Chapter 3
Wiener chaos

3.1 Chaos decomposition

Definition 3.1 (Iterated integrals on a simplex). For ¢ € (0,1], let
Co(t) ={(t1, - ,tn) €10,1]", 0< g < ... <t, <t}.

For f € L3(€,(t) — R; \), set

t tn 2
LO = [ aBe) [ aBe) . [0 ) B
0 0 0
where the integrals are It6 integrals. For the sake of notations, set €, = €, (1)
and Jn(f) = Ju(f)(1).

Remark 3.1. The structure of €, (t) ensures that at each internal integral, the
integrand is adapted. Moreover,

t
L® = [ Dr(Ft) dB(e)

0

The It6 isometry then entails that

0 ifn#m

3.1
fen(t)fgdk if n =m. (3.1)

E [J7L(f)Jm(g)] = {

We wish to extend this notion of iterated integral to function defined on the
whole cube [0,1]" but we cannot get rid of the adaptability condition. It is
then crucial to remark that for f : [0,1]™ — R symmetric,

/ fd)\:n!/ £ d,
[0,1]™ ¢,

41



42 3 Wiener chaos

since for any permutation o of {1,--- ,n}, the integral of f on &, is equal to
its integral on

oC, = {(tlv"‘ 7tn) € [Ovl]nv 0< t(r(l) <...< t(r(n) < 1}

This motivates the following definition of the iterated integral:

Definition 3.2 (Generalized iterated integrals). Let L2 = L2([0,1]" —
R; \) be the set of symmetric functions on [0, 1]", square integrable with
respect to the Lenbesgue measure. For f € L2,

Ta(f) =nlJn(f1e,)-
If f belongs to L2([0,1]™ — R; A) but is not necessarily symmetric,
Ja(f) = Ja (),

where f° is the symmetrization of f:

. 1
fb(tla"' 7tn) = g Z f(to(l)a"' 7to'(n))‘

' oeB,
In view of Eqn. (3.1), for f,g € L?, we have

0 ifn#m

E[J2(H)Tn(9)] = (n!)? fgd\= n!/ fgdx ifn=m. (3.2)
Cn [0,1]™

Theorem 3.1 (Chaos expansion of Doléans exponentials). Let h be-
longs to H. Then,

) ) >~ 1 )
— N _ s (1, ®n
A, =1+ El Jn(h, 1¢n)—1+ E E‘Jn(h ),
n=

n=1 "
where the convergence holds in L2(W — R; ).

Proof. Let

Mn(t) = exp </Ot h(s) dB(s) — ;/01 h(s)? ds> .

The It6 calculus says that

An(t) =1+ /Ot An(s) h(s) dB(s),

hence
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—1+/Ah dB(s)

. / (1 / An()ir) AB(0) ) () Ao

71+/ h(s) dB(s / </SAh(r)h(s)h(r) dB(r)) dB(s)

=1+ Z Jn(h€"1 / H h(s;) An(s1) dB(s1)... dB(s,)
k=1 <

n j=1
=1+ Ju(h®"1¢,) + Rn.
k=1

It thus remains to show that R, tends to 0 as n goes to infinity. According
o (3.1),

R2 / H h( sj Ah sn)ﬂ dsy ... dsp,. (3.3)
[

’rL] 1

Moreover,

E [/An(s)’] = E {exp (2 /Osh(u) dB(u) — /0 h?(u) du)}

= E [Aan(s)] exp(||1]17,) = exp(|[Al3,).

Plug this new expression into Eqn. (3.3) to obtain

B[R] = exp(lilf) | TLis)? ds ... ds,

nj 1

1 7 n nN—>00
= exp(||h[l3,) a/[o . h(sj)? ds1 ... ds, = exp(||h]|3) *IIhI\Q =50,

The result follows.

Definition 3.3 (Fock space). The Fock space §,(H) is the completion of
the direct sum of the tensor powers of H:

5.(H)=R& EB HE™,

It is an Hilbert space when equipped with the norm

oo

0o 2 1
||€Bn=0hn”g“(7{) = Z ﬁ”hnH%@n

n=0
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Theorem 2.2 says that the set of tensor products is dense in H®", hence for
a continuous linear map A from H into itself, we can define its tensor power
on H®" by the rule

ABP B s pyon
®?:1hj — ®?:1Ahj.

For an arbitrary element h of H®", the value of A®™h is defined by a limiting
procedure.

Definition 3.4 (Second quantization). The second quantization of A is
the map from §,(H) into itself which coincides with A®™ on the n-th chaos.

Theorem 3.2. The map
T:ECL?W—=R;p) — Fu(H)

Frs é E [VWF} ,
n=0

admits a continuous extension defined on L2 (W — R; ). We denote by 1, F,
the n-th term of the right-hand-side: T, F = E [V(")F}.

Proof. Remark that for F' = A, € &,
V™ F = Fh®", hence B [V“”)F} = o,

so we have

—~—

F =EIF] +§:% Ja(E[V™F]).

Since the chaos are orthogonal,

—~

J(B[VOF])’

B[] >B[(F-BFP] =Y 58

-S el

L2([0,1]"—R; A®n)  n=1

E[V00r]

=1
:Z:la

Thus, by linearity, for any F € &,

1YF|5,30) < 1 Flz20m—R; - (3.4)

If (F,,, n > 1) is a sequence of elements of & which converges to F in L2(W —
R; p), the sequence (Y'F,,, n > 1) is Cauchy in the Hilbert space §,(H),
hence convergent. Then, TF can be unambiguously defined as lim,, oo T F},
and (3.4) holds for any F € L2 (W — R; p).
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Theorem 3.3 (Chaos decomposition). For any F € L2 (W — R, p),
> 1 L
F=E[F] + Z:l — S (TuF). (3.5)
This can be formally written as

M1+ Y L s [0R))

n=1

keeping in mind that E [V(")F} is defined through T for gemeral random
variables.

The chaos decomposition means that §,(H) is isometrically isomorphic to
L2(W — R; p).

Proof. Without loss of generality, we may assume that E[F] = 0. For F' =
Ay — 1, we know that

V™ E = Fh®", hence T, F = h®".

Then, Theorem 3.1 means that Eqn. (3.5) holds true for F' = A, — 1 for any
h € H. By linearity of the maps 7, it is still true for linear combination of

such random variables. Let (Fy, k > 1) a sequence of elements of £ converging
to Fin L2(W — R; p). Since 7 is continuous in L2(W — R; p),

k—o0 F

TF;
L2(W—R; p)

Since the chaos are orthogonal in L2(W — R; 1)

2
=1 =1 1 5
E ;n (T Fy) n;; 2 (T F) _;EEDLFFTJ\}

= |7 (Fr — F) 2 gon -

This means that

O:Fk—i P I (TaFy) == ) 2 F Z I (V).

n= 0

The proof is thus complete.

Theorem 3.4 (Iterated integrals and iterated divergence). For any
he™H, )
JE(AE™) = §"hEm,

Hence, for any F € L2 (W — R, p),
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1
F=E[F]+ — §"(T,F). 3.6
P+ o (36)
Proof. For F € &, the Taylor-MacLaurin formula says that

F(w+7h) )+ Z <V(”)F w), h®n>1—t®n .

Hence,

B[F(wtmh)] =B[F] + 3 O E ),

T n n
Z; [Fomh®m] .

On the other hand, the Cameron-Martin theorem and Theorem 3.1 induce
that

[F JE(( Th)®")}

PSS T e

The result follows by identification of the coefficient of the two power series.

3‘,_.

E[F(w+ h)] = E[F A, = i

The very same method of identification can be used to prove the next results.

Theorem 3.5 (Gradient and conditional expectation). For any t €
[0,1], for any F € L>(W — R; p),

E[F|F]=E[F] + i % o (F,TtTnF) (3.7)

where we recall that 7 is the projection map

e H—H
h+— Il(iL 1[O,t])‘

Proof. The well known identity
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E [cxp (/01 h(s) dB(s) — ;/01 j(s)2 ds) |]-'t}
e[ i) dB(s) - 5 / h(s)? as)

E[An | Fi] = Aryn-

can be written as

Apply this equality to 7h and consider the chaos expansion of both terms.
Since the convergence of the series holds in L?(W — R; u), we can apply
Fubini’s theorem straightforwardly.

1+ Y SB[ | F] =1+ Y oo™ (xf"h®").

n=1 n=1

This means that (3.7) holds for F' € £ and by density, it is true for any
Fec L’ (W —R;p).

Lemma 3.1. The map
ow : ECL*W —=R;p) — LPW x [0,1] = R; u®@\)

Fr (SHE[vsF\FS] s€ [0,1])

can be extended as a continuous map from L2(W — R; u) into L2(W x [0,1] —
R; p®\).

Proof. For F'= A, € &,
owF = (s by Ak(s)k(s))

and L
F=1 —|—/ OwF (s) dB(s).
0

On the one hand, It6 isometry yields

E

([ owres) aio) } oW ey (39)

On the other hand,
1 2
(/ OwF(s) dB(s))
0

E =E[(F-1°]=E[F’]-1<E[F?]. (3.9)
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Let I € L?(W) be the limit of (F,, n > 1) a sequence of elements of &.
Eqn. (3.8) and (3.9) imply that (O Fy,, n > 1) is Cauchy in L2(W x [0, 1], p®
A), hence convergent to a limit, we define to be dw F.

Theorem 3.6 (It6-Clark-Ocone-Ustiinel formula). For F € L2 (W —

R; p),
F=E[F]+§(I'(0wF)). (3.10)

For I € Dy 3, this boils down to
1 .
F=EIF] +/ E[V.F|F] dB(s). (3.11)
0

Proof. For F = Ay, € €, recall that VF =k, thus we do have

1 . 1 .

F=E[F] +/ A(8)k(s) dB(s) = E [F] +/ E [VSF | }'S} dB(s).
0 0

The proof follows by the density of £ in L?(W — R; i) and Lemma 3.1.

Lemma 3.2. Then, the set of pure tensors h®" for h € L2([0,1] — R; \) is
dense in L2([0,1]" — R; A\®").

Proof. We already know (see Theorem 2.2) that tensor products h®...®
hn with h; € L2([0,1] — R; \) are dense in L2([0,1]* — R; A®") and
that the symmetrization operation is continuous from L?([0,1]* — R; \)
into L2([0,1]™ — R; A®"). Apply the symmetrization to any approximating
sequence to obtain a sequence of linear combinations of pure tensors which
converges to the symmetrization of f,,, which is already f,.

Theorem 3.7 (Gradient of chaos). For hn € L2([0,1]" — R;p), let
h(.,r) be the element of L? defined by

ho(yr) 2 0,177 — R
(517' o 787L71) — hn(Sly e 75n7177’)-

Then, ) ) )
Viedi(hy) (@) =nJS_ 1 (ha(., 7). (3.12)

Proof. In view of Lemma 3.2, it is sufficient to prove (3.12) for h, = h®". Tt
boils down to prove

Vo JE (A% = n s (A2 Y)h.

Let h € H, we already know that A, belongs to D; o and that VA, = A h.
Apply this reasoning to Th:
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7" s(j,®n o~ 7! s(1,®n - T s P ®n—1
VA D g Sy | = i )h:;(nil)! Ti (R 1) b
>

n=0

Furthermore, if
N

1 .
A =37 TR,
n=0 "
it holds that
AN B2, gy,
L2(W)

Consequently, (VA%N), n > 1) converges weakly in Dy 2(#H) to VAp: For
U e DLQ(H) C Domsy 57

E KVA;N), U>H} - E [A;N) 6U} N B (A 6U] = B(VAR, Uyl
Furthermore,
[(va.0), | - 3 Tm[(vrien.v), |
hence,

> e [(vaien. v), ] = 3 T

n=1

[<Jfl_1(h®”*1) h, U>H] .

Identify the coeeficient of 7™: For any U € Dy o(H)

E [<v.1;(h®”), U>H} —nE [<J§_1(h®”’1) h, U>H} ,

hence the result.

Corollary 3.1. A random variable F € L?(W) belongs to Da 1 if and only if
[e o]
> 0P [V F 20,1y < oo
n=1

Definition 3.5. For f € L2([0,1]" — R; \®") and g € L2([0,1]™ —
R; A\®7"), for i < n Am, the i-th contraction of f and ¢ is defined by
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(f @i )t tniyS1,0 s Smei)

I/ Fltr, o tnisun, - w) §(s1, -y Smiyuny - ug) dug ...
[0,1]¢

It is an element of L2([0, 1]*+™~2%). Tts symmetrization is denoted by fél g.

Theorem 3.8 (Multiplication of iterated integrals). For f € L2([0,1]* —
R; \®") and g € L2([0,1]™ — R; A®™),

. nAm 1o | s
T3 () I5(9) = 2_; m Tnpmoi(f @1 ). (3.13)

Proof. We give the proof for n = 1, the general case follows the same principle
with much involved notations and computations (see [Ust14]).
For ¢ € &,

E [ 7,07 (F)e] = BI™ (@) s(/)w] = B [(V @ a(£), )

H®r71i| )

Recall that V§(f) = f and that V*6(f) = 0 if £ > 2. The Leibniz formula
then implies that

VO (3(f)) = 5(f) VIMp +m Vg @ f.

On the one hand,

B[5(5) (V. g) ]

E [5f <V(M)¢7 g>H®m}
E [<v<m+1>¢7 g® f>
E

[0 ™ (g &0 £)] -

H@(m+1)]

On the other hand, a simple application of Fubini’s Theorem yields

B (v vos.s)

- / VD G F(sm) §(51s -+ s 5m) st ... dsm.
[0,1]™

seom)

Since V™14 and g are symmetric, we have
/ Vg’fff.l,)smflw F(sm) g(s1,-+ 5 8m) dsy... dsp,
[0,

1 (o . .
= ﬁ Z ,/[0 1 Vh(e:rzl)l) ,s.,(m,l)wf(s'r(m)) 9(37(1)7 o 737-(m)) ds

TEG,
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where ds = ds;... ds,,. We partition &,, into the m disjoints sets
GZn = {T € G’maT(m) = .]}
We get

. _ .
> /[O e Vo F(8rimy) G(82(1ys -+ Sr(my) d

TES,
-y 3 / VD, | () dlsraye- s) ds ds;,
i=1red, [0,1]m—1 [0,1]
(3.14)
where d§; = dsy... dsj_1 dsj;1... We can rewrite the last inner integral
as

/[0 11 v‘gT(l_)l) 7S‘r(m,—1)w (f &1 g)(s‘r(l)7 T ,ST(m_l)) dsry -+ dsram-1),

which makes apparent that this integral does not depend on j, hence it ap-
pears m times in (3.14). Since &7, is in bijection with &,,_1, we obtain

1 = (m—1 ; .
g Z /[‘O 1 vg:rzl),) 157(771,—1)’(/) f(sT(m)) g(s'r(l): T 757'(7n)) ds

T TEG,

1 ~(m—1 ; . ~
T (m—1) Z / vga(lw-)wso(mfl)?ﬂ(f ®1 9)(So(1)s """ »So(m—1)) d5;

:/ v'(s’rlrfi‘ly?smfl (f ®19)(s1,+ , Sm—1) ds1 ... dspm_1
ORI
where

0 : (51, 8m1,8) —> VI g(s1, s Smo1, ).

Finally, we get

E[(v o ss)

on)

=E

/ VT (F®19)(s1s e Smat) dsl...dsm]
[0,1]™

= B[00 (f&19)].
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The result follows by the density of £ in L*(W).

Corollary 3.2 (Divergence on chaos). Let
. > .
Ut)=Y_ Jnha(.1)
n=0

where h,, belongs to L([0,1]™*1) and is symmetric with respect to its n first
variables. Then,

SU =" T (hn)
n=0

where

~ 1 .
hn(t1>‘ o 7tn7tn+1) = m |:hn(t17' o 7tnatn+1)

+Zhn(tl7"" s lim1y g1, tipr, e ,ti)} . (3.15)

i=1
Proof. As before, we reduce the problem to hy,(.,t) = h®"¢(t). Then,
Tn(h®"g(1)) = 5 (R®™) g(8).
Eqn. (2.11), (3.13) and (3.12) imply
S (A" §) = (") (9) = (VI (™), 9)

S . S . 1 .
=J5 1 (A" @ g) +nd_ (h®" @1 g) —ndy_ (hE") / h(s)g(s) ds.
0
(3.16)

By its very definition,
. s n-l . L.
(1 &1 )t tam) = [Tt [ i)ats) s,
j=1 o

hence the last two terms of (3.16) do cancel each other. Since h®"—1 s already
symmetric, the symmetrization of h®"~! ® ¢ reduces to

(h@n—l ég)(tl’ - 7tn+l)
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which corresponds to (3.16) for general fun.

3.2 Ornstein-Uhlenbeck operator

In R™, the adjoint of the usual gradient is the divergence operator and the
composition of divergence and gradient is the ordinary Laplacian. Since we
have at our disposal, a notion of gradient and the corresponding divergence,
we can consider the associated Laplacian, sometimes called Gross Laplacian,
defined as

L =4V.

A simple calculation shows the following which justifies the physicists’ de-
nomination of L as the number operator.

Theorem 3.9 (Number operator). For F € L>(W — R; ) of chaos
decomposition

F=E[F]+ i T (hn).

n=1

Then,
0 .
LF = nJ5(hy).
n=1

The map L is invertible from L3 = {F € L* (W — R; p), E[F] = 0} into
itself:

L7'F = Zl — ().

From there, it is customary to define the so-called Ornstein-Uhlenbeck oper-
ator from its action on chaos.

Definition 3.6 (Ornstein-Ulenbeck operator). Let F' € L2(W — R; u)
of chaos decomposition

F =E[F]+ i T (hy).

n=1
For any ¢ > 0,
PF=E[F]+> e ™ (hn).

n=1
Formally, we can write P, = e tL.
From these definitions, the following properties are straightforward

Theorem 3.10. For any F € L>(W — R; ), for any s,t > 0,
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P, F = P,(P,F).

For any FF € Dy 1,
VP,F =e¢ 'P,VF. (3.17)

The Ornstein-Uhlenbeck can be alternatively defined by the so-called Mehler
formula:

Theorem 3.11. For any F € L>(W — R; )
PF(w) = / Fle'w+ V1= e ) duly). (3.18)
w

Its definition relies on the invariance by rotations of the Gaussian measure.

In what follows, let 8; = v1 — e—2t.

Lemma 3.3. For any t > 0, consider the transformation

Ry WXxW—WxW

(wa 77) — (e_tw + /Btnv _ﬂtw + e_t

m)-
Then the image of & p by Ry is still p & p.

Proof. Let hy and hy belong to W*. Then,

/ exp (Z <(hla h?)a Rt(wvn»w*xw*,v\)xy\;) du(w) dﬂ(n)
WxW
= /W exp (1 (e7thy — Bth27w>w*,w) dp(w)
i{eth hi, . d
X /W exp (z (e"*ha + Biha,m),, ,W) ()
= exp (= (It = Bl + le~tha + il

1 1
—exp (—glml3 ) e (~31nal?).

In view of the characterization of the Wiener measure, this completes the
proof.

Proof (Proof of Theorem 3.11). We know that for F € L2(W — R; p),
- 1 E s h 2
n=

If each kernel is multiplied by a constant smaller than 1, the convergence also
holds, hence for any ¢t > 0,
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||PtFHL2(W~>R; ) < ||FHL2(W~>R;;,L)'

Denote temporarily

T,F(w) = / Fle 7w+ V1 — e 2ty) du(y).

w
We have
[ PR duw) = [ Pt VIZ ) dute) duty)
w W2
_ 2
:/ F(Rilw,m))” dp(w) dpu(y),
w

where

F:WxW-—R
(w,n) — F(w).

According to Lemma 3.3,

[ F(w.) dule) duty) / Flw,m)? du(w) du(y)
W2
- ||FHL2(W—>R;L)

This means it is sufficient to prove (3.18) for the elements of £. By definition,

Sh(e"w + Buy) = 3 h)(w) + 3(Bh)(v)

and
IRl = lle™hlI3, + 182113
Hence,
Ap (7w + Bry) = Ae—ep (W) A, (y).
Hence,
/W Ap(e™'w + Bry) duly) = Ac—ep(w / Apn(y) du(y) = Ae-ip(w).

Now then, the chaos decomposition of A.-¢j(w) is given by

Aty (w —1+Z JS e th)®m) —1+Z

The proof is thus complete.

5 (h®m).
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Theorem 3.12. The semi-group is ergodic and admits [ as stationary mea-
sure. As a consequence,

/ Fdu—F= —/ LP,F dy (3.19)
w 0

and for F centered,

L*lF:/ P,F dt. (3.20)
0

Proof. From the Mehler formula, we see by dominated convergence that

P,F(w) Loeo, F dpu.
w.p.1 W

In view of Lemma 3.3,

| PP dne) = [ F(Riw, ) dute) duto)
w w2
- / F(w, y) du(w) duy) = / F(w) du(w).
w2 w

This proves the stationarity of y. Now, it comes from the chaos decomposition
that d

— P, F = —LP,F.

dt t tL
hence

PF(w) — PyF(w) = — /Ot LP,F(w) dt.

Let t go to infinity to obtain (3.19). Eqn. (3.20) is a direct consequence of
the chaos decomposition.

The Mehler formula shows that P, F' is a convolution operator and as such
has some strong regularization properties.

Theorem 3.13 (Regularization). For F € L>(W — R; ), for any t > 0,
P, F belongs to Ng>1Dy . Moreover,

—t\ k
(k) _ (€ —t k
(voreny  =(5) [ Feorom s )
Proof. We give the proof for k = 1. The general situation is obtained by
induction. For F' € S,

<V(k)PtF, h>H - d%PtF(w +eh)

e=0
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The trick is then to consider that the translation by h operates not on w but
on y:

PP +eh) = [ P eh)+ ) du(y)

get
= / Fe™'w+ By + ——h)) du(y).
w B
According to the Cameron-Martin (Theorem 1.8),
ot £20-2t
P,F(w+¢eh) = / F(e™tw+ Bry) exp (6—5!1 - —s Hh||§_t> du(y).
w B B
Since,
d /[ et 202t ot
— s—5h—7h2> = —6h,
de ( B g "), "R

the result follows by dominated convergence.

The main application of the properties of the Ornstein-Uhlenbeck operator
are the Meyer inequalities which merely state that an equivalence of norm.

Theorem 3.14 (Meyer inequalities). For any p > 1 and any k > 1, there
exist cp 1 and Cp 1 such that for any F € Dy g,

1/p 1/p
e E[[VOF0,] " < B [[0+L) 2] < CouE [IVOFS,] .

3.3 Exercises

Exercise 3.1. Consider the Brownian sheet W which is the centered Gaus-
sian process indexed by [0, 1] with covariance kernel

E [W(thtg)W(Sh 82)] =81 At1 S9Nty = R(S, t).

Let (X;;,1 <4,7 < N) a family of N2 independent and identically distributed
random variables with mean 0 and variance 1. Define

| el v
SN(S,t) = N Z ZX”
i=1 j=1
1. Show that (SN(sl, s2), S (t1, tg)) converges to a Gaussian random vector

of covariance matrix
1 (R(s.5) R(s.1)
“ \R(s,t) R(t,1)
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Fig. 3.1 Simulation of a sample of Sy .

2. For F € L?(W — R; 1) and w € W, show that

PF(w) =E[F(ew+W(,52)].

3 Wiener chaos



