountered in applications

(at least in communication networks) is the self-similarity (see [8]): their

behavior is stochastically the same, up to a space-scaling, whatever the time-

scale is – this is to say that the process {Xαt, t ∈ [0, 1]} has the same law

as the process {αHXt, t ∈ [0, 1]}, where H is called the Hurst parameter.

Several estimations on real data tend to show that H often lies between

0.7 and 0.8 whereas for instance, the usual Brownian motion has a Hurst
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parameter equal to 0.5 but it is also clear that some real processes have

a Hurst parameter less than 0.5 – see [5]. There exist several stochastic

processes which are self-similar and exhibiting long-range dependence but

the fractional Brownian motion (fBm for short) seems to be one of the

simplest.

Definition 1.1. For anyH in (0, 1), the fractional Brownian motion of index

(Hurst parameter) H, {WH
t ; t ∈ [0, 1]} is the centered Gaussian process

whose covariance kernel is given by

RH(s, t) = EH
[

WH
s WH

t

] def
=

VH

2

(

s2H + t2H − |t− s|2H
)

where

VH
def
=

Γ(2− 2H) cos(πH)

πH(1− 2H)
.

Since for H ̸= 1/2, the fBm is not a semimartingale, we can not use

the usual stochastic calculus to analyze it, however since it is a Gaussian

process, we can apply the stochastic calculus of variations which is valid on

general Wiener spaces. Actually, two choices are offered to us : either some

well known properties of the standard Brownian motion are used to derive

some properties of the fBm or we can proceed by an intrinsic analysis of the

fBm. The first approach leads us to the Itô–Clark formula whereas the Itô

formula and the Girsanov theorem are more intrinsic results. This paper is

organized as follows : in Section 2, we give some results on hypergeometric

functions and deterministic fractional calculus which will be useful in the

sequel, in Section 3 we give some sample–paths properties of the fractional

Brownian motion, in section 4 we introduce the stochastic calculus of varia-

tions. It enables us to define several stochastic integrals with respect to the

fractional Brownian motion of any order. We can then give the Itô–Clark

representation formula and the Girsanov theorem for adapted processes. In

the last section, we give Itô formulae for H > 1/2 using different stochastic

integrals. Throughout the paper, we give two practical applications such as

the simulation of sample-paths of the fractional Brownian motion and an

estimation problem involving an fBm.
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2 Deterministic fractional calculus

The Gauss hypergeometric function F (a, b, c, z) (for details, see [11]) is de-

fined for any a, b, any z, |z| < 1 and any c ̸= 0,−1, . . . by

F (a, b, c, z)
def
=

+∞
∑

k=0

(a)k(b)k
(c)kk!

zk, (1)

where (a)0 = 1 and (a)k
def
= Γ(a + k)/Γ(a) = a(a + 1) . . . (a + k − 1) is the

Pochhammer symbol. If a or b is a negative integer the series terminates

after a finite number of terms and F (a, b, c, z) is a polynomial in z. The

radius of convergence of this series is 1 and there exists a finite limit when

z tends to 1 (z < 1) provided that ℜ(c − a − b) > 0. For any z such that

|arg(1− z)| < π, any a, b, c such that ℜ(c) > ℜ(b) > 0, F can be defined by

F (a, b, c, z)
def
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
ub−1(1− u)c−b−1(1− zu)−a du. (2)

Given (a, b, c), consider Σ the set of triples (a′, b′, c′) such that |a − a′| = 1

or |b − b′| = 1 or |c − c′| = 1. Any hypergeometric function F (a′, b′, c′, z)

with (a′, b′, c′) in Σ is said to be contiguous to F (a, b, c). For any two hy-

pergeometric functions F1 and F2 contiguous to F (a, b, c, z), there exists a

relation of the type :

P0(z)F (a, b, c, z)+P1(z)F1(z)+P2(z)F2(z) = 0, for z, |arg(1−z)| < π, (3)

where for any i, Pi is a polynomial with respect to z. These relations permit

to define the analytic continuation of F (a, b, c, z) with respect to its four

variables in the domain C×C× (C\{0,−1,−2, . . . })×{z, |arg(1− z)| < π}.
We will also use other types of relations between different hypergeometric

functions, namely :

F (a, b, c, z) =
Γ(c)Γ(b− a)

Γ(c− a)Γ(b)
(1− z)−aF (a, c − b, 1 + a− b, 1/(1 − z))

+
Γ(c)Γ(a − b)

Γ(c− b)Γ(a)
(1− z)−bF (b, c− a, 1− a+ b, 1/(1 − z)), (4)

for any z such that |arg(1 − z)| < π and a − b ̸= 0,±1,±2, . . . . We now

consider some basic aspects of the deterministic fractional calculus – the

main reference for this subject is [13].
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Definition 2.1. Let f ∈ L1([a, b]), the integrals

(Iαa+f)(x)
def
=

1

Γ(α)

∫ x

a
f(t)(x− t)α−1dt , x ≥ a,

(Iαb−f)(x)
def
=

1

Γ(α)

∫ b

x
f(t)(x− t)α−1dt , x ≤ b,

where α > 0, are respectively called right and left fractional integral of the

order α.

For any α ≥ 0, any f ∈ Lp([0, 1]) and g ∈ Lq([0, 1]) where p−1+q−1 ≤ α,

we have :
∫ t

0
f(s)(Iα0+g)(s) ds =

∫ t

0
(Iαt−f)(s)g(s) ds. (5)

Definition 2.2. For f given in the interval [a, b], each of the expressions

(Dα
a+f)(x)

def
=

( d

dx

)[α]+1
I1−{α}
a+ f(x),

(Dα
b−f)(x)

def
=

(

− d

dx

)[α]+1
I1−{α}
b− f(x),

are respectively called the right and left fractional derivative (proved they

exist), where [α] denotes the integer part of α and {α} = α− [α].

A sufficient condition for f to be α-differentiable almost everywhere

(with respect to the Lebesgue measure on [a, b]) is that f is continuously

differentiable of any integer order less than [α] and that f ([α]) is absolutely

continuous. Note that (D1
a+f) coincides with the usual derivative of ab-

solutely continuous function. Moreover, if f is α-differentiable then f is

β-differentiable for any β ≤ α.

Proposition 2.1. For α ∈ C such that ℜ(α) > 0, we have :

Dα
a+I

α
a+f = f for f ∈ L1([a, b]),

Iαa+D
α
a+f = f for f ∈ Iαa+(L

1([a, b])).

As a consequence, we will often denote Dα
a+ by I−α

a+ . Moreover, for

p ≥ 1, the latter proposition also induces that a function f in Iαa+(L
p([a, b]))

is α–differentiable (for a reciprocal of this assertion, see [13, page 232]) and

hence continuous. Some extra work proves that such a function is Hölder

continuous of order α−1/p – [13, Thm 3.6, page 67]. The next theorem will

be a key result for the sequel :



Stochastic Analysis of the fBm 5

Theorem 2.1 (cf [13, page 187]).

For H ∈ (0, 1), consider the integral transform :

(KHf)(t) =

Γ(H+1/2)−1
∫ t

0
(t−x)H−1/2F (H −1/2, 1/2−H,H+1/2, 1− t/x)f(x)dx.

(6)

KH is an isomorphism from L2([0, 1]) onto IH+1/2
0+ (L2([0, 1])) and

KHf = I2H0+ x1/2−HI1/2−H
0+ xH−1/2f for H ≤ 1/2,

KHf = I10+x
H−1/2IH−1/2

0+ x1/2−Hf for H ≥ 1/2.

Note that if H ≥ 1/2, r → KH(t, r) is continuous on (0, t] so that we can

include t in the indicator function.

3 Properties of the Fractional Brownian Motion

Using the Kolmogorov criterion, it is easy to see that for any H, there exists

a version of WH whose sample-paths are continuous and with standard

techniques, it can also be shown that sample-paths are nowhere differentiable

(see [10]). Furthermore, the form of the covariance kernel entails that WH

has stationary increments and that the process is self-similar in the sense

that

{WH
αt , t ∈ [0, 1]} d

= {αHWH
t , t ≥ 0}.

Note that increments are independent only when H = 1/2, for H > 1/2,

increments are positively correlated and for H < 1/2 they are negatively

correlated. This difference of behavior between the cases H < 1/2 and

H > 1/2 can also be seen in the regularity of sample-paths as show the next

figure and the next theorem.

Theorem 3.1. Let H ∈ (0, 1), the sample-paths of WH are a.s. Hölder

continuous only of order less than H.

Proof. Since, for any α ≥ 0, we have

EH
[

|WH
t −WH

s |α
]

= Cα|t− s|Hα,

the Kolmogorov criterion implies that the sample-paths of WH are almost

surely Hölder continuous of any order less than H.
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Figure 1: Typical sample-path for H = 0.2, H = 0.5, H = 0.8.

As a consequence of the results in [1], we have

PH(lim sup
u→0+

WH
u

uH
√

log log u−1
=

√

VH) = 1.

Hence it is impossible for WH to have sample-paths Hölder continuous of

an order greater than H.

Let W = C0([0, 1],R) be the Banach space of continuous functions, null

at time 0, equipped with the sup-norm and W ∗ be its topological dual.

For any H ∈ (0, 1), PH is the unique probability measure on W such that

the canonical process (Ws; s ∈ [0, 1]) is a centered Gaussian process with

covariance kernel RH :

EH [WsWt] = RH(s, t).

The canonical filtration is given by FH
t = σ{Ws, s ≤ t} ∨ NH and NH is

the set of the PH–negligible events. Let HH be the Cameron-Martin space

associated with (W,PH) : the unique Hilbert space (identified with its dual)

continuously and densely embedded in W such that, for any η in W ∗,
∫

W
ei<η,w>W∗,W dPH(w) = exp

(

−∥η̃∥2HH
/2
)

, (7)

where η̃ is the image of η under the injection W ∗ ⊂ HH . In order to be able

to describe HH , we need the following preliminary lemma :

Lemma 3.1. For any H ∈ (0, 1), RH(s, t) can be written as

RH(s, t) =

∫ 1

0
KH(s, r)KH(t, r)dr, (8)

in operator notations, RH = KHK∗
H , where KH is the Hilbert–Schmidt op-

erator introduced in Theorem [2.1]. We hereafter identify an operator and

its kernel.
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Proof. For H > 1/2, it is easy to see that

RH(s, t) =
VH

4H(2H − 1)

∫ t

0

∫ s

0
|r − u|2H−2 du dr

Moreover(see [2]),

VH

4H(2H − 1)
|r − u|2H−2

= (ru)H−1/2
∫ r∧u

0
v1/2−H (r − v)H−3/2(u− v)H−3/2 dv.

Hence for H > 1/2, (8) holds with

KH(t, r) =
r1/2−H

Γ(H − 1/2)

∫ t

r
uH−1/2(u− r)H−3/2 du 1[0,t](r).

A change of variable in this equation transforms the integral term in

(t− r)H−1/2rH−1/2
∫ 1

0
uH−3/2

(

1− (1− t/r)u
)H−1/2

du.

By the definition (2) of hypergeometric functions, we see that (6) holds true

for H > 1/2. Using property (4), we have

KH(t, r) =
2−2H√

π

Γ(H) sin(πH)
rH−1/2

+
1

2Γ(H + 1/2)
(t− r)H−1/2F (1/2 −H, 1, 2 − 2H,

r

t
).

If H < 1/2 then the hypergeometric function of the latter equation is con-

tinuous with respect to r on [0, t] because 2− 2H − 1− 1/2 +H = 1/2−H

is positive. Hence, for H < 1/2, KH(t, r)(t − r)1/2−Hr1/2−H is continuous

with respect to r on [0, t]. For H > 1/2, the hypergeometric function is no

more continuous in t but we have [11] :

F (1/2 −H, 1, 2 − 2H,
r

t
) = C1F (1/2 −H, 1,H + 1/2, 1 − r/t)

+ C2(1− r/t)1/2−H(r/t)2H−1.

Hence, for H ≥ 1/2, KH(t, r)rH−1/2 is continuous with respect to r on [0, t].

Fix δ ∈ [0, 1/2) and t ∈ (0, 1], we have :

|KH(t, r)| ≤ Cr−|H−1/2|(t− r)−(1/2−H)+1[0,t](r)
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where C is uniform with respect to H ∈ [1/2 − δ, 1/2 + δ]. Thus, the two

functions defined on {H ∈ C, |H − 1/2| < 1/2} by

H ∈ (0, 1) -−→ RH(s, t) and H ∈ (0, 1) -−→
∫ 1

0
KH(s, r)KH(t, r) dr

are well defined, analytic with respect to H and coincide on [1/2, 1), thus

they are equal for any H ∈ (0, 1) and any s and t in [0, 1].

In the previous proof we proved a result which is so useful in its own

that it deserves to be a theorem :

Theorem 3.2. For any H ∈ (0, 1), there exist a constant cH such that for

any t and r, we have :

|KH(t, r)| ≤ cHr−|H−1/2|(t− r)−(1/2−H)+1[0,t](r), (9)

where x+ = max(x, 0).

Theorem 3.3. 1. HH = {KH ḣ; ḣ ∈ L2([0, 1], dt)}, i.e., any h ∈ HH

can be represented as

h(t) = KH ḣ(t)
def
=

∫ 1

0
KH(t, s)ḣ(s) ds,

where ḣ belongs to L2([0, 1]). For any HH–valued random variable u,

we hereafter denote by u̇ the L2([0, 1];R)–valued random variable such

that

u(w, t) =

∫ t

0
KH(t, s)u̇(w, s) ds.

2. The scalar product on HH is given by

(h, g)HH
= (KH ḣ,KH ġ)HH

def
= (ḣ, ġ)L2([0,1]).

3. The injection RH from W ∗ into HH can be decomposed as RHη =

KH(K∗
Hη). Furthermore, the restriction of K∗

H to W ∗ is the injection

from W ∗ into L2([0, 1]) :

W ∗@ > K∗
H >> L2([0, 1];R)@ > KH >> HH@ > iH >> W.

Remark 3.1. Note that as a vector space, HH is equal to IH+1/2
0+ (L2([0, 1]))

but the norm on each of these spaces are different since the norm of an

element h in the latter space is the L2 norm of I−H−1/2
0+ (h)



Stochastic Analysis of the fBm 9

Proof. From Theorem [2.1], we know that KH is a bijection from L2([0, 1])

onto IH+1/2
0+ (L2([0, 1])) ⊂ W. For any α > −1/2, (KHxα)(t) = cα,H tα+H+1/2,

hence HH contains all the polynomials null at 0 so that HH is dense in W

from Stone–Weierstrass theorem.

Let iH denote the inclusion from HH into W , i∗H the inclusion from W ∗

into HH
∗, jH the canonical identification isomorphism between HH

∗ and

HH and RH = jH ◦ i∗H , i.e., RH is the embedding of W ∗ into HH . For

η ∈ W ∗, we have on one hand

(

RH(η), h
)

HH

def
=

∫ 1

0

˙RH(η)(s)ḣ(s) ds

and on the other hand,

(

RH(η), h
)

HH

=< η, iH (h) >W∗,W =

∫ 1

0

∫ 1

0
KH(t, s)ḣ(s) ds η(dt)

=

∫ 1

0
(K∗

Hη)(s)ḣ(s) ds,

where K∗
H is the adjoint of KH for the L2([0, 1]) scalar-product. It follows

that ˙RH(η) = K∗
Hη and then that RH = KH ◦K∗

H .

It remains to prove (7); for we compute the HH norm of RH(η) :

∫

⟨η, w⟩2W ∗ ,WdPH(w) = EH

[
∫ 1

0

∫ 1

0
WsWt η(ds)η(dt)

]

=

∫ 1

0

∫ 1

0
RH(t, s)η(ds)η(dt)

=

∫ 1

0

∫ 1

0

∫ 1

0
KH(t, r)KH(s, r) dr η(ds)η(dt)

= ∥K∗
Hη∥2L2([0,1]) = ∥RH(η)∥2HH

.

Hence HH has the three properties defining the Cameron–Martin space of

the Wiener space (W,PH).

Corollary 3.1. The fractional Brownian motion has the representation in

law :

WH
t =

∫ t

0
KH(t, s)dW 1/2

s .

Proof. The process
(

∫ t
0 KH(t, s)dW 1/2

s , t ∈ [0, 1]
)

is Gaussian with the con-

venient covariance kernel.



Stochastic Analysis of the fBm 10

Remark 3.2. We will show in the sequel that this representation holds in

the trajectorial sense with a fixed, standard Brownian motion constructed

on (W,PH). The representation of the corollary is different from the one in

[10] since it requires only one standard Brownian motion instead of two.

The computer simulation of fBm paths is a classical problem of numerical

analysis, the difficulty being due to the non–trivial correlation between the

increments. The following proposition gives an approximation scheme :

Proposition 3.1. Let πn be an increasing sequence of partitions of [0, 1]

such that the mesh |πn| of πn tends to 0 as n goes to infinity. The sequence

of processes {W n, n ≥ 0} defined by

W n
t =

∑

tni ∈πn

1

tni+1 − tni

∫ tni+1

tni

KH(t, s)ds (W 1/2
tni+1

−W 1/2
tni

)

converges to WH in L2(P1/2 ⊗ ds).

Proof. Let Gn be the σ-field generated by {W 1/2
tni

, tni ∈ πn}. For t fixed, the
sequence

W n
t

def
= E1/2

[
∫ t

0
KH(t, s)dW 1/2

s | Gn

]

is a square integrable martingale with respect to the filtration (Gn). More-

over, using the Jensen inequality,

sup
n

E1/2

[
∫ 1

0
(W n

t )
2 dt

]

≤
∫ 1

0
RH(t, t) dt < +∞.

Hence the sequence (W n)n is an L2([0, 1])–valued (Gn) square integrable

martingale so that it converges PH almost everywhere and in L2(W ;L2([0, 1])),

i.e.,

lim
n→+∞

E1/2

[
∫ 1

0
(W n

t −Wt)
2 dt

]

= 0.

Furthermore, a simple calculation (using the Gaussian character and inde-

pendence of the random variables W 1/2
tni+1

−W 1/2
tni

) shows that

E1/2

[
∫ t

0
KH(t, s)dW 1/2

s |Gn

]

=
∑

tni ∈πn

1

tni+1 − tni

∫ tni+1

tni

KH(t, s)ds (W 1/2
tni+1

−W 1/2
tni

)

which proves the result.
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4 Preliminaries and the Malliavin Calculus

For details on the construction of Malliavin calculus on Wiener spaces, we

refer to [15, 17]. As for all Gaussian spaces, we have (see [4])

Theorem 4.1 (Cameron-Martin Theorem). For any RHη ∈ HH ,

EH [F (w +RHη)] =

∫

F (w) exp
(

⟨η, w⟩ − ∥RHη∥2HH
/2
)

dPH(w) (10)

Definition 4.1. Let X be a separable Hilbert space and F : W −→ X an

X-valued functional of the form

F (w) =
k

∑

i=1

fi(⟨l1, w⟩, . . . , ⟨ln, w⟩) xi (11)

where for each i ∈ {1, . . . , n}, li is in W ∗ and xi belongs to X. F is said

to be a smooth cylindric functional (respectively a polynomial) when fi is

an element of the Schwartz space S(Rn) (respectively of the set of real

polynomials with n variables). We will denote by S(X) (respectively P(X))

the set of X-valued smooth cylindric functionals and simply S (respectively

P) when X = R.

Consider CH
0 = R and for n > 0, define CH

n as the closed vector space

spanned in L2(PH) by the elements of P of degree less than n. Set CH
0 = CH

0

and suppose CH
1 , . . . , CH

n are defined, then, we define CH
n+1 as the orthogonal

complement of CH
1 ⊕ · · ·⊕ CH

n in CH
n+1. As for all Gaussian spaces, we have

the chaos decomposition :

Theorem 4.2.

L2(PH) =
⊕

n≥0

CH
n .

This means that every PH -square integrable functional from W to R can

be written in a unique way as

F =
+∞
∑

n=0

JH
n F (12)

where JH
n is the orthogonal projection of L2(PH) onto CH

n .

Definition 4.2 (Ornstein-Uhlenbeck semi-group).

For S ∋ F : W −→ R in ∪p≥1Lp(PH) and t ≥ 0, we define (TH
t F )(w) by

the Mehler formula :

TH
t F (w) =

∫

F (e−tw +
√

1− e−2ty) dPH(y).
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It turns out that for F ∈ S, (t -→ TH
t F ) is differentiable in Lp with

respect to t, so that we can define the Ornstein-Uhlenbeck operator LH :

Definition 4.3 (Ornstein-Uhlenbeck operator). LH is defined on S by

LHF (w) =
d

dt
TtF (w)

∣

∣

∣

∣

t=0

.

The operator LH can then be extended on Lp(PH) as the infinitesimal

generator of a contraction semi-group on Lp(PH); let Domp(LH) be the do-

main of the extension of LH in Lp(PH).

Definition 4.4 (Sobolev spaces). Let p ≥ 1, q such that p−1+ q−1 = 1 and

k ∈ Z. DH
p,k(X) is the completion of S(X) with respect to the norm

∥F∥p,k,H
def
= ∥(I − LH)k/2F∥Lp

H

where

(I − LH)
k/2F =

+∞
∑

n=0

(1 + n)k/2JH
n F.

It is well known that DH
p,k(X) is the dual of DH

p,−k with the duality pairing

⟨F,G⟩ = EH

[

((I − L)k/2F, (I − L)−k/2G)X
]

and that for any k′ ≤ k,

D
H
p,k(X) ⊂ D

H
p,k′(X) ⊂ D

H
p,0 = Lp(W ;X) ⊂ D

H
p,−k′(X) ⊂ D

H
p,−k(X).

We also introduce the spaces DH
p,k,a(HH) which are for any p ≥ 1 and

any k ∈ N the subspaces of DH
p,k(HH) composed by the adapted pro-

cesses. For any k ∈ −N, DH
p,k,a(HH) is the dual of DH

p,−k,a(HH). The

notation DH
∞(X) (respectively DH

∞,a(HH)) will stand for ∩p,k≥0D
H
p,k(X) (re-

spectively ∩p,k≥0D
H
p,k,a(HH)) and DH

−∞(X) = ∪p,−k≥0D
H
p,k(X), respectively

DH
−∞,a(HH) = ∪p,−k≥0D

H
p,k,a(HH).

Definition 4.5. For F in S(X), the H-Gross-Sobolev derivative of F , de-

noted by ∇F and is the HH ⊗X–valued mapping defined by

∇F (w) =
n
∑

i=1

∂f

∂xi
(⟨l1, w⟩, . . . , ⟨ln, w⟩) RH(li)⊗ x. (13)
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Remark 4.1. Take li = εti , the Dirac measure at time ti and let

F (w) = f(⟨εt1 , w⟩, . . . , ⟨εtn , w⟩)

= f(Wt1 , . . . ,Wtn),

then we have by (13),

∇F (w) =
n
∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtn)RH(εti),

i.e.,

∇F (w)(s) =
n
∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtn)RH(ti, s).

Starting with X = R, we define the derivative of a real valued smooth

functional F , then, taking X = HH
⊗n−1, we can define, inductively, the

n-th derivative of F by ∇(n)F = ∇(∇(n−1)F ). The directional derivative of

F ∈ S(X) in the direction RHη ∈ HH is given by :

(∇F,RHη)HH
=

d

dt
F (w + t.RHη)

∣

∣

∣

∣

t=0

(14)

and from the Cameron–Martin theorem, we see that ∇F depends only on

the equivalence classes with respect to PH and

EH [(∇F,RHη)HH
] = EH [F ⟨w, η⟩]

which implies the closability of∇ and its iterates. We can also define Sobolev

spaces using the operator ∇ and its iterates as in the finite dimensional case,

this definition is equivalent to Definition [4.4]; this is due to the following

inequalities of P.A. Meyer : for p > 1 and k ∈ Z, there exist ap,k,H and

Ap,k,H such that, for every F ∈ S,

ap,k,H∥|∇(k)F |HS∥Lp(PH ) ≤ ∥F∥p,k,H

≤ Ap,k,H

(

∥F∥Lp(PH ) + ∥|∇(k)F |HS∥Lp(PH )

)

, (15)

where |∇(k)F |HS stands for the Hilbert-Schmidt norm of ∇(k)F : if {ηn, n ∈
N} is an orthonormal basis of HH

⊗k ⊗X,

|∇(k)F |2HS =
∞
∑

n=0

(

∇(k)F, ηn
)2

HH
⊗k

⊗X
.

As a consequence, ∇ can be extended as a continuous linear operator from

DH
p,k(X) to DH

p,k−1(HH ⊗X) for any p > 1 and k ∈ Z.
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Definition 4.6 (Divergence or Skohorod integral). Let δH be the formal

adjoint of ∇ with respect to PH : ∀F ∈ S,∀u ∈ S(HH),

EH [F δHu] = EH

[

(

∇F, u
)

HH

]

. (16)

Since ∇ has continuous extensions, δH has a continuous linear extension

from DH
p,k(HH) to DH

p,k−1 for any p > 1 and any k ∈ N.

Remark 4.2. For F ∈ S(W ∗) of the form (11) with k = 1, the divergence

of F is defined by

(δHF )(w) = f(⟨l1, w⟩, . . . , ⟨ln, w⟩)⟨x,w⟩W ∗ ,W

−
n
∑

i=1

∂f

∂xi
(⟨l1, w⟩, . . . , ⟨ln, w⟩) < RH(li), RH(x) >HH

.

Take x = ϵt, f = 1, we get

Wt = δH
(

RH(ϵt)
)

= δH
(

KH(KH(t, .))
)

.

Moreover, for η ∈ W ∗, we have δH(RHη) = ⟨η, w⟩W ∗ ,W almost surely. Fur-

thermore, we have

EH [F δHu] = EH [(∇F, u)HH
]

for any DH
p,k+1, u ∈ DH

q,−k(HH) for any p > 1 , p−1 + q−1 = 1 and k ∈ Z.

We recall several identities valid in any Wiener space. Let F,F1, . . . , Fn

be in D∞, G1, G2 in D∞(HH), f in the Schwartz space of Rn and T ∈
D−∞(HH),

∇f(F1, . . . , Fn) =
n
∑

i=1

∂if(F1, . . . , Fn) ∇Fi,

δH(∇F ) = −LHF,

δH(FT ) = F δHT −∇TF, (17)

EH [δH(G1)δH(G2)] = EH [(G1, G2)HH
] +EH [trace(∇G2 ◦ ∇G1)] , (18)

∇G2

(

δHG1

)

= (G1, G2)HH
+ δH(∇G2

G1) + trace(∇G2 ◦ ∇G1).

(19)

Proposition 4.1. For u ∈ HH , let Λu
1

def
= exp(δHu− 1/2∥u∥2

HH
), we have

JH
n Λu

1 =
1

n!
δ(n)H u⊗n.
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More generally, for F ∈ ∪k∈ZD
H
2,k,

JH
n F =

1

n!
δ(n)H

(

EH

[

∇(n)F
])

.

Proof. By the definition (14) of ∇, we have for any polynomial G on W, λ,

EH [G(w + λu)] =
+∞
∑

n=0

λn

n!
EH

[

(∇(n)G,u⊗n
)

HH
⊗n

]

=
+∞
∑

n=0

λn

n!
EH

[

G.δ(n)H u⊗n
]

.

On the other hand, by the Cameron–Martin Theorem 4.1,

EH [G(w + λu)] =
+∞
∑

k=0

EH

[

GJH
k

(

exp(λδHu− λ2

2
∥u∥2HH

)
)

]

.

Using the generating functions of Hermite polynomials (see e.g. [11]), we

see that

exp(λδHu− λ2

2
∥u∥2HH

) =
+∞
∑

n=0

Hn

( δHu√
2∥u∥HH

)∥u∥n
HH√

2
n
n!
λn,

where Hn is the n-th Hermite polynomial. Since Hn(
δHu√

2∥u∥HH

) belongs to

Cn,

EH [G(w + λu)] =
+∞
∑

k=0

EH
[

G.JH
k (F )

]

λk.

The result follows by identification of the two power series.

This result can also be written

JH
n Λu

1 =
1

n!
δ(n)H

(

EH

[

∇(n)Λu
1

])

.

Since the linear combinations of Wick exponentials (i.e., exponentials of

the form exp(δHh − 1
2∥h∥

2
HH

)) are dense in DH
∞ and JH

n is a continuous

operator, the result follows by density for any F ∈ ∩k∈ND
H
2,k. Now by

duality the formula also holds for F in the dual of the latter space, i.e., for

F ∈ ∪k∈ZD
H
2,k.

4.1 Relations between δH and other stochastic integrals

As for any Gaussian process, the Wiener integral with respect to the frac-

tional Brownian motion is usually defined as the linear extension from HH

in L2(PH) of the isometric map :

dw : RH(ti, .) -−→ Wti .
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Since KH(L2([0, 1])) = HH , one could also define a Wiener integral for

deterministic integrand belonging to L2([0, 1]) by considering the linear ex-

tension from L2([0, 1]) to L2(PH) of the isometry :

∂w : KH(ti, .) -−→ Wti . (20)

When H = 1/2, K1/2(t, .) = 1[0,t] so that we have :

∂w(h) = lim
n→+∞

2n−1
∑

i=0

hi2−n(W(i+1)2−n −Wi2−n), (21)

for any continuous h. From (20), it is clear that (21) does not hold any

more when H ̸= 1/2. Thus there exist at least two different approaches to

define a stochastic integral with respect to the fractional Brownian motion :

one approach consists of using the Skohorod integral which is defined for

any Gaussian process, the second approach uses Riemann sums similar to

the right–hand–side of (21)– see [3, 6, 9]. The resulting integrals will have

more or less similar properties to stochastic integrals defined with respect

to semi–martingales, however none of them will be completely adequate to

construct a full stochastic calculus.

1. We define stochastic integral of first type as :

∫ 1

0
u̇s δHWs

def
= δH(KH u̇)

for any u̇ such that KH u̇ ∈ DH
−∞(HH).

2. For H > 1/2, if we do not identify HH and its dual but L2([0, 1]) and

its dual, we have the following diagram :

W ∗ @ > i∗H >> HH
∗ @ > K∗

H >> L2([0, 1]) @ > KH >> HH @ > iH >> W
⋃

∥
⋂

W ∗ @ > i∗1/2 >> H1/2
∗ @ > K∗

1/2 >> L2([0, 1]) @ > K1/2 >> H1/2 @ > i1/2 >> W

Thus it is meaningful to define a stochastic integral of second type by :

∫ 1

0
u̇s

◦
dWs =

∫ 1

0
(K∗

H u̇)(s) δHWs = δH(KHK∗
H u̇),

where KH = K−1
1/2KH , for u̇ such that KHK∗

H u̇ ∈ DH
−∞(HH).
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Proposition 4.2. When H > 1/2, the stochastic integral of second type

coincides with the stochastic integral defined by Riemann sums. We have

the following identity provided that u̇ is deterministic and both sides exist :

∫ 1

0
u̇s

◦
dWs = lim

|πn|→0

∑

tni ∈πn

u̇tni (Wtni+1
−Wtni

). (22)

When u̇ ∈ DH
2,1(L

2([0, 1])) and trace(∇KHK∗
H u̇) is well defined, we have :

∫ 1

0
u̇s

◦
dWs = lim

|πn|→0

∑

tni ∈πn

u̇tni (Wtni+1
−Wtni

)− trace(∇KHK∗
H u̇). (23)

Proof. Note that K∗
1/2εt = 1[0,t] and K∗

Hεt = KH(t, .), thus K∗
H(1[0,t]) =

KH(t, .). If u̇ is of the form

u̇(s) =
n
∑

i=1

u̇i1(ti,ti+1](s),

with u̇i ∈ DH
2,1, we have by (17),

δH(KHK∗
H u̇) =

n
∑

i=1

δH
(

u̇iKH(KH(ti+1, .)−KH(ti, .))
)

=
n
∑

i=1

u̇iδH(KH(KH(ti+1, .)−KH(ti, .)))

−
∫ 1

0
∇̇su̇i(KH(ti+1, s)−KH(ti, s)) ds

=
n
∑

i=1

u̇i(Wti+1
−Wti)− trace(∇KH ◦K∗

H u̇).

Since ∇u = 0 when u is deterministic, the two results follow by a limiting

procedure when both sides of the last relation converge.

In view of (23), it seems sensible to define a Stratonovitch integral by :

∫ 1

0
u̇sd̃Ws =

∫ 1

0
u̇s

◦
dWs + trace(∇KHK∗

H u̇),

for any u̇ such that the right–hand–side of the last equation is meaningful.

Note that as it is shown in (23),

∫ 1

0
u̇sd̃Ws = lim

|πn|→0

∑

tni ∈πn

u̇tni (Wtni+1
−Wtni

).
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We will see below in the Itô formula that the Stratonovitch integral for

H ̸= 1/2 does not behave as nicely as it does when H = 1/2.

One can still have an integration by parts with
◦
dW if we use a damped

Sobolev derivative,

Proposition 4.3. When H > 1/2, set

Dψ
def
= KH

(

KH(∇̇.ψ)
)

.

We have :

EH

[
∫ 1

0
u̇s

◦
dWs.ψ

]

= EH

[

(KH u̇,Dψ)
HH

]

, (24)

and

Df(Wt1 , . . . ,Wtn)(s) =
n
∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtn)

∫ s

0
KH(s, r)

∂RH(ti, r)

∂r
dr.

Note that trace(∇KHK∗
H u̇) = trace(DKH u̇), when both of the traces exist.

Proof. For any convenient u and ψ,

EH

[
∫ 1

0
u̇s

◦
dWs.ψ

]

= EH

[
∫ 1

0
(K∗

H u̇)(s) δHWs.ψ

]

= EH

[
∫ 1

0
(K∗

H u̇)(s)∇̇sψ ds

]

= EH

[
∫ 1

0
u̇(s)KH(∇̇.ψ)(s) ds

]

= EH

[

(KH u̇,Dψ)
HH

]

.

The proof of the second part of the proposition is simply the application of

the definitions of D and ∇.

Definition 4.7. For any H ∈ (0, 1), we define the family {πHt , t ∈ [0, 1]}
of orthogonal projections in HH by

πHt (KHu)
def
= KH(u1[0,t]), u ∈ L2([0, 1]).

The second quantization Γ(πHt ) of πHt is an operator from L2(PH) into itself

defined by,

F =
∑

n≥0

δ(n)H fn -−→ Γ(πHt )(F )
def
=

∑

n≥0

δ(n)H

(

(πHt )⊗nfn
)

.

From [4.1], we have, for u ∈ HH ,

Γ(πHt )
(

Λu
1

)

= exp(δH(π
H
t u)− 1

2
∥πHt u∥2HH

)
def
= Λu

t .
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The bijectivity of the operator KH has the following consequence :

Theorem 4.3. FH
t = σ{δH(πHt u), u ∈ HH} ∨ NH .

Proof. The definition of FH
t says that it is equal to the completion of the

σ-field generated by random variables of the form δH
(

KH(KH(s, .))
)

with

s ≤ t. This amounts to say that

F
H
t = σ{δH(KHu), u ∈ span{KH(s, .), s ≤ t}} ∨ NH .

Observe now that we can replace span{KH(s, .), s ≤ t} by its closure in

L2([0, t]) without changing FH
t . Actually, if u is the limit in L2([0, 1]) of a

sequence (un)n of elements of span{KH(s, .), s ≤ t} then KHun converges

to KHu in HH and thus δH(KHun) tends to δH(KHu) in L2(PH). Hence

δH(KHu) belongs to FH
t and the two σ-fields are thus equal. Now it turns

out that span{KH(s, .), s ≤ t} is total in L2([0, t]) : if g belongs to the

orthogonal complement of this space in L2([0, t]) :

0 = (g,KH (s, .))L2([0,t]) = KHg(s) for all s ≤ t,

so that g ≡ 0 in L2([0, t]). The proof is finished by observing that the image

L2([0, t]) by KH is nothing but the space πHt (HH).

Theorem 4.4. For any F in L2(PH),

Γ(πHt )F = EH
[

F |FH
t

]

,

in particular,

EH
[

Wt |FH
r

]

=

∫ t

0
KH(t, s)1[0,r](s) δHWs, and

EH
[

exp(δHu− 1/2∥u∥2HH
) |FH

t

]

= exp(δHπ
H
t u− 1/2∥πHt u∥2HH

),

for any u ∈ HH .

Proof. Let {hn, n ≥ 1} be a denumerable family of elements of HH and

let Vn = σ{δHhk, 1 ≤ k ≤ n}. Denote by πn the orthogonal projection on

span{h1, . . . , hn}. For any f bounded, for any u ∈ HH , by the Cameron–
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Martin theorem we have

EH [Λu
1f(δHh1, . . . , δHhn)]

= EH [f(δHh1(w + u), . . . , δHhn(w + u))]

= EH [f(δHh1 + (h1, u)HH
, . . . , δHhn + (hn, u)HH

)]

= EH [f(δHh1(w + πnu), . . . , δHhn(w + πnu))]

= EH [Λπnu
1 f(δHh1, . . . , δHhn)] ,

hence

EH [Λu
1 |Vn] = Λπnu

1 . (25)

Choose hn of the form πHt (en) where {en, n ≥ 1} is an orthonormal basis of

HH , i.e., {hn, n ≥ 1} is an orthonormal basis of πHt (HH). By the previous

theorem,
∨

n Vn = FH
t and it is clear that πn tends pointwise to πHt , hence

from (25) and martingale convergence theorem, we can conclude that

EH
[

Λu
1 |FH

t

]

= Λ
πH
t u

1 = Λu
t .

Moreover, for u ∈ HH ,

Γ(πHt )(Λu
1 ) = Λ

πH
t u

1 ,

hence by density of linear combinations of Wick exponentials, for any F ∈
L2(PH),

Γ(πHt )F = EH
[

F |FH
t

]

,

and the proof is completed.

Theorem 4.5 (cf [16]). Let F be DH
2,1, F belongs to FH

t iff ∇F = πHt ∇F .

Proof. Let F be a FH
t –measurable element of DH

2,1, {utn, n ≥ 0} be an or-

thonormal basis of L2([0, t]) and V t
n be the σ field generated by {δHKHuti, i ≤

n}. Since ∨nV t
n = FH

t , the sequence Fn = EH
[

F | V t
n

]

converges to F

in DH
2,1. Since πHt KHutn = KHutn, for Fn we have ∇Fn = πHt ∇Fn and

∇F = πHt ∇F follows. In the converse direction, remark that it is suffi-

cient to prove that TsF is FH
t -measurable for any s > 0, where (Ts)s is the

Ornstein–Uhlenbeck semi–group (see Definition [4.2]). It is easy to see that

∇TsF = e−sTs∇F = e−sTsπt∇F = πte
−sTs∇F = πt∇TsF.

Iterating this relation, we obtain

∇(n)TsF = (πHt )⊗n∇(n)TsF.
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Moreover, from the Wiener chaos expansion, we have, for any u ∈ HH ,

E[TsF (w + u)] =
∞
∑

n=0

1

n!
(E[∇(n)TsF ], u⊗n)

HH
⊗n

=
∞
∑

n=0

1

n!
(πH⊗n

t E[∇(n)TsF ], u⊗n)
HH

⊗n = E[TsF (w + πHt u)].

On the other hand, from the Cameron–Martin formula,

EH

[

TsF exp(δHu− 1

2
∥u∥2HH

)

]

= EH [TsF (w + u)]

= EH [TsF (w + πtu)] = EH

[

TsF ·EH

[

exp(δHu− 1

2
∥u∥2HH

)
∣

∣ F
H
t

]]

and this completes the proof since the linear combinations of Wick expo-

nentials are dense in all the spaces DH
p,k.

Proposition 4.4. A process u(w, t) is {FH
t , t ∈ [0, 1]}–adapted iff its den-

sity process u̇, i.e.,

u(w, t) =

∫ t

0
KH(t, s)u̇(w, s) ds

is {FH
t , t ∈ [0, 1]}–adapted.

Proof. It is obvious that adaptedness of u̇ adapted entails that u is adapted.

In the converse direction, note that u̇(w, t) = (K−1
H u(w, .))(t) and from

Theorem [2.1] we see that all the quadratures involved in the computation

of (K−1
H u)(t) have their support in [0, t]. Hence, u adapted entails u̇ adapted.

Theorem 4.6 (Itô–Clark representation formula). For any F ∈ DH
2,1,

F −EH [F ] =

∫ 1

0
EH

[

K−1
H (∇F )(s)| F

H
s

]

δHWs

= δH
(

KH(EH
[

K−1
H (∇F )(.)|F.

]

)
)

.

Proof. From the chaos expansion (4.1), we know that for any u ∈ HH ,

Λu
1 = 1 +

∫ 1

0
u̇sΛ

u
s δHWs .
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Moreover, linear combinations of Wick exponentials are dense in L2(PH)

hence it is sufficient to prove that for any u ∈ HH any centered F ,

EH [FΛu
1 ] = EH

[
∫ 1

0
EH

[

K−1
H (∇F )(s) |FH

s

]

δHWs.δH
(

KH(u.Λ
u
. )
)

]

.

Integrating by parts and since {Λu
s , s ∈ [0, 1]} is an adapted process, we

have :

EH

[
∫ 1

0
EH

[

K−1
H (∇F )(s) |FH

s

]

δHWs.δH
(

KH(u.Λ
u
. )
)

]

= EH

[
∫ 1

0
EH

[

K−1
H (∇F )(s) |FH

s

]

usΛ
u
s ds

]

= EH

[
∫ 1

0
EH

[

K−1
H (∇F )(s)usΛ

u
s |FH

s ds
]

]

= EH

[
∫ 1

0
K−1

H (∇F )(s)usΛ
u
s ds

]

= EH

[

F.δH
(

KH(u.Λ
u
. )
)]

= EH [F (Λu
1 − 1)] = EH [FΛu

1 ] ,

as it was required.

Theorem 4.7. For any u adapted and in L2(W ;HH), the process {Mt =

δH(πHt u), t ∈ [0, 1]} is a square integrable martingale,i.e.,

EH
[

δHu |FH
t

]

= δH(π
H
t u) =

∫ t

0
K−1

H u(s) δHWs,

whose Doob–Meyer process is t -→
∫ t
0 u

2
s ds. In particular, for v ∈ L2(W ;L2([0, 1]))

adapted,

t -−→
∫ t

0
v(s) δHWs is a martingale.

Proof. Let u be adapted and belong to D∞(HH), for any v ∈ HH , since πHt
is a projector,

EH
[

EH
[

δHu |FH
t

]

Λv
t

]

= EH [δHu.Λ
v
t ]

= EH

[

(u,∇Λv
t )HH

]

= EH

[

(

u,πHt v
)

HH
Λv
t

]

= EH

[

(

πHt u,πHt v
)

HH
Λv
t

]

= EH
[

δH(π
H
t u)Λv

t

]

.

Moreover, for any v ∈ HH such that v = (IdHH
−πHt )v, we have

(

∇δHπHt u, v
)

HH
=

(

πHt u, (IdHH
−πHt )v

)

HH

+ δH(
(

∇πHt u, (IdHH
−πHt )v

)

HH
) = 0,
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since by Theorem [4.5], ∇πHt u = πHt ∇πHt u and πHt is an orthogonal projec-

tion. By density, we see that

EH
[

δHu |FH
t

]

= δH(π
H
t u),

for any u in DH
−∞,a(HH).

For any t ∈ [0, 1] and any φ ∈ DH
∞,

EH

[(

δH(π
H
t u)2 − ∥πHt u∥2HH

)

φ
]

= EH

[

(

πHt u,∇(δH(π
H
t uφ))

)

HH

]

−EH
[

∥πHt u∥2HH
φ
]

= EH

[

(

πHt u,∇φ
)

HH

]

+EH

[

δH
(

∇πH
t uπ

H
t u

)

φ
]

= EH

[

(

∇(2)φ,πHt u⊗ πHt u
)

HH⊗HH

]

+EH

[

(

∇
(

πHt u,∇φ
)

HH
,πHt u

)

HH

]

.

Let 0 ≤ s ≤ t ≤ 1 and φ be an FH
s –measurable element of DH

∞. Theorem

[4.5] implies that (∇φ, v)
HH

=
(

∇φ,πHs v
)

HH
for any v. Hence,

EH

[(

δH(π
H
t u)2 − ∥πHt u∥2HH

)

φ
]

= EH

[

(

∇(2)φ,πHs u⊗ πHs u
)

HH⊗HH

]

+EH

[

(

∇
(

πHs u,∇φ
)

HH
,πHs u

)

HH

]

= EH

[(

δH(π
H
s u)2 − ∥πHs u∥2HH

)

φ
]

,

thus {δH(πHt u)2 − ∥πHt u∥2
HH

, t ∈ [0, 1]} is a martingale.

As a corollary we have a constructive proof of the Levy–Hida represen-

tation theorem :

Theorem 4.8 (Levy–Hida representation).

1. The process

B = {Bt
def
= δH(π

H
t KH1), t ∈ [0, 1]}

is a PH–standard Brownian motion whose filtration is equal to {FH
t , t ∈

[0, 1]}.

2. If we denote by dB the Itô integral with respect to this Brownian mo-

tion, we have for any adapted u, PH–almost surely,

∫ t

0
us δHWs =

∫ t

0
us dBs, for all t.
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Proof. B is a Gaussian process whose covariance kernel is given (see Corol-

lary [4.7]) by

EH [BsBt] = (πsKH1,πtKH1)
HH

=

∫ 1

0
1[0,t](u)1[0,s](u) du = min(s, t).

The equality of the filtrations follows simply from Proposition [4.3].

Let u be of the form

u(w, s) =
n
∑

i=1

ui1(ti,ti+1](s),

where for any i, ui is square–integrable and FH
ti –measurable. If for any i,

ui belongs to DH
2,1 we have by (17)

∫ 1

0
us δHWs =

n
∑

i=1

ui(Bti+1
−Bti)−

∫ 1

0
∇̇rui1(ti,ti+1](r) dr.

Since ui is FH
ti –measurable, the last integrand is zero by Theorem [4.5]. By

a limiting procedure,
∫ 1

0
us δHWs =

n
∑

i=1

ui(Bti+1
−Bti),

even when ui is only square integrable and in FH
ti . Moreover, by Theorem

[4.7],

EH

[

(

∫ 1

0
us δHWs)

2

]

= EH

[
∫ 1

0
u2s ds

]

.

On the other hand, the Itô stochastic integral of u with respect to B is by

definition given by :
n
∑

i=1

ui(Bti+1
−Bti).

By continuity of δH and dB, it follows that the stochastic integrations with

respect to δHW or to dB coincide on the set of adapted processes which

belong to L2(W ;HH).

The classical martingales characterization says that :

Corollary 4.1. Every (PH , {FH
t , t ∈ [0, 1]}) square integrable martingale

M can be written as

M0 + δH
(

πHt u
)

,

where

ut = EH
[

∇M1 |FH
t

]

.
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Theorem 4.9 (Girsanov theorem). Let u = KH u̇ be an adapted process in

L2(W ;HH) such that

EH [Λu
1 ] = 1, (26)

and let Pu be the probability defined by

dPu

dPH

∣

∣

∣

∣

FH
t

= Λu
t = exp

(

δHπ
H
t u− 1

2
∥πHt u∥2HH

)

.

The law of the process

{Wt −
∫ t

0
KH(t, s) ds, t ∈ [0, 1]} under Pu

is the same as the law of the canonical process W under PH . In other words,

for any v = KH v̇ adapted and in L2(W ;HH), the law of the process

{
∫ t

0
KH(t, s)v̇s δHWs −

∫ t

0
KH(t, s)u̇sv̇s ds, t ∈ [0, 1]} under Pu

is the same as the law of the process

{
∫ t

0
KH(t, s)v̇s δHWs, t ∈ [0, 1]} under PH .

Proof. Fix (t1, . . . , tn) in [0, 1]n and consider the n–dimensional martingale

Zn : r -−→
(

∫ ti∧r

0
KH(ti, s)v̇s δHWs

)n

i=1
.

The classical Girsanov theorem stands that the Pu–law of the process

r -→
(

∫ ti∧r

0
KH(ti, s)v̇s δHWs −

∫ ti∧r

0
KH(ti, s)u̇sv̇s ds

)n

i=1

is the same as the PH–law of {Zn
r , r ∈ [0, 1]}. Hence for any bounded mea-

surable f from Rn to R,

EPu

[

f(. . . ,

∫ ti∧r

0
KH(ti, s)v̇s δHWs −

∫ ti∧r

0
KH(ti, s)u̇sv̇s ds, . . .)

]

= EH

[

f(. . . ,

∫ ti∧r

0
KH(ti, s)v̇s δHWs, . . .)

]

,

for any r ∈ [0, 1]. The result follows by taking r = 1 in the last equation.
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Since we have reduced the Girsanov problem of fBm to that of the or-

dinary Brownian motion, we can make the full use of the usual Novikov

condition to ensure the uniform integrability of Λu. Namely, it is sufficient

that

EH

[

exp
1

2
∥u∥2HH

]

< +∞

for (26) to hold.

Application : Consider the process X defined by

Xt = θt+WH
t

and let PX denote its law. We aim to estimate θ through the observation

of a sample-path of X over [0, t]. Let φ be such that (KHφ)(t) = t, by the

Cameron-Martin Theorem and since for deterministic u, (δHu)(w+KHφ) =

(δHu)(w) + (u,KHφ)HH

dPX

dPH

∣

∣

∣

∣

FH
t

(w) = EH

[

exp(θδH(KHφ)(w) −
θ2

2
∥φ∥2L2)| F

H
t

]

= exp(θδH(π
H
t KHφ)(w) −

θ2

2
∥πHt φ∥2L2), or

dPH

dPX

∣

∣

∣

∣

FH
t

(w) = exp(−θδH(πHt KHφ)(w) +
θ2

2
∥πHt φ∥2L2), i.e.,

EH [F (w)] = EH

[

F (X(w)) exp(−θδH(πHt KHφ)(X(w)) +
θ2

2
∥πHt φ∥2L2)

]

.

Hence the PH maximum likelihood ratio estimate θ̂t of θ is

θ̂t =
1

∥πHt φ∥2HH

δH(π
H
t KHφ)(X(w)).

From Theorem [2.1], we have

φ(s)
def
=

Γ(3/2−H)

Γ(2− 2H)
s1/2−H .

Hence,

θ̂t =
22−2HΓ(2−H)√

π t2−2H
δH(π

H
t KHs1/2−H)(X(w)).

5 The Itô Formula

Hereafter we assume that H is greater than 1/2. In this case, the fractional

Brownian motion has a zero quadratic variation hence it is a Dirichlet pro-

cess. It is well known that for such processes there exists an Itô formula (see
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[7]) of the form :

F (Wt) = F (W0) +

∫ t

0
F ′(Ws) dWs, (27)

where the stochastic integral dWs is defined as the limit of Riemann sums as

in formula (22)and F is of class C2. In fact, we improve, in our situation, the

results known for Dirichlet processes in the sense that a somewhat explicit

expression of the right–hand–side of (27) is given. The processes of the

form (28) have been chosen because they constitute a class which is stable

with respect to absolutely continuous changes of probability measures – see

Theorem [4.9].

Let ρ(s) = s1−2H and denote by HH,ρ the image of L2
ρ([0, 1]) = {h :

[0, 1] → R,
∫ 1
0 h2(s)ρ(s) ds < +∞} under KH . Note that when H > 1/2,

L2
ρ([0, 1]) ⊂ L2([0, 1]) because ρ(s) ≥ 1 for any s ∈ [0, 1]. The space HH,ρ is

endowed with the norm induced by L2
ρ([0, 1]), i.e.,

∥u∥HH,ρ
= ∥K−1

H u∥L2
ρ
.

The weighted Sobolev space DH
2,k,ρ is the set of elements F of DH

2,k such that

for any n ≤ k, the n-th Gross-Sobolev derivative of F belongs to H
⊗n

H,ρ and

the norm of F in this space is defined by

∥F∥22,k,H,ρ = ∥F∥2L2(PH ) +
k

∑

i=1

EH

[

∥∇(i)F∥2
H

⊗i
H,ρ

]

.

Before the proof, we give two lemmas for later use.

Lemma 5.1. Let u(w, s) be such that EH

[

∫ 1
0 |u(w, s)| ds

]

< +∞ then t →
EH

[

Iα0+u(t)
]

is continuous.

Proof. Since Iα0+ is a positive linear operator,

|EH [Iα0+u(t+ ε)− Iα0+u(t)] | ≤ (Iα0+EH [|u|])(t+ ε)− (Iα0+EH [|u|])(t).

Hence by the remark following Proposition [2.1], the right–hand–side of the

last inequality converges to 0 as ε tends to 0.

Lemma 5.2. Let (Yε)ε be a process which converges to 0 in L2(PH) when ε

tends to 0. Let h(w, u) be in L2(L2([0, 1])). Then

lim
ε→0

EH

[

ε−1Yε

∫ t+ε

t
h(u) du

]

= 0 dt a.s..
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Proof. Using the Cauchy–Schwarz inequality,

EH

[

ε−1Yε

∫ t+ε

t
h(u) du

]2

≤

2EH
[

Y 2
ε

]

{EH

[

(

∫ t+ε

t
h(u) − h(t)

du

ε

)2
]

+ 2EH
[

h(t)2
]

}

≤ 2EH
[

Y 2
ε

]

{

ε−1
∫ t+ε

t
EH

[

(h(u) − h(t))2
]

du+ 2EH
[

h(t)2
]

}

.

The second term of the previous sum is finite for almost every t and the first

converges to 0 as ε tends to 0, hence all of the right–hand–side converges to

0 for almost every t.

Theorem 5.1. Suppose H > 1/2, let F : R -−→ R be twice differentiable

with bounded derivatives and X be a process of the form

Xt(w) = X0(w) + (KHξ(w))(t) + δH
(

KH(σ(w, .)KH (t, .))
)

(w) (28)

= X0(w) +

∫ t

0
KH(t, s)ξ(w, s)ds +

∫ t

0
KH(t, s)σ(w, s)δHWs,

where X0 belongs to DH
2,1,ρ, ξ is in DH

2,1,ρ(L
2
ρ([0, 1])) and σ is in DH

2,2,ρ(L
2
ρ([0, 1])).

We have

F (Xt)− F (X0) =

∫ t

0
IH−1/2
t−

(

F ′(Xu)u
H−1/2

)

(s)s1/2−Hξ(s) ds

+

∫ t

0
s1/2−Hσ(s)IH−1/2

t−

(

uH−1/2F ′(Xu)
)

(s) δHWs

+

∫ t

0
IH−1/2
t−

(

F ′′(Xu)u
H−1/2

)

(s)s1/2−Hσ(s)∇̇sX0 ds

+

∫ t

0
IH−1/2
t−

(

F ′′(Xu)u
H−1/2KH(∇̇sξ)(u)

)

(s)s1/2−Hσ(s) ds

+

∫ t

0
IH−1/2
t−

(

F ′′(Xu)u
H−1/2KH(u, s)

)

(s)s1/2−Hσ(s)2 ds

+

∫ t

0
IH−1/2
t−

(

F ′′(Xu)u
H−1/2

∫ 1

0
∇̇sσ(r)KH(u, r)δHWr

)

(s)s1/2−Hσ(s) ds.

(29)

Proof. Let us give the main idea of the proof : as a first step we shall sup-

pose that X0, ξ, σ are smooth processes in the sense that they have bounded

Sobolev–Gross derivatives which are continuous with respect to all their pa-

rameters, i.e.,∇̇uX0, ∇̇uσ(s), ∇̇uξ(s) and ∇̈u,vσ(s) are bounded and con-

tinuous with respect to w, u, v and s. Then we use the fundamental theorem
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of differential calculus which says that

EH [F (Xt)ψ] = EH [F (X0)ψ] +

∫ t

0

d

ds
EH [F (Xs)ψ] ds,

where ψ is in D∞. Afterwards, we rewrite the above identity using the

stochastic integration by parts formula (16) and Fubini’s theorem to obtain

the claimed expression.

1) In a first step, we assume that we have the following additional hypothe-

sis : F is C2 with bounded derivatives, ∇̇uX0, ∇̇uσ(s), ∇̇uξ(s) and ∇̈u,vσ(s)

are bounded and continuous with respect to w, u, v and s. Let ψ be in DH
∞

with bounded Gross-Sobolev derivatives,

EH

[(

F (Xt+ε)− F (Xt)
)

ψ
]

= EH
[

F ′(Xt)(Xt+ε −Xt)ψ
]

+EH

[

(Xt+ε −Xt)
2
∫ 1

0
F ′′(uXt + (1− u)Xt+ε)(1 − u) du.ψ

]

= A1+A2.

Let us first consider A1 :

A1 = EH
[

F ′(Xt)ψ(KHξ(t+ ε)−KHξ(t))
]

+EH

[

F ′(Xt)ψδH
(

KH(σ{KH (t+ ε, .) −KH(t, .)})
)]

= B1 +B2.

Since ξ is bounded, t -−→ (KHξ)(t) is differentiable for each w and

(KHξ)
′(t) = tH−1/2IH−1/2

0+

(

u1/2−Hξ(u)
)

(t).

Hence, by the dominated convergence theorem,

lim
ε→0

ε−1B1 = EH

[

F ′(Xt)t
H−1/2IH−1/2

0+

(

u1/2−Hξ(u)
)

(t).ψ
]

. (30)

Because of the regularity of X0, ξ and σ, it is clear that Xt has a Gross-So-

bolev derivative for every t and moreover (cf. (19)) :

∇̇uXt = ∇̇uX0 +

∫ t

0
KH(t, s)∇̇uξ(s) ds

+ σ(u)KH(t, u) +

∫ t

0
∇̇uσ(s)KH(t, s)δHWs.

Hence, we can write

B2 = EH

[
∫ 1

0
σ(u)(KH (t+ ε, u) −KH(t, u))∇̇u(F

′(Xt)ψ)du

]

= EH

[

KH

(

σ(.)∇̇.(F
′(Xt)ψ)

)

(t+ ε)−KH

(

σ(.)∇̇.(F
′(Xt)ψ)

)

(t)
]

.
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The additional hypothesis imply that t -−→ KH

(

σ(.)∇̇.(F ′(Xt)ψ)
)

(t) is

continuously differentiable and by the dominated convergence theorem, we

have :

lim
ε→0

ε−1B2 = EH

[

tH−1/2IH−1/2
0+

(

u1/2−Hσ(u)∇̇u(F
′(Xt)ψ)

)

(t)
]

.

Consider now the second-order term. Since F ′′ is bounded

A2 ≃ cEH
[

(Xt+ε −Xt)
2.ψ

]

.

Furthermore, by the reasoning used to obtain(30),

EH
[

(KHξ(t+ ε)−KHξ(t))
2
]

= o(ε2)

so that, it is sufficient to look at the term involving the stochastic integral :

EH

[

F ′′(Xt)ψδH
(

KH(σ{KH (t+ ε, .) −KH(t, .)})
)2

]

= EH

[

F ′′(Xt)ψ
(

∫ t

0
σ(u)(KH (t+ ε, u) −KH(t, u)

)

δHWu

−
∫ t+ε

t
σ(u)KH (t+ ε, u)δHWu

)2
]

.

= EH

[

F ′′(Xt)ψ
(

∫ t

0
σ(u)(KH (t+ ε, u)−KH(t, u)) δHWu

)2
]

+EH

[

F ′′(Xt)ψ
(

∫ t+ε

t
σ(u)KH (t+ ε, u) δHWu

)2
]

+ 2EH

[

F ′′(Xt)ψ
(

∫ t

0
σ(u)(KH(t+ ε, u)−KH(t, u)) δHWu

×
∫ t+ε

t
σ(u)KH(t+ ε, u) δHWu

)

]

= C1 + C2 + 2C3.

By (18) and the Cauchy-Schwarz inequality, we can upperbound C1 by

|C1| ≤ ∥F ′′∥∞∥ψ∥∞EH

[
∫ t+ε

0
σ(u)2(KH(t+ ε, u)−KH(t, u))2 du

]

+ ∥F ′′∥∞∥ψ∥∞EH

[
∫ t

0

∫ t

0
∇̇uσ(s)∇̇sσ(u)(KH (t+ ε, u) −KH(t, u))

(KH(t+ ε, s)−KH(t, s)) du ds ]

≤ C

∫ t

0
(KH(t+ ε, u) −KH(t, u))2 du = CVHε

2H .
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By the same way, there exists a constant c such that

|C3| ≤ c

∫ t+ε

t
(KH(t+ ε, u)−KH(t, u))KH (t+ ε, u) du

+ c
(

∫ t

0
(KH(t+ ε, u)−KH(t, u)) du

)(

∫ t+ε

t
KH(t+ ε, u) du

)

.

As to C2, we have

|C2| ≤ cEH

[
∫ t+ε

t
σ(u)2KH(t+ ε, u)2 du

]

+ cEH

[
∫ t+ε

t

∫ t+ε

t
∇̇sσ(u)∇̇uσ(s)KH(t+ ε, u)KH (t+ ε, s) du ds

]

,

with another constant c. When divided by ε, the right–hand–side of the last

equation goes to 0 because KH(t, t) = 0. We have proved so far that, under

the additional smoothness hypothesis, we have

d

dt
EH [F (Xt)ψ] = EH

[

F ′(Xt)t
H−1/2IH−1/2

0+

(

u1/2−Hξ(u)
)

(t).ψ
]

+EH

[

tH−1/2F ′(Xt)I
H−1/2
0+

(

u1/2−Hσ(u)∇̇uψ
)

(t)
]

+EH

[

tH−1/2F ′′(Xt)I
H−1/2
0+

(

u1/2−Hσ(u)∇̇uX0

)

(t).ψ
]

+EH

[

tH−1/2F ′′(Xt)I
H−1/2
0+

(

u1/2−Hσ(u)

∫ t

0
KH(t, r)∇̇uξ(r)dr

)

(t).ψ

]

+EH

[

tH−1/2F ′′(Xt)I
H−1/2
0+

(

u1/2−Hσ(u)2KH(t, u)
)

(t).ψ
]

+EH

[

tH−1/2F ′′(Xt)I
H−1/2
0+

(

u1/2−Hσ(u)

∫ 1

0
∇̇uσ(s)KH(t, s)δHWs

)

(t).ψ

]

.

(31)

2) The second step is to prove that each of these terms is continuous with

respect to t in order to be able to integrate them over a finite interval.

The first three terms are easily handled using Lemma [5.1]. We only give

here the complete proof for the last term of the previous sum because it is

the most difficult one, fourth and fifth terms are handled similarly : since

tH−1/2F ′′(Xt)ψ is bounded, it is sufficient to prove that

t −→ EH

[

IH−1/2
0+

(

u1/2−Hσ(u)

∫ 1

0
∇̇uσ(s)KH(t, s)δHWs

)

(t)

]
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is continuous. Let us define Yt,u =
∫ 1
0 ∇̇uσ(s)KH(t, s)δHWs. We have :

|EH

[

IH−1/2
0+

(

u1/2−Hσ(u)Yt+ε,u

)

(t+ ε)− IH−1/2
0+

(

u1/2−Hσ(u)Yt,u

)

(t)
]

|

≤ |EH

[

IH−1/2
0+

(

u1/2−Hσ(u)(Yt+ε,u − Yt,u)
)

(t+ ε)
]

|

+ |EH

[

IH−1/2
0+

(

u1/2−Hσ(u)Yt,u

)

(t+ ε)− IH−1/2
0+

(

u1/2−Hσ(u)Yt,u

)

(t)
]

|.

(32)

By (17),

EH
[

(Yt+ε,u − Yt,u)
2
]

≤ EH

[
∫ 1

0
(∇̇uσ(s))

2(KH(t+ ε, s)−KH(t, s))2 ds

]

+EH

[
∫∫

|∇̈v,uσ(s)∇̈s,uσ(v)|(KH (t+ ε, s)−KH(t, s))

(KH(t+ ε, v) −KH(t, v)) ds dv

]

≤ C

∫ 1

0
(KH(t+ ε, s)−KH(t, s))2ds

≤ C(RH(t+ ε, t+ ε) +RH(t, t)− 2RH(t+ ε, t)) ≤ Cε2H−1,

where C is a constant independent of u. Hence,

|EH

[

IH−1/2
0+

(

u1/2−Hσ(u)(Yt+ε,u − Yt,u)
)

(t+ ε)
]

|

≤ CIH−1/2
0+ (u1/2−H)(t+ ε).εH−1/2.

As to the last term of (32), using [5.1], it can be made as small as desired

since
∫ 1

0
u1/2−HEH [σ(u)Yt,u] du ≤ C∥σ∥∞

∫ 1

0
u1/2−HRH(t, u)1/2 du < +∞.

Now, before we can relax the additional hypothesis, we apply the Fubini

Theorem (to exchange expectations and integrals) and the fractional inte-

gration by parts (5). For instance, for the second term of the right hand

side sum, we obtain

EH

[
∫ t

0
sH−1/2F ′(Xt)I

H−1/2
0+

(

u1/2−Hσ(u)∇̇uψ
)

(s) ds

]

= EH

[
∫ t

0
IH−1/2
t− (uH−1/2F ′(Xu))(s)s

1/2−Hσ(s)∇̇sψ ds

]

= EH

[

ψ

∫ t

0
s1/2−Hσ(s)IH−1/2

t− (uH−1/2F ′(Xu))(s) δHWs

]

.
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The other terms are transformed similarly. If we denote by RHS the right

hand side of (29), we know that

EH [(F (Xt)− F (X0)−RHS)ψ] = 0,

for any ψ in DH
∞ with bounded derivatives. Since both of F (Xt) − F (X0)

and RHS belong to L2(PH), we deduce by the density of DH
∞ in L2(PH) that

F (Xt)− F (X0) = RHS.

3) The third step is to prove that the additional hypothesis can be relaxed.

Actually, our aim is to show that given Xn
0 , σ

n, ξn and Fn converging

respectively to X0, σ, ξ and F in the respective normed spaces, the sequence

Fn(Xn
t ) − Fn(Xn

0 ) − RHS(Fn,Xn) converges in L1
H to F (Xt) − F (X0) −

RHS(F,X). For this it is sufficient to show that EH [RHS(F,X)] can be

bounded by a polynomial in ∥F ′∥∞, ∥F ′′∥∞, ∥X0∥2,1,H,ρ, ∥ξ∥DH
2,1,ρ(L

2
ρ([0,1]))

and ∥σ∥DH
2,2,ρ(L

2
ρ([0,1]))

. For instance, for the last term (29), we have

EH

[
∫ t

0
IH−1/2
t−

(

F ′′(Xu)u
H−1/2

∫ 1

0
∇̇sσ(r)KH(u, r)δHWr

)

(s)s1/2−Hσ(s) ds

]

≤ EH

[
∫ t

0
(s1/2−Hσ(s))2 ds1/2

]

×EH

[

(

∫ t

0
IH−1/2
t− (uH−1/2F ′′(Xu)

∫ 1

0
∇̇sσ(r)KH(u, r)δHWr)(s)

)2
ds

]1/2

≤ C∥F ′′∥∞∥σ∥L2(L2
ρ)

×EH

[
∫ t

0

(

∫ t

s

∫ u

0
∇̇sσ(r)KH(u, r) δHWr (u− s)H−3/2 du

)2
ds

]1/2

.

By the Jensen inequality applied to the measure (u − s)H−3/21[s,t](u)du

(whose total mass is (H − 1/2)−1(t − s)H−1/2), we upperbound the last
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expectation by a constant times the following integral :

∫ t

0
(t− s)H−1/2

∫ t

s
EH

[

(

∫ u

0
∇̇sσ(r)KH(u, r) δHWr

)2
]

(u− s)H−3/2 du ds

≤ EH

[
∫ t

0
(t− s)H−1/2

∫ t

s

∫ 1

0
(∇̇sσ(r)r

1/2−H)2dr du ds

]

+EH

[
∫ t

0
(t− s)H−1/2

∫ t

s

∫ 1

0

∫ 1

0
|∇̈v,sσ(r)|2ρ(r)ρ(v) dr dv du ds

]

≤ EH

[
∫ 1

0

∫ 1

0

(

∇̇sσ(r)(sr)
1/2−H

)2
dr ds

]

+EH

[
∫ 1

0

∫ 1

0

∫ 1

0
|∇̈v,sσ(r)|2ρ(r)ρ(v)ρ(s)) dr dv ds

]

≤ C∥σ∥22,2,ρ,

where we have successively used (18), the upperbound (9) of KH , the fact

that ρ(s) ≥ 1 for any s ∈ [0, 1] and the Cauchy–Schwarz inequality.

Remark 5.1. Note that whenH = 1/2, the contribution of the second order

term A2 is 1/2.
∫ t
0 σ

2(s) ds which is the term corresponding to the square

bracket in the classical Itô formula. Still when H = 1/2, IH−1/2
0+ = Id and

(29) differs from the Itô formula in [14] by only 1/2
∫ t
0 σ

2(s) ds. Moreover

when the processes σ and ξ and X0 are {FH
t , t ∈ [0, 1]}–adapted, all the

terms involving Gross-Sobolev derivatives vanish when H = 1/2 but not

when H > 1/2 because of the derivative of the kernel KH(t, .).

Corollary 5.1. Let H > 1/2 and f : R → R be a twice differentiable func-

tion with bounded derivatives. Define u(t, x) = EH [f(x+Wt)], we have :

∂

∂t
u(t, x) = HVH t2H−1 ∂2

∂x2
u(t, x).

Proof. Applying (31) with ψ = 1, we obtain :

∂tu(t, x) = EH
[

F ′′(Xt)
]

tH−1/2IH−1/2
0+ (u1/2−HKH(t, u))(t).

Now, using Theorem [2.1], we see that for any f ∈ L2([0, 1]),

IH−1/2
0+ (u1/2−Hf)(s) = s1/2−HI−1

0+ (KHf)(s).

Hence,

IH−1/2
0+

(

u1/2−HKH(t, u)
)

(t) = t1/2−H ∂RH

∂s
(t, s)

∣

∣

∣

∣

s=t

= HVHtH−1/2

which proves the result.
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Before we state the Itô formula for processes defined by the stochastic

integral of second kind, we need the following result :

Lemma 5.3. For any f ∈ L2
ρ([0, 1]), we have

∫ 1

0
(KHf)(s)2 ds ≤ c

∫ 1

0
f(s)2s1/2−H ds,

∫ 1

0
(K∗

Hf)(s)2 ds ≤ c

∫ 1

0
f(s)2s1/2−H ds,

∫ 1

0
(KHK∗

Hf)(s)2 ds ≤ c

∫ 1

0
f(s)2s1−2H ds,

where KH = K−1
1/2KH .

Proof. From Theorem (2.1), we know that

K∗
Hf = x1/2−HIH−1/2

1− (xH−1/2f).

Since IH−1/2
1− is a positive operator, using Cauchy–Schwarz inequality,

∫ 1

0
(K∗

Hf)(s)2 ds =

∫ 1

0
s1−2HIH−1/2

1− (uH−1/2f)(s)2 ds

≤ c

∫ 1

0
s1−2HIH−1/2

1− (f)(s)2 ds

≤ c

∫ 1

0
s1−2H(1− s)H−1/2

∫ 1

s
(u− s)H−3/2f(u)2 du ds

≤ c

∫ 1

0
f(u)2

∫ u

0
s1−2H(u− s)H−3/2 ds du

≤ c

∫ 1

0
f(s)2s1/2−H ds,

where c denotes any constant. The other inequalities are shown similarly.

Theorem 5.2. Assume that for any t ∈ [0, 1],

Xt = x0 +

∫ t

0
ξs ds +

∫ t

0
σs

◦
dWs,

where ξ belongs to DH
2,1,ρ(L

2([0, 1])) and σ ∈ DH
2,2,ρ(L

2
ρ([0, 1])). For any F

twice differentiable with bounded derivatives, we have for any t, PH–almost

surely :

F (Xt) = F (X0) +

∫ t

0
F ′(Xs)ξs ds+

∫ t

0
F ′(Xs)σs

◦
dWs

+

∫ t

0
F ′′(Xs)ḊsXsσs ds, (33)
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with

ḊtXt =

∫ t

0
Ḋtξs ds+ (KHK∗

Hσ)(t) +

∫ t

0
Ḋtσs

◦
dWs,

and Ḋtφ is defined as KH(∇̇.φ)(t) (see (24)).

Sketch of the proof. Formally, the proof follows the lines of the preceding

one. The third step consists also of upper–bounding the expectation of the

right–hand–side of (33) by a polynomial in ∥F ′∥∞, ∥F ′′∥∞, ∥ξ∥DH
2,1,ρ(L

2
ρ([0,1]))

and ∥σ∥DH
2,2,ρ(L

2
ρ([0,1]))

. For instance,

EH

[

|
∫ t

0
F ′(Xs)σs

◦
dWs|

]2

≤ EH
[

|δHKHK∗
H(F ′(X.)σ)|2

]

≤
∫ 1

0
K∗

H(F ′(X.)σ)(s)
2 ds

+ trace
(

∇KHK∗
H(F ′(X.)σ) ◦ ∇KHK∗

H(F ′(X.)σ)
)

≤ ∥F ′∥2∞∥K∗
Hσ∥2L2 + ∥∇KHK∗

H(F ′(X.)σ)∥2HS .

Moreover,

∇̇rK∗
H(F ′(X.)σ)(u) = K∗

H(F ′′(X.)σṅrX.)(s)

+K∗
H(F ′(X.)∇̇rσ(.))(s).

Hence by Lemma [5.3], we have

EH

[

|
∫ t

0
F ′(Xs)σs

◦
dWs|

]2

≤ c∥F ′∥2∞∥σ∥2
DH
2,1,ρ(L

2
ρ([0,1]))

+ c∥F ′′∥2∞∥σ∥2L2
ρ

(

∥σ∥2
DH
2,2,ρ(L

2
ρ([0,1]))

+ ∥ξ∥2
DH
2,1,ρ(L

2([0,1]))

)

,

where c is a constant. The other terms are treated similarly.

Theorem 5.3. Assume that for any t ∈ [0, 1],

Xt = x0 +

∫ t

0
ξs ds +

∫ t

0
σs d̃Ws,

where ξ belongs to DH
2,1,ρ(L

2([0, 1])) and σ ∈ D2,2,ρ(L2
ρ([0, 1])).

1. The integral
∫ 1
0 ḊtXt dt is finite, and
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2. For any F twice differentiable with bounded derivatives, we have for

any t, PH–almost surely :

F (Xt) = F (X0) +

∫ t

0
F ′(Xs)ξs ds +

∫ t

0
F ′(Xs)σs d̃Ws

−
∫ t

0
F ′′(Xs)ḊsXsσs d̃Ws.

Proof. By the computations we made in the previous proof, we have
∫ 1

0
(ḊtXt)

2 dt is finite.

The last part follows from the previous Itô formula.
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