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1. Introduction

In the past few years, the fractional Brownian motion has been the subject
of numerous investigations. Its potential applications to telecommunications
and mathematical �nance are the practical reasons for which this process
is so much studied. On the theoretical point of view, it is an interesting
process because it is neither a Markov process nor a semi-martingale so that
stochastic calculus with respect to it is challenging. In particular, several
attempts have been made to de�ne a good stochastic integral with respect
to the fBm. This paper aims to describe the main approaches developed up to
now and to show how they relate one to each other. This work is organized as
follows: in Section 3, we give and compare the di�erent de�nitions, existing
in the current literature, of what could be a stochastic integral with respect
to fBm. Section 4 is devoted to the usage we can make of these integrals to
develop a stochastic calculus 'à la Itô', namely we focus on the basic tools
such as Girsanov theorem, Clarke representation formula and Itô formula. At
last, in Section 5, we illustrate how these tools can be applied to two concrete
problems: the parametric estimation of the drift of a 'fractional di�usion'
and the non-linear �ltering problem. Notations and concepts of deterministic
fractional calculus and Malliavin calculus are given in the appendices.

2. Preliminaries

De�nition 2.1. For any H in (0, 1), the fractional Brownian motion of
index (Hurst parameter) H, {BH(t); t ∈ [0, 1]} is the centered Gaussian
process whose covariance kernel is given by

RH(s, t) = E [BH(s)BH(t)]
def
=

VH

2

(
s2H + t2H − |t− s|2H

)
where

VH
def
=

Γ(2− 2H) cos(πH)
πH(1− 2H)

.

Its main useful properties are (see [9, 11] and references therein for their
proofs) :

i � The sample-paths of BH are almost surely Hölder continuous of any
order less than H.
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ii � Its 1/H-variation on [0, t] is �nite :

lim
n→+∞

2n−1∑
j=0

|BH((j + 1)2−n ∧ t)−BH(j2−n ∧ t)|p =


0 if pH > 1,
∞ if pH < 1,
VH .t if pH = 1.

In particular, BH is a Dirichlet process (i.e., its quadratic variation is
null) for H > 1/2 and has an in�nite quadratic variation for H < 1/2.

iii � There exists a standard Brownian motion {B(s), s ∈ [0, 1]} such that

BH(t) =
∫ t

0
KH(t, r) dB(r), where(1)

KH(t, r) =
(t− r)

H− 1
2

+

Γ(H + 1
2)
F (

1
2
−H,H − 1

2
,H +

1
2
, 1− t

r
).(2)

The Gauss hyper-geometric function F (α, β, γ, z) (see [21]) is the ana-
lytic continuation on C×C×C\{−1,−2, . . .}×{z ∈ C, Arg|1−z| < π}
of the power series

+∞∑
k=0

(α)k(β)k

(γ)kk!
zk.

Here (α)k denotes the Pochhammer symbol de�ned by

(α)0 = 1 and (α)k
def
=

Γ(α+ k)
Γ(α)

= α(α+ 1) . . . (α+ k − 1).

More important than the expression of KH(t, s) is the relation :

(3)

∫ t∧r

0
KH(t, s)KH(r, s) ds = RH(t, r).

This means that the linear integral operator of kernelKH is a quasi-nilpotent
square root of the integral operator of kernel RH . Hence such a procedure
can be done for any Gaussian process since such a square-root always exists
� see [8].

We �x once for all a value of H 6= 1/2 so that, otherwise stated, we omit
the index H everywhere for the sake of notational simplicity.

3. Constructions

The di�erent de�nitions of stochastic integrals with respect to BH can
be sorted in two main groups : those which are relying on the sample-path
properties of BH and those which are based on its Gaussiannity.

3.1. Sample-path de�ned integrals. The very �rst idea which comes to
mind when we try to construct a stochastic integral with respect to BH is
to consider the so-called Riemann sums :

(4) RSn(u)
def
=

2n−1∑
i=0

ui2−n(BH((i+ 1)2−n)−BH(i2−n))
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and then to identify the conditions on u which are su�cient to ensure the
convergence (at least in probability) of this quantity.

Since for H > 1/2, the fBm is a Dirichlet process , (4) can be given a sense
using the approach developed by Föllmer in [14]. On the other hand, since
the fBm has 1/H bounded variation, one can use the work of Bertoin [3]
in which it is proved that RSn(u) converges whenever u has 1/β-bounded
variation with β + H > 1 and β ≥ 2. In the same vein, one can also cite
the papers [7, 19] which consider more speci�cally the case of the fractional
Brownian motion. Using the fact that for f and g two continuously di�er-
entiable functions, we have

|
∫
fdg| ≤ c‖f‖Hol(α)‖g‖Hol(β)

(see Appendix A for the de�nitions of the notations such as Hol(α)) where
α + β ≥ 1, it is proved in [13] that RSn(u) converges provided that u ∈
Hol+(1−H) � for similar approaches, see [5]. Afterwards, we set

(rs)-

∫
u(s) dBH(s) = lim

n→∞
RSn(u),

whichever hypothesis are chosen to ensure its convergence. A slightly di�er-
ent approach appeared in [32].

De�nition 3.1. If u belongs to Bα,1 for some α > 1−H, a stochastic integral
of u with respect to BH can be de�ned according to the fractional integration
by parts formula :

(5) (fip)-

∫
u(s) dBH(s) =

(−1)α

∫ 1

0
I−α
0+ (u0+)(s)Iα−1

1− (B1−
H )(s) ds+ u(0+)BH(1−),

where u0+(s) = u(s) − u(0+) and u(0+) = limε↓0 u(ε). Similarly, B1−
H (s) =

BH(1−)−BH(s) and BH(1−) = limε↓0BH(1− ε).

In particular, if u ∈ Hol+(1 − H), the integral (fip)-
∫
u(s) dBH(s) is well

de�ned and the process t 7→ (fip)-
∫
u(s)1[0,t](s) dBH(s) belongs to Hol−(H).

Hence even though this de�nition is valid for any value of H in (0, 1), one
can iterate it (i.e., consider the stochastic integral of a process de�ned itself
as a stochastic integral) only for H > 1/2, the value for which H > 1 − H.
Moreover, in the case H > 1/2 we have :

Theorem 3.1 (cf. [32]). If u is in Hol+(1 − H), (rs)-
∫
u(s) dBH(s) exists

and coincides with (fip)-
∫
u(s) dBH(s).

In all the de�nitions of this section, one did not care of the adaptedness
of the integrand. Since all these de�nitions are made pathwise, it is only the
sample-path regularity of the integrand that counts. It is thus not surprising
that these stochastic integrals are not very suitable to a real stochastic cal-
culus. Except for very speci�c case, it is in fact impossible to compute even
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the expectation of any of these integrals. More probabilistic approaches are
given by the next methods.

3.2. Wiener integrals. Instead of using the sample-paths properties of BH ,
we focuses now on its Gaussiannity. Stochastic integrals of deterministic
functions with respect to a Gaussian process are well known since the early
�fties (see [20] an references therein) and are called Wiener integrals. Their
appealing property is that in the case of the usual Brownian motion, this
integral coincides, for deterministic integrands, with the celebrated Itô inte-
gral. As we shall show below, this is no longer the case for other Gaussian
processes. Nevertheless, there is still a strong relationship between the dif-
ferent kinds of approaches.

As a preliminary to the de�nition of Wiener integrals, we �rst �x a few
notations and de�nitions: We denote by Ω the canonical space which is here
the space of continuous functions from [0, 1] into R, vanishing at time 0,
equipped with its strong topology :

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

The probability measure P on Ω, is such that the canonical process, {BH(ω, t) =
ω(t), t ∈ [0, 1]}, is a fractional Brownian motion of Hurst index H. As for any
Gaussian processes, the so-called Reproducing Kernel Hilbert Space (RKHS
for short), denoted by H, is of paramount importance. It is de�ned as the
closure of the vector space spanned by the set of functions {R(t, .), t ∈ [0, 1]}
equipped with the scalar product :

< R(t, .), R(s, .) >= R(t, s) for all t and s.

Unfortunately, this general de�nition of the RKHS is clearly not a satisfying
one. Actually, according to this de�nition, deciding whether a given function
belongs to H, is almost impossible. Meanwhile, it is well known that for
the standard Brownian motion, H is nothing but the space of absolutely
continuous functions, vanishing at 0, whose derivative belongs to L2([0, 1]).
In the case of the fBm, it has been proved (in [9] for any H after a result of
[2] for the case H > 1/2) that :

Theorem 3.2. For any H ∈ (0, 1), H is the set of functions f which can be
written as

f(t) =
∫ t

0
K(t, s)f̃(s)ds,

with f̃ belonging to L2([0, 1]). By de�nition, ‖f‖H = ‖f̃‖L2 .

It turns out that as a vector space (without any consideration about

norms), H coincides with the space I
H+1/2
0+ (L2) (see appendix A for the def-

inition of this space), which is the space of functions which are (H + 1/2)
di�erentiable, vanishing at 0, whose (H + 1/2)-th derivative belongs to L2.
This way, one can see the similarity between the standard case (H = 1/2)
and the case (H 6= 1/2).
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De�nition 3.2. As for any Gaussian process, the (abstract) Wiener inte-
gral with respect to the fractional Brownian motion is de�ned as the linear
extension from H in L2(Ω,P) of the isometric map :

H −→ L2(Ω,P)

R(t, .) 7−→ BH(t).

This means that :

(Wiener)-

∫ n∑
i=1

αiRH(ti, s) dBH(s) =
n∑

i=1

αiBH(ti).

For any (deterministic) function u ∈ H, there exists a sequence (un, n ≥ 1),
where each un is a �nite linear combination of the R(t, .), which converge to
u in H. By de�nition,

(Wiener)-

∫
u(s) dBH(s) = L2(Ω,P)− lim

n→∞
(Wiener)-

∫
un(s) dBH(s).

If we apply this construction to the Brownian motion, because of the de�-
nition of the RKHS, we see that we can only integrate functions which are
absolutely continuous and whose derivative is square integrable on [0, 1]. On
the other hand, it is well known that it is su�cient to have the square inte-
grability of the integrand to give a sense to a stochastic integral with respect
to B. This di�culty is due to a simple and very often implicit identi�cation.
Actually, it does not change anything to the properties of Wiener integrals
if we replace H by an isometrically isomorphic Hilbert space. Thus in the
Brownian case, it is customary to identify L2([0, 1]) and H since the map
I1
0+ is a bijective isometry from the �rst space onto the other: if u belongs

to L2, then we identify u and f(t) =
∫ t
0 u ds = (I1

0+u)(t). It is only when
the Wiener integral is de�ned this way that it is appears as the restriction
of the Itô integral.

Let us now do the same sort of work for the fractional Brownian motion.
By a representation of H, we mean a pair composed of a functional space
and a bijective isometry between this space and H. By a concrete version of
the Wiener integral with respect to the fBm, we mean a pair composed of
a representation of H together with the family of functions {j(t), t ∈ [0, 1]}
which will be mapped to theWt's in order to conserve the necessary isometry
property, which is

‖j(t)‖H = E
[
W 2

t

]
.

As a trivial consequence of Theorem 3.2, we have :

Theorem 3.3. There exists a canonical isometric bijection between L2([0, 1])
and H given by :

i1 : L2([0, 1]) −→ H

h 7−→ f(t) =
∫ t

0
K(t, s)h(s)ds.
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Hence (L2([0, 1]), i1) is a representation of H.

Note that when H = 1/2, i1 is nothing but I1
0+ , the quadrature operator

and that i1(1[0,t]) = K1/2
(t, .). More generally, according to (3), for any H,

the predecessor of R(t, .) by i1 is K(t, .).
Another representation, well de�ned only for H > 1/2, is given by the

following theorem :

Theorem 3.4 ([2, 12, 22]). For any H > 1/2, consider L2([0, 1]) equipped
with the twisted scalar product :

< f, g >=
∫∫

[0,1]2

f(s)g(t)|t− s|2H−2 ds dt.

First de�ne the linear map i2 on step functions by :

i2 : (L2([0, 1]), <,>) −→ H
1[0,t] 7−→ R(t, .).

Denote by i2, the extension of this map to the whole of H2 not= closure(L2([0, 1]), <
,>). Then (H2, i2) is a representation of H.

Remark 3.1. Other characterizations of the RKHS of the fBm are given in
[24]. In particular, it is proved there that (L2([0, 1]), <,>) is not complete
and that explains that we need to take its closure to obtain a Hilbert space.

To see the connection between this paper and [24], we may transform the
expression of K(t, s). After [29]): we know that for f ∈ L2,

(6) Kf = I1
0+x

H−1/2I
H−1/2
0+ x

1/2−Hf.

We introduceK∗, the adjoint ofK, i.e., for any f and g two square integrable
functions, K∗g is de�ned by the condition:∫ 1

0
Kf(s)g(s) ds =

∫ 1

0
f(s)K∗g(s) ds.

By Fubini's Theorem, it turns out that

K∗g(t) =
∫ 1

t
K(s, t)g(s) ds

and at least formally, K(t, s) = K∗(εt)(s), where εt denotes the Dirac mass
at time t. On the other hand, we deduce from (6) that

(7) K∗g = x
1/2−HI

H−1/2
1− xH−1/2I1

1− .

Since I1
0+(εt) = 1[0,t], it follows that

K(t, s) = s
1/2−H

(
I

H−1/2
1− xH−1/21[0,t]

)
(s).
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This is precisely the expression used in [24] to prove that for H < 1/2,

i3 : L2([0, 1]) −→ H

h 7−→ f(t) = t
1/2−H

(
I

H−1/2
1− xH−1/2h

)
(t),

with ‖f‖H = ‖h‖L2 , is a representation of H. Actually, rephrased in the
setting of this paper, this representation is the 'dual' representation of i1.
Remind that H is densely included in the space of continuous functions on
[0, 1], hence its dual space contains the linear combination of Dirac masses
as a dense subspace. Henceforth, in virtue of (7), i3 is strictly speaking
a representation of the dual space of H, since this space is isometrically
isomorphic to H and since we work up to isomorphisms, i3 can also be
viewed as a representation of H.

Now, one can consider the Wiener integrals as the extensions of the fol-
lowing isometries :

(W1)-

∫
: L2([0, 1]) −→ L2(Ω,P) or (W2)-

∫
: H2 −→ L2(Ω,P)(8)

K(t, .) 7−→Wt 1[0,t](.) 7−→Wt.

These de�nitions require a few remarks :

- Note that mapping (W1)-
∫

1[0,t](s) dBH(s) to BH(t) would be inconsistent
with the isometry property required by the abstract scheme of the Wiener
integral since

(9) E

[
|(W1)-

∫
1[0,t](s) dBH(s)|2

]
= ‖1[0,t]‖2

L2 = t 6= E
[
|BH(t)|2

]
= VHt

2H .

- As a consequence of the de�nition of a Wiener integral and of (9), the
process (W1)-

∫
1[0,t](s) dBH(s), t ≥ 0 is a centered Gaussian process whose

covariance kernel is min(t, s), hence it is a standard Brownian motion which

we denote by B̃. Moreover, for the very same reasons, for any u determin-
istic belonging to L2,

(W1)-

∫
u(s) dBH(s) =

∫
u(s) dB̃s,

where the right-hand-side integral has to be understood in the Itô sense.
- So either we keep the original scalar product on L2([0, 1]) and we have to
change the pre-image of BH(t) to K(t, .) or we change the scalar-product
on L2([0, 1]) so that we can keep 1[0,t] as the predecessor of BH(t). This is
the main point where the situation for the fBm di�ers from the standard
case. All the following di�culties come in fact from this Gordian knot.

- A consequence of changing the scalar-product appears in the computation
of the expectation of BH(t) given the past (BH(u), u ≤ r) for some r < t.
In both cases, one has to express the orthogonality relations:

E [BH(u)(BH(t)− E [BH(t) |BH(u), u ≤ r])] = 0,
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in terms of orthogonality equations in L2([0, 1]), respectively H2. Explicit
computations turn to be straightforward with (W1)-

∫
and we easily obtain

that :

Lemma 3.1. For any 0 ≤ r ≤ t ≤ 1,

E [BH(t) |BH(u), u ≤ r] = (W1)-

∫
K(t, s)1[0,r](s) dBH(s).

The corresponding formula (for H > 1/2 only) in terms of (W2)-
∫
can be

deduced from the following identity (the explicit expression of the previous
conditional expectation in terms of (W2)-

∫
is given in [22].) :

Theorem 3.5. For H > 1/2, for any function u ∈ L2([0, 1]),

(10) (W1)-

∫
K∗K∗−1

1/2
u(s) dBH(s) = (W2)-

∫
u(s) dBH(s),

where K∗ denotes the adjoint of the integral operator of kernel K, i.e., for
f and g in L2([0, 1]),∫ 1

0
(Kf)(s)g(s) ds =

∫ 1

0
f(s)(K∗g)(s) ds.

Remark 3.2. We denote by K the map K−1
1/2
◦K, since K1/2

coincides with

I1
0+ , we get K = I−1

0+K that is to say

Kf(t) = (Kf)′(t).

For H > 1/2, according to (6), we get

Ku(t) = tH−
1/2I

H−1/2
0+ (x

1/2−Hu)(t),

thus

K∗u(t) = t
1/2−HI

H−1/2
1− (xH−1/2u)(t),

which according to the de�nition of fractional integrals turns out to be

K∗u(t) =
t
1/2−H

Γ(H − 1/2)

∫ 1

t
(r − t)H−3/2rH−1/2 u(r) dr.

For H = 1/2, K is the idendity map. For H < 1/2, K is a densely de�ned,

closable operator from L2 into itself which admits I
1/2−H
0+ (L2) as a core

(i.e., as a dense subset of its domain) � see [10].

Proof of (10). By their very de�nition, K and K1/2
are such that

K∗(εt)(s) = K(t, s) and K∗
1/2

(εt)(s) = I1
1−(εt)(s) = 1[0,t](s),

where εt denotes the Dirac mass at time t. Hence K∗1[0,t] = K(t, .) and (10)

is true for step functions of the form
∑n

i=1 ui1[0,ti]. Since K∗ is a continuous
map from L2([0, 1]) into itself, the general case follows by a trivial limiting
procedure. �
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- The consequence of changing the pre-image of Wt to something di�erent
from 1[0,t] appears in the Riemann-sums approach of the de�nition of a
stochastic integral. When H = 1/2, K1/2

(t, .) = 1[0,t] so that we have :

(W1)-

∫
u(s) dBH(s) = (W2)-

∫
u(s) dBH(s) =

lim
n→+∞

2n−1∑
i=0

u(i2−n)(B((i+ 1)2−n)−B(i2−n)),

for any continuous u. From (10), it is clear that (W1)-
∫

and (W2)-
∫

di�er
and from (8), it is clear that (W1)-

∫
no longer coincides with (rs)-

∫
, whereas

(W2)-
∫
does coincide with (rs)-

∫
.

At this point, we thus have two di�culties: we have only used Wiener in-
tegrals and that means we can integrate only deterministic integrands. The
second point is that we have two integrals at our disposal, namely (W1)-

∫
and (W2)-

∫
and none is strictly is better than the other. The latter may be

more appealing because it coincides with the Riemann sums and thus has
some reminiscences of Riemann-Stieltjes framework of integration. However,
it would be a great mistake to neglect (W1)-

∫
since as we'll see in section 5,

it is the convenient tool to express and prove crucial theorems such as Gir-
sanov Theorem and Clark Formula. In virtue of (10), it is always possible to
rewrite a result expressed in terms of (W1)-

∫
in terms of (W2)-

∫
but the result

is untractable.
We will see in the next section that the �rst di�culty (which is only of

technical order) can be easily overcome whereas the second point is really
unavoidable. Actually, for any Gaussian process distinct from the standard
Brownian motion, the situation will be the same as it is for the fBm. It is
the Brownian motion which is a singularity and the other processes which
follow the common rules.

3.3. Skohorod-like integrals. The Malliavin calculus provides the conve-
nient framework to extend the Wiener integral to random, even non-adapted,
integrands. For the sake of simplicity, we won't go into the details of the
Malliavin calculus but we will only summarize the useful results.

The basic tool for the following is in fact the Skohorod integral (see Ap-
pendix B) with respect to the standard Brownian motion B mentioned in
property (iii) of section 2. The Skohorod integral of a process u is usually
denoted by

∫
u(s) ◦ dB(s) and its de�nition can be found in several text-

books (see [30]) and is recalled at the end of this chapter. Two of its main
properties are that :

- The expectation of
∫
u(s) ◦ dB(s) is null.

- For u adapted and square integrable,
∫
u(s) ◦ dB(s) coincides with the

Itô integral of u. The space of processes which are Skohorod integrable,
denoted by Dom δ is much wider than the set of adapted and square in-
tegrable processes. For instance, any functional f(B(t1), . . . , B(tn)) where



10 Stochastic integration w.r.t. fBm

ti belongs to [0, 1] for any i ∈ {1, . . . , n} and f is a Lispchitz continuous
function from Rn into R is Skohorod integrable but not Itô integrable. For
all of this reasons, one can say that the Skohorod integral is an extension of
the Itô integral (which itself is an extension of the Wiener integral (W1)-

∫
.

Moreover, it is proved in [11] that for deterministic processes, the Skohorod
integral coincides with (W1)-

∫
. We thus have solved half of our problem by

extending the �rst Wiener integral by the Skohorod integral, which we will
denote from now on by (Sko1)-. To extend (W2)-

∫
, we simply use (10):

De�nition 3.3. For u such that K∗u belongs to Dom δ, we consider :

(11) (Sko2)-

∫
u(s) ◦ dBH(s)

def
=

∫
K∗u(s) ◦ dB(s),

where the right-hand-side denotes the Skohorod integral of K∗u.
Since K is lower-triangular (i.e., K(t, s) = 0 when s > t), we have:

K∗t−u ≡ K∗1−(u1[0,t]),

where K∗t− denotes, by analogy with the notation Iα
b−, the adjoint of K in

L2([0, t]), i.e., ∫ t

0
Kf (s)g(s) ds =

∫ t

0
f(s)K∗t−g(s) ds

for su�ciently regular f and g.
Henceforth, there is no ambiguity to set

(Sko2)-

∫ t

0
u(s) ◦ dBH(s) =

∫
K∗t−u(s) ◦ dB(s).

Remark 3.3. This integral �rst appeared in [11] for H > 1/2 and coincides
with the integral de�ned in [12] by the mean of Wick products.

Remark 3.4. It is also remarkable that (Sko2)-
∫

is the integral which pops
up when we try to de�ne heuristically a stochastic integral with respect to
BH . Say we want to de�ne something like

∫
u(s)ḂH(s) ds where ḂH aims to

be the derivative of BH � which rigourously speaking does not exist. Using
relation (1) and the fact that the derivative operator is nothing but K−1

1/2
, we

can say that : ∫
u(s) ḂH(s) ds =

∫
u(s)K−1

1/2
◦K(Ḃ)(s) ds.

By taking the adjoint map of K−1
1/2
◦K, which is in fact K, we obtain∫

u(s)ḂH(s) ds =
∫
K∗u(s)Ḃ(s) ds,

which is the empirical version of (11).
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Remark 3.5. Note that (Sko2)-
∫
is an anticipative integral. For instance, for

H > 1/2, since we have (see [29]) :

(12) Kf = I1
0+x

H−1/2I
H−1/2
0+ x

1/2−Hf,

the computation of K∗f(t) needs the knowledge of f between time t and 1 :

K∗f(t) =
t
1/2−H

Γ(H − 1/2)

∫ 1

t
xH−1/2(x− t)H−3/2f(x) dx.

For H < 1/2, the problem is the same. However, note that for u adapted,

(Sko2)-
∫ t
0 u(s) ◦ dBH(s) belongs to Ft even if K∗t−u is an anticipative process.

The key point here is that by taking the adjoint map of K, we proceed to
the analog of an integration by parts and this explains how an anticipative

integral appears. Namely, when one wants to compute
∫ 1
0 wv dx with v(x) =∫ x

0 v
′(y) dy.We obtain by a classical integration by parts (including the trace

terms in the integral) or by Fubini's theorem,∫ 1

0
wv dx =

∫
v′(x)

∫ 1

x
w(y) dy dx,

so that we actually have a sort of an �anticipative� integral of u.

Proposition 3.1 (see [11]). For any H, provided that u belongs to the do-
main of K (which is true if u is suare integrable for H > 1/2 and which is

satis�ed whenever u belongs to I
1/2−H
0+ L2 for H < 1/2), the stochastic integral

(Sko2)-
∫

coincides with the stochastic integral de�ned by Riemann sums for
deterministic processes. We have the following identity provided that u is
deterministic and both sides exist :

(Sko2)-

∫
u(s) ◦ dBH(s) = lim

|πn|→0

∑
ti∈πn

u(ti)(BH(ti+1)−BH(ti)).

When u is a �regular� random process, we have :

(13) (Sko2)-

∫
u(s) ◦ dBH(s) =

lim
|πn|→0

∑
ti∈πn

u(ti)(BH(ti+1)−BH(ti))−
∫ 1

0
Dsu(s) ds.

The term �regular� and the operator D are de�ned in appendix B, de�nition
B.2.

Equation (13) leads naturally to de�ne :

De�nition 3.4. For u regular, we de�ne :

(Sko3)-

∫
u(s) ◦ dBH(s) = (Sko2)-

∫
u(s) ◦ dBH(s) +

∫ 1

0
Dsu(s) ds
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and

(Sko3)-

∫ t

0
u(s) ◦ dBH(s) = (Sko2)-

∫ t

0
u(s) ◦ dBH(s) +

∫ t

0
Dsu(s) ds.

The similarity of (Sko3)-
∫
with a Stratonovitch-Skohorod type integral (see

[23]) leads us to look at the limit of

LIn(u) =
n−1∑
i=0

n

∫ (i+1)/n

i/n

u(s) ds (BH((i+1)/n)−BH(i/n)).

That is to say we look at the limit of the sum obtained by substituting the
linear interpolation of the fBm to the di�erential element dBH(s).

Theorem 3.6 (see [10]). For H > 1/2, for u ∈ L2(Ω× [0, 1], dP⊗dt)∩Dom δ
and such that ∇u belongs to Lp(Ω;Lp ⊗ Lp), u is regular and the sequence
{LIn(u), n ≥ 1} converges in L2(Ω, dP) to (Sko3)-

∫
u(s) ◦ dBH(s).

Theorem 3.7 (see [10]). For H < 1/2, for u ∈ D2,1(B3/2−H,2), u is regular

and the sequence {LIn(u), n ≥ 1} converges in L2(Ω, dP) to (Sko3)-
∫
u(s) ◦

dBH(s).

3.4. Other constructions. At least two other approaches are used to con-
struct a stochastic integral with respect to BH .

- In [1], BH is expressed as the limit in probability of a sequence of semi-
martingales. The stochastic integrals with respect to these semi-martingales
being well-de�ned, the stochastic integral with respect to BH is de�ned as
their limit when it exists. Up to a slight change of notations, the expression
of this integral coincides with that of (Sko3)-

∫
.

- Another kind of limiting procedure is used in [25]. First de�ne the following
two spaces :

C∞0 ([0, 1]2) = {k ∈ C∞, k(1, r) = k(0, r) = 0, r ∈ [0, 1]},
and let W be the completion of C∞0 ([0, 1]2) under the norm :

‖k‖2
W = ‖k‖2

L2([0,1]2) +
∫ 1

0
∂s

∫ 1

0
k2(s, r) dr ds.

A square integrable process is said to be W -integrable whenever for any
sequence (kn, n ∈ N) whose elements belong to C∞0 ([0, 1]2), converging to

k in W, we have
∫ 1
0 u(s)∂skn(s, .) ds ∈ Dom δ for any n and the limit of

W k
n (u) =

∫ 1

0

(∫ 1

0
u(s)∂skn(s, .) ds

)
◦ dB(s)

exists in L2(Ω, dP) and is independent of the choice of (kn, n ≥ N). Ac-
tually, considering

∫ 1
0 u(s)∂skn(s, .) ds is a way to approach K∗u (by reg-

ularizing K so that Kf becomes di�erentiable). Thus when a process is
W -integrable and its (Sko2)-

∫
integral is well de�ned, the latter coincides

with the limit of W k
n (u).
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4. Stochastic calculus

One step is to construct a stochatic integral, the other is to be able to
state some theorems using it. The situation for H 6= 1/2, will be again very
di�erent from the standard one in the sense that we will have to choose one
construction or the other according to the theorem we want to state. For
the Girsanov theorem, (Sko1)-

∫
is the most adequate tool :

Theorem 4.1 (Girsanov theorem, see [11]). Let u be a square integrable
adapted process such that

E [Λu
1 ] = 1 where Λu

t = exp((Sko1)-
∫ t

0
u(s) dBH(s)− 1

2

∫ t

0
u(s)2 ds).

Let Pu be the probability de�ned by

dPu

dP

∣∣∣∣
FH

t

= Λu
t .

The law of the process {BH(t) −
∫ t
0 K(t, s) ds, t ∈ [0, 1]} under Pu is the

same as the law of the process BH under P. More generally, for any v square

integrable and adapted process, the law of the process {
∫ t
0 K(t, s)v(s) dB(s)−∫ t

0 K(t, s)u(s)v(s) ds, t ∈ [0, 1]} under Pu is the same as the law of the pro-

cess {
∫ t
0 K(t, s)v(s) dB(s), t ∈ [0, 1]} under P.

Remark 4.1. For non-adapted shifts, Girsanov theorem still holds under con-
venient hypothesis (see [31]) but it is always expressed in terms of (Sko1)-

∫
.

According to the relation (10), this theorem can be expressed in terms of
(Sko2)-

∫
but the Radon-Nykodym derivative is much less easily computed �

see [22] for such an approach. The point is that since BH and B generates
the same �ltration, every (Ω;F ,P) martingale is in fact a martingale with
respect to the standard Brownian motion B and hence can be expressed as
a Itô stochastic integral with respect to B.

For the very same reason, the Itô-Clark is easily expressed as :

Theorem 4.2 (Itô�Clark representation formula). For any square integrable
random variable F, there exists a Skohorod integrable process such that

F − E [F ] =
∫ 1

0
u(s) ◦ dB(s)

If F belongs to D2,1, then u can be computed by :

u(s) = E [∇sF | Fs] .

The Itô formula is usually one of the most useful tools in stochastic cal-
culus. Several proofs of a Itô formula for processes de�ned as stochastic
integrals with respect to BH do exist but they do not seem to be as useful
as the classical formula (see section 5.2).

Assume in a �rst part that H is greater than 1/2. In this case, the frac-
tional Brownian motion has a zero quadratic variation hence it is a Dirichlet
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process. It is well known that for such processes there exists an Itô formula
(see [14, 27, 28, 32]) of the form :

(14) F (BH(t)) = F (BH(0)) + (RS)-

∫
F ′(BH(s))1[0,t](s) dBH(s),

where F is of class C1. In fact, in our situation, the results known for Dirichlet
processes can be made more explicit. One of the most important properties
of semi-martingales is that a semi-martingale under a probability P is still
a semi-martingale under any probability absolutely continuous with respect
to P. Theorem 4.1 stands that processes of the form

(15) Xt = x0 +
∫ t

0
K(t, s)ξ(s) ds+

∫ t

0
K(t, s)σ(s) ◦ dB(s),

satisfy the same property so they coudl be taken here as the analog of semi-
martingales for the fBm.

Note that for σ constant, the second term reduces to BH . One could had

a �classical drift term� in the form
∫ t
0 α(s) ds, but technically speaking, it

behaves �classically� in the sense that in the Itô formula, there is no cross
term between it and the terms involving the Brownian motion and moreover,
in view of the Girsanov, this form of drift is non logical.

Let ρ(s) = s1−2H and denote set

L2
ρ([0, 1]) = {h : [0, 1] → R,

∫ 1

0
h2(s)ρ(s) ds < +∞}.

Note that when H > 1/2, L2
ρ([0, 1]) ⊂ L2([0, 1]) because ρ(s) ≥ 1 for any

s ∈ [0, 1]. The weighted Sobolev space D2,k,ρ is the set of elements ψ of D2,k

such that for any n ≤ k, the n-th Gross-Sobolev derivative of ψ belongs to
L2

ρ([0, 1])⊗n and the norm of ψ in this space is de�ned by

‖ψ‖2
2,k,H,ρ = ‖ψ‖2

L2(P) +
k∑

i=1

E
[
‖∇(i)ψ‖2

L2
ρ([0,1])⊗i

]
.

Theorem 4.3 (cf [11]). Suppose H > 1/2, let F : R 7−→ R be twice dif-
ferentiable with bounded derivatives and X be a process of the form given by
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(15), where ξ is in D2,1,ρ(L2
ρ([0, 1])) and σ is in D2,2,ρ(L2

ρ([0, 1])). We have

(16) F (Xt)− F (X0) =
∫ t

0
F ′(Xs)(Kξ)(s) ds

+
∫ t

0
σ(s)K∗t−(F ′′ ◦XKH(∇sξ))(s) ds

+
∫ t

0
σ(s)K∗t−(F ′ ◦X)(s) ◦ dB(s)

+
∫ t

0
K∗t−(F ′′ ◦XK(., s))(s)σ(s)2 ds

+
∫ t

0
K∗t−(F ′′ ◦ X)

∫ 1

0
∇sσ(r)KH(., r) ◦ dB(r))(s)σ(s) ds.

Remark 4.2. As a consequence, it is apparent that the family of processes
of the form (15) is not stable by a non-linear transformation. Actually, it
is an open question to �nd such a family of processes stable by non-linear
transformations.

One can also wonder what looks like the non-linear transformation of a
Skohorod integral. The answer is given by the following formula.

Theorem 4.4 (cf [11]). Assume that for any t ∈ [0, 1],

Zt = z0 +
∫ t

0
ξ(s) ds+ (Sko2)-

∫
σ(s) ◦ dBH(s),

where ξ belongs to D2,1,ρ(L2([0, 1])) and σ ∈ D2,2,ρ(L2
ρ([0, 1])). For any F

twice di�erentiable with bounded derivatives, we have for any t, P�almost
surely :

(17) F (Zt) = F (z0) +
∫ t

0
F ′(Zs)ξ(s) ds+ (Sko2)-

∫ t

0
F ′(Zs)σ(s) ◦ dBH(s)

+
∫ t

0
F ′′(Zs)DsZsσ(s) ds.

This can nicely expressed in terms of (Sko3)-
∫
by

F (Zt) = F (z0) +
∫ t

0
F ′(Zs)ξ(s) ds+ (Sko3)-

∫ t

0
F ′(Zs)σ(s) ◦ dBH(s).

Remark 4.3. For X(t) = BH(t), formula (16)as well as formula (17) read as

F (BH(t)) = F (0) + (Sko2)-

∫ t

0
F ′(BH(s)) ◦ dBH(s)

+HVH

∫ t

0
F ′′(BH(s))s2H−1 ds.

For 0 < H < 1/2, there exists a formula only for non-linear transformation
of BH itself (see [4, 25, 26]) and it involves several other terms.
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5. Applications

We now give two applications of the preceding theorems.

5.1. An estimation problem. Consider the process X de�ned by

Xt = θt+BH(t)

and let PX denote its law. We aim to estimate θ through the observation
of a sample-path of X over [0, t]. Let φ be such that (Kφ)(t) = t, by the
Girsanov Theorem

dPX

dP

∣∣∣∣
Ft

= exp(θ (W1)-

∫ t

0
φ(s) dBH(s)− θ2

2

∫ t

0
φ(s)2 ds) or equivalently,

dP

dPX

∣∣∣∣
Ft

= exp(−θa (W1)-

∫ t

0
φ(s) dBH(s) +

θ2

2

∫ t

0
φ(s)2 ds), i.e.,

E [F ] = E

[
F (X(w)) exp(−θa (W1)-

∫ t

0
φ(s) dBH(s) +

θ2

2

∫ t

0
φ(s)2 ds)

]
.

Hence the P maximum likelihood ratio estimate θ̂t of θ is

θ̂t =
1∫ t

0 φ(s)2 ds
(W1)-

∫ t

0
φ(s) dBH(s) =

1∫ t
0 φ(s)2 ds

(W2)-

∫ t

0
K∗−1φ(s) dBH(s).

The functions φ and K∗−1φ can be computed, using (12), by searching a
monomial solution and we �nd:

φ(s) =
Γ(3/2−H)
Γ(2− 2H)

s
1/2−H

and K∗−1φ(s) =
Γ(3/2−H)

Γ(2− 2H)Γ(H + 1/2)

( s

1− s

)1/2−H
.

5.2. Non-linear �ltering. This application is here to show that the Itô
formula is not as useful as usual but that an in�nite dimensional approach
may be more fruitful.

Assume that we are given the observation Y of a signal X corrupted by
a fractional Brownian motion noise. Assume furthermore that the original
signal X, satis�es an evolution equation involving an other fBm with a pos-
sibly di�erent Hurst index. The �ltering problem consists of �nding the
conditional law of X with respect to Y. The problem in its whole generality
has been addressed in [6] � some simpler �ltering problems have also been
studied in [15, 16, 18]. The usual strategy can be replicated here with some
additional technical di�culties due to the lack of martingale properties. In
order to show the main ideas, we will explicitly handle the following simple
case :

Xt = BH1(t)

Yt =
∫ t

0
KH2(t, s)h(Xs) ds+BH2(t),
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where BH1 and BH2 are two independent fractional Brownian motion of
respective Hurst index H1 and H2.

Theorem 5.1. Let Q be the probability measure de�ned by

dQ

dP

∣∣∣∣
Ft

def
= Λh

t = exp
(
Sko1−

∫ t

0
h(Xs)dBH2(s)−

1
2

∫ t

0
h(Xs)2 ds)

Under Q, the processes :

B̃H1(t) = BH1(t) and B̃H2(t) = BH2(t)−
∫ t

0
KH2(t, s)h(Xs)ds,

are two independent fractional Brownian motion of Hurst index H1 and H2.

We give the proof to illustrate the role of the in�nite dimension.

Proof. Let Bi be the standard Brownian motion

Bi(t) = (w1)-

∫
1[0,t](s) dBH(s).

For any (t1, . . . , tn) ∈ [0, 1]n, consider the 2n-dimensional P martingale

Zt1,...,tn
r = (

∫ r

0
KH1(tj , s) dB

1(s),
∫ r

0
KH2(tj , s) dB

2(s))j=1,...,n

and the bounded variation process

At1,...,tn
r = (0,

∫ r

0
KH2(tj , s)h(Xs) ds)j=1,...,n.

The classical Girsanov theorem states that for any bounded f,

EQ
[
f(Zt1,...,tn

r −At1,...,tn
r )

]
= E

[
f(Zt1,...,tn

r ))
]
.

Taking r = supi ti yields to

EQ

[
f(B̃Hi(tj), i = 1, 2, 1 ≤ j ≤ n)

]
= E [f(BHi(tj), i = 1, 2, 1 ≤ j ≤ n)] .

Hence the �nite dimensional Q�laws of (B̃H1 , B̃H2) coincide with those of
(BH1 , BH2) under P. �

The same reasoning shows that under Q, the couple (X,Y ) has the same

law as (B̃H1 , B̃H2). At this point, it is classical to apply the Itô formula
(provided that it exists hence we need to assume here that H1 > 1/2) to
the product f(Xt)Λh

t and then compute the conditional expectations to ob-

tain the so�called unnormalized �lter σt(f) not= EQ
[
f(Xt)Λh

t |Ys, s ≤ t
]
. The

moral of the part of this work is that all the technical di�culties can be over-
come but the �nal result is not satisfactory. Actually, one �nds (see [6]) that
the equation satis�ed by σt(f) is of the form :

dσt(f) = σt(f ′′ψ(Xt])) dt+ σt(f.h) dBH2(t), ,

where ψ(Xt]) is a measurable function of the whole sample�path of X up
to time t. This di�culty can be seen as a consequence of the long�range
dependence of the fractional Brownian motion BH1 . To overcome it, we �lter
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the in�nite dimensional process X , where X is the W = C0([0, 1],R)�valued
process

Xt
def
=

∫ t

0
KH1(., s) dB

1(s),

which is related to BH1 by the identity Xt(t) = BH1(t).
Using the Itô formula of Kuo [17] for Banach valued processes, for su�-

ciently regular F : W → R, we �nd that the unnormalized �lter σ̃t(F )
def
=

EQ
[
F (Xt)Λh

t | Yt

]
solves the di�erential equation :

(18) σ̃t(F ) = F (x0) +
∫ t

0
σ̃s(F.h ◦ ps) dB(s)2

+
1
2

∫ t

0
σ̃s

(
(KHi(., s))

∗D2
αF (.)(KHi(., s))

)
ds,

where ps(x) = x(s) for any x ∈ W and D2
αF is the second order Fréchet

dérivative of F in the direction Bα,2. As an example of the e�ciency of this
method, for h = Id, choose F (x) = exp(iβx(1)) where x(1) is the value
at time 1 of the element x of W, and set X(t, β) = σ̃t(F ), we obtain the
following linear partial stochastic di�erential equation :

dX(t, β) = −β2KH(1, t)2X(t, β) dt− i
∂X

∂β
(t, β) dBH2(t),

X(0, β) = x0.

It is then tricky but possible to �nd an explicit Gaussian solution of this
equation and thus to obtain the Kalman�Bucy �lter of X with respect to Y
(see [15] for a related result in which W 2 is a standard Brownian motion).
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Appendix A. Deterministic fractional calculus

For f ∈ L1([0, 1]), the left and right fractional integrals of f are de�ned
by :

(Iα
0+f)(x)

def
=

1
Γ(α)

∫ x

0
f(t)(x− t)α−1dt , x ≥ 0,

(Iα
b−f)(x)

def
=

1
Γ(α)

∫ b

x
f(t)(t− x)α−1dt , x ≤ b,

where α > 0 and I0 = Id . For any α ≥ 0, any f ∈ Lp([0, 1]) and g ∈ Lq([0, 1])
where p−1 + q−1 ≤ α, we have :

(19)

∫ 1

0
f(s)(Iα

0+g)(s) ds =
∫ 1

0
(Iα

1−f)(s)g(s) ds.

The Besov space Iα
0+(Lp) not= Bα,p is usually equipped with the norm :

‖f‖Bα,p = ‖I−α
0+ f‖Lp .

We then have the following continuity results (see [13, 29]) :

Proposition A.1.

i. If 0 < α < 1, 1 < p < 1/α, then Iα
0+ is a bounded operator from Lp([0, 1])

into Lq([0, 1]) with q = p(1− αp)−1.
ii. For any 0 < α < 1 and any p ≥ 1, Bα,p is continuously embedded

in Hol(α − 1/p) provided that α − 1/p > 0. Hol(ν) denotes the space
of Hölder�continuous functions, null at time 0, equipped with the usual
norm :

‖f‖Hol(ν) = sup
t6=s

|f(t)− f(s)|
|t− s|ν

.

We formally denote by Hol−(ν) the intersection of the spaces Hol(η) for
all η < ν and by Hol+(ν) the union of the spaces Hol(η) for η > ν.

iii. For any 0 < α < β < 1, Hol(β) is compactly embedded in Bα,∞.

By I−α
0+ , respectively I

−α
1− , we mean the inverse map of Iα

0+ , respectively
Iα
1− .

Appendix B. Malliavin calculus

We give here a very sketchy introduction to the Malliavin calculus. We
denote by Cn the simplex of Rn, i.e.,

Cn = {(t1, . . . , tn) : 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 1}.

For a deterministic function f such that :∫
· · ·

∫
Cn

f(t1, . . . , tn)2 dt1 . . . dtn < +∞,
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the n-th iterated Itô integral of f is given by :

In(f)
def
=

∫ 1

0

∫ tn

0
. . .

∫ t2

0
f(t1, . . . , tn)2 dBt1dBt2 . . . dBtn .

We denote by L2
s([0, 1]n) the space of symmetric elements of L2([0, 1]). For

f ∈ L2
s([0, 1]n), by de�nition we have :

In(f) = n!
∫ 1

0

∫ tn

0
. . .

∫ t2

0
f(t1, . . . , tn)2 dBt1dBt2 . . . dBtn .

It is well known that any square integrable random variable F on (Ω,P) has
a chaos decomposition in L2(Ω,P) :

(20) F =
+∞∑
n=0

In(fn),

where for each n, fn ∈ L2
s([0, 1]n).

De�nition B.1. Let F be a square integrable random variable with a devel-
opment of the form (20). The functional F is said to belong to D2,1 if and
only if

(21)
∞∑

n=1

nn!‖fn‖2
L2([0,1]) < +∞,

and in this case we set :

∇tF =
∞∑

n=1

nIn−1(fn(., t)),

and the sum of the series in (21) coincides with E
[∫ 1

0 ∇tF
2 dt

]
.

For k > 1, the k-th iterated Gross-Sobolev derivative of F, denoted ∇(k)F,
is de�ned analogously by induction on k. We denote by D2,k the set of func-

tionals for which ∇(k)F is well de�ned.
The following de�nition is speci�c to our context since we need to use a

damped derivative which we will denote by D. Remind that Kf = (Kf)′.

De�nition B.2. A process u ∈ L2(Ω× [0, 1]) will be said to be regular if the
linear map K∇u is of trace class, i.e.,

E

[
|
∫ 1

0
K ◦ ∇su(s) ds|

]
<∞.

∇ is a closed, unbounded and densely de�ned operator from L2(Ω,P) in
L2(Ω× [0, 1]). It thus admit an adjoint, denoted by δ, which is an unbounded
operator on L2(Ω× [0, 1]) with values in L2(Ω,P). δ is the so-called Skohorod
integral or the divergence operator.
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De�nition B.3. The domain of δ is the set of processes u ∈ L2(Ω× [0, 1])
such that :

|E
[∫ 1

0
∇tFut dt

]
| ≤ c‖F‖L2(Ω),

for all F ∈ D2,1, where c is some constant depending on u. If u belongs to
Dom δ, then δ(u) is the element of L2(Ω,P) characterized by :

E [Fδ(u)] = E

[∫ 1

0
∇tFut dt

]
.

Moreover, it can be shown that the chaos expansion can be generalized to
processes in the following sense (see [30]) :

Lemma B.1. For u ∈ L2(Ω × [0, 1]), there exists a family of deterministic
measurable and square integrable kernels fm(t1, . . . , tm, t) is symmetric with
respect to its �rst m variables and

(22) ut =
∞∑

n=0

In(fn(., t)),

where the convergence holds in L2(Ω× [0, 1]) and

E

[∫ 1

0
u2

t dt

]
=

∞∑
n=0

n!‖fn‖L2([0,1]n+1).

We can now express the action of δ in terms of the Wiener chaos expansion.

Theorem B.1. Let u ∈ L2(Ω×[0, 1]) with the expansion (22), then u belongs
to Dom δ if and only if

δ(u) =
∞∑

n=0

In+1(f̃n)

converges in L2(Ω,P), where f̃n is the symmetrization of fn, i.e.,

f̃n(t1, . . . , tn, t) =
1

n+ 1

[
fn(t1, . . . , tn, t)

+
n∑

i=1

fn(t1, . . . , ti−1, t, ti+1, . . . , tn)
]
.

Since the Skohorod integral in an extension of the Itô integral to a class
of non-adapted processes, it is customary to choose a similar notation for
the two integrals. That explains why we chose to denote in this text δ(u) by∫
u(s) ◦ dB(s).

De�nition B.4. We de�ne the �damped� gradient D by:

DF (s) = K(∇.F )(s),

provided that the right-hand-side is meaningful � see the de�nition of the
domain of K in Remark 3.2.
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It is a common problem, in the standard case, to de�ne properly trace(∇u) =∫ 1
0 ∇sus for a process u. Actually the gradient of a random variable is only
a square integrable function and also is us; hence, in general, we don't have
any information on the regularity of the function s 7→ ∇sus. Not surprisingly,
the su�cient conditions known for the trace to exist impose the continuity
of this function (see [23]). Here the situation is on one side (H > 1/2) better
and on the other side, worse. For H > 1/2, the regularizing e�ect of K entails
that it is su�cient that u satis�es a (strong) integrability (see Theorem 3.6,
all the more stringent as H is closer to 1/2. On the other hand, for H < 1/2,
the unboundedness of K entails a stronger condition on u than the continuity
of ∇u, namely we expect ∇.u to be (1−H)-Hölder (see Theorem 3.7).
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