
Chapter 3

Wiener chaos

3.1 Chaos decomposition

Definition 3.1 (Iterated integrals on a simplex). For t 2 (0, 1], let

Cn(t) = {(t1, · · · , tn) 2 [0, 1]n, 0  t1 < . . . < tn  t} .

For f 2 L
2(Cn(t) ! R; �), set

Jn(f)(t) =

Z
t

0

dB(tn)

Z
tn

0

dB(tn�1) . . .

Z
t2

0

f(t1, · · · , tn) dB(t1),

where the integrals are Itô integrals. For the sake of notations, set Cn = Cn(1)
and Jn(f) = Jn(f)(1).

Remark 3.1. The structure of Cn(t) ensures that at each internal integral, the
integrand is adapted. Moreover,

Jn(f)(t) =

Z
t

0

Jn�1(f(., tn)) dB(tn).

The Itô isometry then entails that

E [Jn(f)Jm(g)] =

(
0 if n 6= mR
Cn(t)

fg d� if n = m.
(3.1)

We wish to extend this notion of iterated integral to function defined on the
whole cube [0, 1]n but we cannot get rid of the adaptability condition. It is
then crucial to remark that for f : [0, 1]n ! R symmetric,

Z

[0,1]n

f d� = n!

Z

Cn

f d�,

41



42 3 Wiener chaos

since for any permutation � of {1, · · · , n}, the integral of f on Cn is equal to
its integral on

�Cn =
�
(t1, · · · , tn) 2 [0, 1]n, 0  t�(1) < . . . < t�(n)  1

 
.

This motivates the following definition of the iterated integral:

Definition 3.2 (Generalized iterated integrals). Let L
2

s
= L

2

s
([0, 1]n !

R; �) be the set of symmetric functions on [0, 1]n, square integrable with
respect to the Lenbesgue measure. For f 2 L

2

s
,

J
s

n
(f) = n! Jn(f1Cn

).

If f belongs to L
2([0, 1]n ! R; �) but is not necessarily symmetric,

J
s

n
(f) = J

s

n
(fs),

where f
s is the symmetrization of f :

f
s(t1, · · · , tn) =

1

n!

X

�2Sn

f(t�(1), · · · , t�(n)).

In view of Eqn. (3.1), for f, g 2 L
2

s
, we have

E [Js

n
(f)Js

m
(g)] =

8
<

:

0 if n 6= m

(n!)2
Z

Cn

fg d� = n!

Z

[0,1]n

fg d� if n = m.
(3.2)

Theorem 3.1 (Chaos expansion of Doléans exponentials). Let h be-
longs to H. Then,

⇤h = 1 +
1X

n=1

Jn(ḣ⌦n1Cn
) = 1 +

1X

n=1

1

n!
J
s

n
(ḣ⌦n),

where the convergence holds in L
2(W ! R; µ).

Proof. Let

⇤h(t) = exp

✓Z
t

0

ḣ(s) dB(s) �
1

2

Z
1

0

ḣ(s)2 ds

◆
.

The Itô calculus says that

⇤h(t) = 1 +

Z
t

0

⇤h(s) ḣ(s) dB(s),

hence
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⇤h(t) = 1 +

Z
t

0

⇤h(s) ḣ(s) dB(s)

= 1 +

Z
t

0

✓
1 +

Z
s

0

⇤h(r)ḣ(r) dB(r)

◆
) ḣ(s) dB(s)

= 1 +

Z
t

0

ḣ(s) dB(s) +

Z
t

0

✓Z
s

0

⇤h(r)ḣ(s)ḣ(r) dB(r)

◆
dB(s)

= 1 +
nX

k=1

Jn(ḣ⌦n1Cn
) +

Z

Cn

nY

j=1

ḣ(sj) ⇤h(s1) dB(s1) . . . dB(sn)

= 1 +
nX

k=1

Jn(ḣ⌦n1Cn
) + Rn.

It thus remains to show that Rn tends to 0 as n goes to infinity. According
to (3.1),

E
⇥
R

2

n

⇤
=

Z

Cn

nY

j=1

ḣ(sj)
2E
⇥
⇤h(sn)2

⇤
ds1 . . . dsn. (3.3)

Moreover,

E
⇥
⇤h(s)2

⇤
= E


exp

✓
2

Z
s

0

ḣ(u) dB(u) �

Z
s

0

ḣ
2(u) du

◆�

= E [⇤2h(s)] exp(khk
2

H
) = exp(khk

2

H
).

Plug this new expression into Eqn. (3.3) to obtain

E
⇥
R

2

n

⇤
= exp(khk

2

H
)

Z

Cn

nY

j=1

ḣ(sj)
2 ds1 . . . dsn

= exp(khk
2

H
)

1

n!

Z

[0,1]n

ḣ(sj)
2 ds1 . . . dsn = exp(khk

2

H
)

1

n!
khk

2n

H

n!1
����! 0.

The result follows.

Definition 3.3 (Fock space). The Fock space Fµ(H) is the completion of
the direct sum of the tensor powers of H:

Fµ(H) = R �

1M

n=1

H
⌦n

.

It is an Hilbert space when equipped with the norm

k�
1

n=0
hnk

2

Fµ(H)
=

1X

n=0

1

n!
khnk

2

H⌦n .
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Theorem 2.2 says that the set of tensor products is dense in H
⌦n, hence for

a continuous linear map A from H into itself, we can define its tensor power
on H

⌦n by the rule

A
⌦n : H

⌦n
�! H

⌦n

⌦
n

j=1
hj 7�! ⌦

n

j=1
Ahj .

For an arbitrary element h of H
⌦n, the value of A

⌦n
h is defined by a limiting

procedure.

Definition 3.4 (Second quantization). The second quantization of A is
the map from Fµ(H) into itself which coincides with A

⌦n on the n-th chaos.

Theorem 3.2. The map

⌥ : E ⇢ L
2(W ! R; µ) �! Fµ(H)

F 7�!

1M

n=0

E
h
r

(n)
F

i
,

admits a continuous extension defined on L
2(W ! R; µ). We denote by ⌥nF ,

the n-th term of the right-hand-side: ⌥nF = E
⇥
r

(n)
F
⇤
.

Proof. Remark that for F = ⇤h 2 E ,

r
(n)

F = F h
⌦n

, hence E
h
r

(n)
F

i
= h

⌦n
,

so we have

F = E [F ] +
1X

n=1

1

n!
J
s

n

� .

^E
⇥
r(n)F

⇤�
.

Since the chaos are orthogonal,

E
⇥
F

2
⇤

� E
⇥
(F � E [F ])2

⇤
=

1X

n=1

1

n!2
E

"
J
s

n

� .

^E
⇥
r(n)F

⇤�2
#

=
1X

n=1

1

n!

�����

.

^E
⇥
r(n)F

⇤
�����

2

L2([0,1]n!R;�⌦n)

=
1X

n=1

1

n!

���E
h
r

(n)
F

i���
2

H⌦n

.

Thus, by linearity, for any F 2 E ,

k⌥FkFµ(H)  kFkL2(W!R;µ). (3.4)

If (Fn, n � 1) is a sequence of elements of E which converges to F in L
2(W !

R; µ), the sequence (⌥Fn, n � 1) is Cauchy in the Hilbert space Fµ(H),
hence convergent. Then, ⌥F can be unambiguously defined as limn!1 ⌥Fn

and (3.4) holds for any F 2 L
2(W ! R; µ).
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Theorem 3.3 (Chaos decomposition). For any F 2 L
2(W ! R; µ),

F = E [F ] +
1X

n=1

1

n!
J
s

n

� .

g⌥nF
�
. (3.5)

This can be formally written as

F = E [F ] +
1X

n=1

1

n!
J
s

n

� .

^E
⇥
r(n)F

⇤�
,

keeping in mind that E
⇥
r

(n)
F
⇤
is defined through ⌥ for general random

variables.
The chaos decomposition means that Fµ(H) is isometrically isomorphic to

L
2(W ! R; µ).

Proof. Without loss of generality, we may assume that E [F ] = 0. For F =
⇤h � 1, we know that

r
(n)

F = F h
⌦n

, hence ⌥nF = h
⌦n

.

Then, Theorem 3.1 means that Eqn. (3.5) holds true for F = ⇤h � 1 for any
h 2 H. By linearity of the maps ⌥n, it is still true for linear combination of
such random variables. Let (Fk, k � 1) a sequence of elements of E converging
to F in L

2(W ! R; µ). Since ⌥ is continuous in L
2(W ! R; µ),

⌥Fk

k!1
��������!
L2(W!R;µ)

⌥F.

Since the chaos are orthogonal in L
2(W ! R; µ)

E

2

4
�����

1X

n=1

1

n!
J
s

n

�
⌥nFk

�
�

1X

n=1

1

n!
J
s

n

�
⌥nF

�
�����

2
3

5 =
1X

n=1

1

n!
E
h
|⌥nFk � ⌥nF |

2

i

= k⌥ (Fk � F )k2
�

1

n=0H
⌦n .

This means that

0 = Fk �

1X

n=0

1

n!
J
s

n

�
⌥nFk

�
k!1
����! F �

1X

n=0

1

n!
J
s

n

�
⌥nF

�
.

The proof is thus complete.

Theorem 3.4 (Iterated integrals and iterated divergence). For any
h 2 H,

J
s

n
(ḣ⌦n) = �

n
h
⌦n

.

Hence, for any F 2 L
2(W ! R; µ),
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F = E [F ] +
1X

n=1

1

n!
�
n
�
⌥nF

�
. (3.6)

Proof. For F 2 E , the Taylor-MacLaurin formula says that

F (! + ⌧h) = F (!) +
1X

n=1

⌧
n

n!

D
r

(n)
F (!), h

⌦n

E

H⌦n

.

Hence,

E [F (! + ⌧h)] = E [F ] +
1X

n=1

⌧
n

n!

⌦
⌥n F, h

⌦n
↵
H⌦n

= E [F ] +
1X

n=1

⌧
n

n!
E
⇥
F �

n
h
⌦n
⇤
.

On the other hand, the Cameron-Martin theorem and Theorem 3.1 induce
that

E [F (! + ⌧h)] = E [F ⇤⌧h] = E [F ] +
1X

n=1

1

n!
E
h
F J

s

n
((⌧ ḣ)⌦n)

i

= E [F ] +
1X

n=1

⌧
n

n!
E
h
F J

s

n
(ḣ⌦n)

i
.

The result follows by identification of the coe�cient of the two power series.

The very same method of identification can be used to prove the next results.

Theorem 3.5 (Gradient and conditional expectation). For any t 2

[0, 1], for any F 2 L
2(W ! R; µ),

E [F | Ft] = E [F ] +
1X

n=1

1

n!
�
n

⇣
�⇡t

⌥nF

⌘
(3.7)

where we recall that ⇡t is the projection map

⇡t : H �! H

h 7�! I
1(ḣ1[0,t]).

Proof. The well known identity
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E


exp

✓Z
1

0

ḣ(s) dB(s) �
1

2

Z
1

0

ḣ(s)2 ds

◆
| Ft

�

= exp

✓Z
t

0

ḣ(s) dB(s) �
1

2

Z
t

0

ḣ(s)2 ds

◆

can be written as
E [⇤h | Ft] = ⇤⇡th

.

Apply this equality to ⌧h and consider the chaos expansion of both terms.
Since the convergence of the series holds in L

2(W ! R; µ), we can apply
Fubini’s theorem straightforwardly.

1 +
1X

n=1

⌧
n

n!
E
⇥
�
n
h
⌦n

| Ft

⇤
= 1 +

1X

n=1

⌧
n

n!
�
n(⇡⌦n

t
h
⌦n).

This means that (3.7) holds for F 2 E and by density, it is true for any
F 2 L

2(W ! R; µ).

Lemma 3.1. The map

@W : E ⇢ L
2(W ! R; µ) �! L

2(W ⇥ [0, 1] ! R; µ ⌦ �)

F 7�!

⇣
s 7! E

h
ṙsF | Fs

i
, s 2 [0, 1]

⌘

can be extended as a continuous map from L
2(W ! R; µ) into L

2(W ⇥ [0, 1] !

R; µ ⌦ �).

Proof. For F = ⇤k 2 E ,

@WF =
⇣
s 7�! ⇤k(s)k̇(s)

⌘

and

F = 1 +

Z
1

0

@WF (s) dB(s).

On the one hand, Itô isometry yields

E

"✓Z
1

0

@WF (s) dB(s)

◆2
#

= k@WFk
2

L2(W⇥[0,1])
. (3.8)

On the other hand,

E

"✓Z
1

0

@WF (s) dB(s)

◆2
#

= E
⇥
(F � 1)2

⇤
= E

⇥
F

2
⇤
�1  E

⇥
F

2
⇤
. (3.9)
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Let F 2 L
2(W) be the limit of (Fn, n � 1) a sequence of elements of E .

Eqn. (3.8) and (3.9) imply that (@WFn, n � 1) is Cauchy in L
2(W⇥[0, 1], µ⌦

�), hence convergent to a limit, we define to be @WF.

Theorem 3.6 (Itô-Clark-Ocone-Üstünel formula). For F 2 L
2(W !

R; µ),
F = E [F ] + �

�
I
1(@WF )

�
. (3.10)

For F 2 D1,2, this boils down to

F = E [F ] +

Z
1

0

E
h
ṙsF | Fs

i
dB(s). (3.11)

Proof. For F = ⇤k 2 E , recall that ṙF = k̇, thus we do have

F = E [F ] +

Z
1

0

⇤k(s)k̇(s) dB(s) = E [F ] +

Z
1

0

E
h
ṙsF | Fs

i
dB(s).

The proof follows by the density of E in L
2(W ! R; µ) and Lemma 3.1.

Lemma 3.2. Then, the set of pure tensors ḣ
⌦n for h 2 L

2([0, 1] ! R; �) is
dense in L

2

s
([0, 1]n ! R; �⌦n).

Proof. We already know (see Theorem 2.2) that tensor products ḣ1 ⌦ . . . ⌦

ḣn with hi 2 L
2([0, 1] ! R; �) are dense in L

2([0, 1]n ! R; �⌦n) and
that the symmetrization operation is continuous from L

2([0, 1]n ! R; �)
into L

2

s
([0, 1]n ! R; �⌦n). Apply the symmetrization to any approximating

sequence to obtain a sequence of linear combinations of pure tensors which
converges to the symmetrization of fn, which is already fn.

Theorem 3.7 (Gradient of chaos). For ḣn 2 L
2([0, 1]n ! R; µ), let

ḣ(., r) be the element of L
2

s
defined by

ḣn(., r) : [0, 1]n�1
�! R

(s1, · · · , sn�1) 7�! ḣn(s1, · · · , sn�1, r).

Then,
ṙrJ

s

n
(ḣn)(t) = n J

s

n�1
(ḣn(., r)). (3.12)

Proof. In view of Lemma 3.2, it is su�cient to prove (3.12) for ḣn = ḣ
⌦n. It

boils down to prove

ṙrJ
s

n
(ḣ⌦n) = n J

s

n�1
(ḣ⌦n�1)ḣ.

Let h 2 H, we already know that ⇤h belongs to D1,2 and that r⇤h = ⇤h h.
Apply this reasoning to ⌧h:
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r

 
1X

n=0

⌧
n

n!
J
s

n
(ḣ⌦n)

!
=

1X

n=0

⌧
n+1

n!
J
s

n
(ḣ⌦n) h =

1X

n=1

⌧
n

(n � 1)!
J
s

n�1
(ḣ⌦n�1) h

=
1X

n=1

⌧
n

n!
n J

s

n�1
(ḣ⌦n�1) h.

Furthermore, if

⇤
(N)

h
=

NX

n=0

1

n!
J
s

n
(ḣ⌦n),

it holds that
⇤
(N)

h

N!1
����!
L2(W)

⇤h.

Consequently, (r⇤(N)

h
, n � 1) converges weakly in D1,2(H) to r⇤h: For

U 2 D1,2(H) ⇢ Dom2 �,

E
hD

r⇤
(N)

h
, U

E

H

i
= E

h
⇤
(N)

h
�U

i
N!1
����! E [⇤h �U ] = E [hr⇤h, Ui

H
] .

Furthermore,

E
hD

r⇤
(N)

⌧h
, U

E

H

i
=

NX

n=1

⌧
n

n!
E
hD

rJ
s

n
(ḣ⌦n), U

E

H

i
,

hence,

1X

n=1

⌧
n

n!
E
hD

rJ
s

n
(ḣ⌦n), U

E

H

i
=

1X

n=1

⌧
n

n!
nE

hD
J
s

n�1
(ḣ⌦n�1) h, U

E

H

i
.

Identify the coeeficient of ⌧n: For any U 2 D1,2(H)

E
hD

rJ
s

n
(ḣ⌦n), U

E

H

i
= nE

hD
J
s

n�1
(ḣ⌦n�1) h, U

E

H

i
,

hence the result.

Corollary 3.1. A random variable F 2 L
2(W) belongs to D2,1 if and only if

1X

n=1

n
2
k⌥nFk

2

L2
s
([0,1]n)

< 1.

Definition 3.5. For ḟ 2 L
2([0, 1]n ! R; �⌦n) and ġ 2 L

2([0, 1]m !

R; �⌦n), for i  n ^ m, the i-th contraction of ḟ and ġ is defined by
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(ḟ ⌦i ġ)(t1, · · · , tn�i, s1, · · · , sm�i)

=

Z

[0,1]i

ḟ(t1, · · · , tn�i, u1, · · · , ui) ġ(s1, · · · , sm�i, u1, · · · , ui) du1 . . . ui.

It is an element of L
2([0, 1]n+m�2i). Its symmetrization is denoted by ḟ

s

⌦i g.

Theorem 3.8 (Multiplication of iterated integrals). For ḟ 2 L
2([0, 1]n !

R; �⌦n) and ġ 2 L
2([0, 1]m ! R; �⌦n),

J
s

n
(ḟ)Js

m
(ġ) =

n^mX

i=0

n!m!

i!(n � i)!(m � i)!
Jn+m�2i(ḟ

s

⌦i ġ). (3.13)

Proof. We give the proof for n = 1, the general case follows the same principle
with much involved notations and computations (see [Üst14]).

For  2 E ,

E
h
J
s

m
(ġ)Js

1
(ḟ) 

i
= E [�m(g) �(f) ] = E

hD
r

(m)( �(f)), g

E

H⌦m

i
.

Recall that r�(f) = f and that r
k
�(f) = 0 if k � 2. The Leibniz formula

then implies that

r
(m)
�
 �(f)

�
= �(f) r

(m)
 + m r

(m�1)
 ⌦ f.

On the one hand,

E
h
�(f)

D
r

(m)
 , g

E

H⌦m

i
= E

h
�f

D
r

(m)
 , g

E

H⌦m

i

= E
hD

r
(m+1)

 , g ⌦ f

E

H⌦(m+1)

i

= E
h
 �

m+1(g
s

⌦0 f)
i
.

On the other hand, a simple application of Fubini’s Theorem yields

E
hD

ṙ
(m�1)

 ⌦ f, g

E

H⌦m

i

=

Z

[0,1]m

ṙ
(m�1)

s1,··· ,sm�1 ḟ(sm) ġ(s1, · · · , sm) ds1 . . . dsm.

Since ṙ
(m�1)

 and ġ are symmetric, we have

Z

[0,1]m

ṙ
(m�1)

s1,··· ,sm�1 ḟ(sm) ġ(s1, · · · , sm) ds1 . . . dsm

=
1

m!

X

⌧2Sm

Z

[0,1]m

ṙ
(m�1)

s⌧(1),··· ,s⌧(m�1)
 ḟ(s⌧(m)) ġ(s⌧(1), · · · , s⌧(m)) ds
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where ds = ds1 . . . dsm. We partition Sm into the m disjoints sets

Sj

m
= {⌧ 2 Sm, ⌧(m) = j}

We get

X

⌧2Sm

Z

[0,1]m

ṙ
(m�1)

s⌧(1),··· ,s⌧(m�1)
 ḟ(s⌧(m)) ġ(s⌧(1), · · · , s⌧(m)) ds

=
mX

j=1

X

⌧2Sj

m

Z

[0,1]m�1

ṙ
(m�1)

s⌧(1),··· ,s⌧(m�1)
 

Z

[0,1]

ḟ(s) ġ(s⌧(1), · · · , s) ds dŝj ,

(3.14)

where dŝj = ds1 . . . dsj�1 dsj+1 . . . We can rewrite the last inner integral
as
Z

[0,1]m�1

ṙ
(m�1)

s⌧(1),··· ,s⌧(m�1)
 (ḟ ⌦1 ġ)(s⌧(1), · · · , s⌧(m�1)) ds⌧(1) . . . ds⌧(m�1),

which makes apparent that this integral does not depend on j, hence it ap-
pears m times in (3.14). Since Sj

m
is in bijection with Sm�1, we obtain
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ṙ
(m�1)

s1,··· ,sm�1 (ḟ
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The result follows by the density of E in L
2(W).

Corollary 3.2 (Divergence on chaos). Let

U̇(t) =
1X

n=0

J
s

n
(ḣn(., t))

where ḣn belongs to L
2([0, 1]n+1) and is symmetric with respect to its n first

variables. Then,

�U =
1X

n=0

J
s

n+1
(h̃n)

where

h̃n(t1, · · · , tn, tn+1) =
1

n + 1

h
ḣn(t1, · · · , tn, tn+1)

+
nX

i=1

ḣn(t1, · · · , ti�1, tn+1, ti+1, · · · , ti)

#
. (3.15)

Proof. As before, we reduce the problem to ḣn(., t) = ḣ
⌦n

ġ(t). Then,

J
s

n
(ḣ⌦n

ġ(t)) = J
s

n
(ḣ⌦n) ġ(t).

Eqn. (2.11), (3.13) and (3.12) imply
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(ḣ⌦n) ġ) = J

s

n
(ḣ⌦n)J1(ġ) �
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s

n�1
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Z
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ḣ(s)ġ(s) ds.

(3.16)

By its very definition,

�
ḣ
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⌦1 ġ
�
(t1, · · · , tn�1) =

n�1Y

j=1

ḣ(tj)

Z
1

0

ḣ(s)ġ(s) ds,

hence the last two terms of (3.16) do cancel each other. Since ḣ
⌦n�1 is already

symmetric, the symmetrization of ḣ
⌦n�1

⌦ ġ reduces to

⇣
ḣ
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which corresponds to (3.16) for general ḣn.

3.2 Ornstein-Uhlenbeck operator

In Rn, the adjoint of the usual gradient is the divergence operator and the
composition of divergence and gradient is the ordinary Laplacian. Since we
have at our disposal, a notion of gradient and the corresponding divergence,
we can consider the associated Laplacian, sometimes called Gross Laplacian,
defined as

L = �r.

A simple calculation shows the following which justifies the physicists’ de-
nomination of L as the number operator.

Theorem 3.9 (Number operator). For F 2 L
2(W ! R; µ) of chaos

decomposition

F = E [F ] +
1X

n=1

J
s

n
(ḣn).

Then,

LF =
1X

n=1

n J
s

n
(ḣn).

The map L is invertible from L
2

0
= {F 2 L

2(W ! R; µ), E [F ] = 0} into
itself:

L
�1

F =
1X

n=1

1

n
J
s

n
(ḣn).

From there, it is customary to define the so-called Ornstein-Uhlenbeck oper-
ator from its action on chaos.

Definition 3.6 (Ornstein-Ulenbeck operator). Let F 2 L
2(W ! R; µ)

of chaos decomposition

F = E [F ] +
1X

n=1

J
s

n
(ḣn).

For any t > 0,

PtF = E [F ] +
1X

n=1

e
�nt

J
s

n
(ḣn).

Formally, we can write Pt = e
�tL.

From these definitions, the following properties are straightforward

Theorem 3.10. For any F 2 L
2(W ! R; µ), for any s, t � 0,
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Pt+sF = Ps(PtF ).

For any F 2 Dp,1,
rPtF = e

�t
PtrF. (3.17)

The Ornstein-Uhlenbeck can be alternatively defined by the so-called Mehler
formula:

Theorem 3.11. For any F 2 L
2(W ! R; µ)

PtF (!) =

Z

W

F (e�t
! +

p
1 � e�2ty) dµ(y). (3.18)

Its definition relies on the invariance by rotations of the Gaussian measure.
In what follows, let �t =

p
1 � e�2t.

Lemma 3.3. For any t > 0, consider the transformation
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(!, ⌘) 7�!
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Then the image of µ ⌦ µ by Rt is still µ ⌦ µ.
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In view of the characterization of the Wiener measure, this completes the
proof.

Proof (Proof of Theorem 3.11). We know that for F 2 L
2(W ! R; µ),

1X

n=1

1

n!
E
h
J
s

n
(ḣn)2

i
< 1.

If each kernel is multiplied by a constant smaller than 1, the convergence also
holds, hence for any t � 0,
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kPtFkL2(W!R;µ)  kFkL2(W!R;µ).

Denote temporarily

TtF (!) =

Z

W

F (e�t
! +

p
1 � e�2ty) dµ(y).

We have

Z
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TtF (!)2 dµ(!) =
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p
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According to Lemma 3.3,
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This means it is su�cient to prove (3.18) for the elements of E . By definition,
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Hence,
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Hence,
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Now then, the chaos decomposition of ⇤e�th(!) is given by

⇤e�th(!) = 1 +
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(e�t
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e
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ḣ
⌦n
�
.

The proof is thus complete.
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Theorem 3.12. The semi-group is ergodic and admits µ as stationary mea-
sure. As a consequence,

Z

W

F dµ � F = �

Z
1

0

LPtF dµ (3.19)

and for F centered,

L
�1

F =

Z
1

0

PtF dt. (3.20)

Proof. From the Mehler formula, we see by dominated convergence that

PtF (!)
t!1
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F dµ.

In view of Lemma 3.3,
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This proves the stationarity of µ. Now, it comes from the chaos decomposition
that

d

dt
PtF = �LPtF,

hence

PtF (!) � P0F (!) = �

Z
t

0

LPtF (!) dt.

Let t go to infinity to obtain (3.19). Eqn. (3.20) is a direct consequence of
the chaos decomposition.

The Mehler formula shows that PtF is a convolution operator and as such
has some strong regularization properties.

Theorem 3.13 (Regularization). For F 2 L
2(W ! R; µ), for any t > 0,

PtF belongs to \k�1Dk,p. Moreover,
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Proof. We give the proof for k = 1. The general situation is obtained by
induction. For F 2 S,
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The trick is then to consider that the translation by h operates not on ! but
on y:

PtF (! + "h) =

Z

W

F
�
e
�t(! + "h) + �ty
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According to the Cameron-Martin (Theorem 1.8),
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the result follows by dominated convergence.

The main application of the properties of the Ornstein-Uhlenbeck operator
are the Meyer inequalities which merely state that an equivalence of norm.

Theorem 3.14 (Meyer inequalities). For any p > 1 and any k � 1, there
exist cp,k and Cp,k such that for any F 2 Dp,k,

cp,k E
h
kr
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.

3.3 Exercises

Exercise 3.1. Consider the Brownian sheet W which is the centered Gaus-
sian process indexed by [0, 1]2 with covariance kernel

E [W (t1, t2)W (s1, s2)] = s1 ^ t1 s2 ^ t2 := R(s, t).

Let (Xij , 1  i, j  N) a family of N
2 independent and identically distributed

random variables with mean 0 and variance 1. Define

SN (s, t) =
1

N

[Ns]X

i=1

[Nt]X

j=1

Xij .

1. Show that
�
SN (s1, s2), SN (t1, t2)

�
converges to a Gaussian random vector

of covariance matrix

� =

✓
R(s, s) R(s, t)
R(s, t) R(t, t)

◆
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Fig. 3.1 Simulation of a sample of SN .

2. For F 2 L
2(W ! R; µ) and ! 2 W, show that

PtF (!) = E
⇥
F
�
e
�t
! + W (.,�2

t
)
�⇤

.


