# Chapter 3 Wiener chaos

### 3.1 Chaos decomposition

Definition 3.1 (Iterated integrals on a simplex). For  $t \in (0, 1]$ , let

$$\mathfrak{C}_n(t) = \{(t_1, \cdots, t_n) \in [0, 1]^n, \ 0 \le t_1 < \ldots < t_n \le t\}.$$

For  $f \in L^2(\mathfrak{C}_n(t) \to \mathbf{R}; \lambda)$ , set

$$J_n(f)(t) = \int_0^t dB(t_n) \int_0^{t_n} dB(t_{n-1}) \dots \int_0^{t_2} f(t_1, \dots, t_n) dB(t_1),$$

where the integrals are Itô integrals. For the sake of notations, set  $\mathfrak{C}_n = \mathfrak{C}_n(1)$ and  $J_n(f) = J_n(f)(1)$ .

Remark 3.1. The structure of  $\mathfrak{C}_n(t)$  ensures that at each integral, the integrand is adapted. Moreover,

$$J_n(f)(t) = \int_0^t J_{n-1}(f(.,t_n)) \, \mathrm{d}B(t_n).$$

The Itô isometry then entails that

$$\mathbf{E}\left[J_n(f)J_m(g)\right] = \begin{cases} 0 & \text{if } n \neq m\\ \int_{\mathfrak{C}_n(t)} fg \, \mathrm{d}\lambda & \text{if } n = m. \end{cases}$$
(3.1)

We wish to extend this notion of iterated integral to function defined on the whole cube  $[0,1]^n$  but we cannot get rid of the adaptability condition. It is then crucial to remark that for  $f : [0,1]^n \to \mathbf{R}$  symmetric,

$$\int_{[0,1]^n} f \, \mathrm{d}\lambda = n! \, \int_{\mathfrak{C}_n} f \, \mathrm{d}\lambda$$

since for any permutation  $\sigma$  of  $\{1, \dots, n\}$ , the integral of f on  $\mathfrak{C}_n$  is equal to its integral on

$$\sigma \mathfrak{C}_n = \{ (t_1, \cdots, t_n) \in [0, 1]^n, \ 0 \le t_{\sigma(1)} < \ldots < t_{\sigma(n)} \le 1 \}.$$

This motivates the following definition of the iterated integral:

**Definition 3.2 (Generalized iterated integrals).** Let  $L_s^2 = L_s^2([0,1]^n \to \mathbf{R}; \lambda)$  be the set of symmetric functions on  $[0,1]^n$ , square integrable with respect to the Lenbesgue measure. For  $f \in L_s^2$ ,

$$J_n^s(f) = n! J_n(f\mathbf{1}_{\mathfrak{C}_n}).$$

If f belongs to  $L^2([0,1]^n \to \mathbf{R}; \lambda)$  but is not necessarily symmetric,

$$J_n^s(f) = J_n^s(f^s),$$

where  $f^s$  is the symmetrization of f:

$$f^{s}(t_{1},\cdots,t_{n})=\frac{1}{n!}\sum_{\sigma\in\mathfrak{S}_{n}}f(t_{\sigma(1)},\cdots,t_{\sigma(n)}).$$

In view of Eqn. (3.1), for  $f, g \in L^2_s$ , we have

$$\mathbf{E}\left[J_n^s(f)J_m^s(g)\right] = \begin{cases} 0 & \text{if } n \neq m\\ (n!)^2 \int_{\mathfrak{C}_n} fg \, \mathrm{d}\lambda = n! \int_{[0,1]^n} fg \, \mathrm{d}\lambda & \text{if } n = m. \end{cases}$$
(3.2)

**Theorem 3.1 (Chaos expansion of Doléans exponentials).** Let h belongs to  $\mathcal{H}$ . Then,

$$\Lambda_h = 1 + \sum_{n=1}^{\infty} J_n(\dot{h}^{\otimes n} \mathbf{1}_{\mathfrak{C}_n}) = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} J_n^s(\dot{h}^{\otimes n}),$$

where the convergence holds in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ .

*Proof.* Let

$$\Lambda_h(t) = \exp\left(\int_0^t \dot{h}(s) \, \mathrm{d}B(s) - \frac{1}{2}\int_0^1 \dot{h}(s)^2 \, \mathrm{d}s\right).$$

The Itô calculus says that

$$\Lambda_h(t) = 1 + \int_0^t \Lambda_h(s) \dot{h}(s) \, \mathrm{d}B(s),$$

hence

$$\begin{split} \Lambda_h(t) &= 1 + \int_0^t \Lambda_h(s) \dot{h}(s) \, \mathrm{d}B(s) \\ &= 1 + \int_0^t \left( 1 + \int_0^s \Lambda_h(r) \dot{h}(r) \, \mathrm{d}B(r) \right) ) \dot{h}(s) \, \mathrm{d}B(s) \\ &= 1 + \int_0^t \dot{h}(s) \, \mathrm{d}B(s) + \int_0^t \left( \int_0^s \Lambda_h(r) \dot{h}(s) \dot{h}(r) \, \mathrm{d}B(r) \right) \, \mathrm{d}B(s) \\ &= 1 + \sum_{k=1}^n J_n(\dot{h}^{\otimes n} \mathbf{1}_{\mathfrak{C}_n}) + \int_{\mathfrak{C}_n} \prod_{j=1}^n \dot{h}(s_j) \, \Lambda_h(s_1) \, \mathrm{d}B(s_1) \dots \, \mathrm{d}B(s_n) \\ &= 1 + \sum_{k=1}^n J_n(\dot{h}^{\otimes n} \mathbf{1}_{\mathfrak{C}_n}) + R_n. \end{split}$$

It thus remains to show that  $R_n$  tends to 0 as n goes to infinity. According to (3.1),

$$\mathbf{E}\left[R_n^2\right] = \int_{\mathfrak{C}_n} \prod_{j=1}^n \dot{h}(s_j)^2 \mathbf{E}\left[\Lambda_h(s_n)^2\right] \, \mathrm{d}s_1 \dots \, \mathrm{d}s_n. \tag{3.3}$$

Moreover,

$$\begin{split} \mathbf{E}\left[\Lambda_h(s)^2\right] &= \mathbf{E}\left[\exp\left(2\int_0^s \dot{h}(u) \, \mathrm{d}B(u) - \int_0^s \dot{h}^2(u) \, \mathrm{d}u\right)\right] \\ &= \mathbf{E}\left[\Lambda_{2h}(s)\right]\exp(\|h\|_{\mathcal{H}}^2) = \exp(\|h\|_{\mathcal{H}}^2). \end{split}$$

Plug this new expression into Eqn. (3.3) to obtain

$$\mathbf{E} \left[ R_n^2 \right] = \exp(\|h\|_{\mathcal{H}}^2) \int_{\mathfrak{C}_n} \prod_{j=1}^n \dot{h}(s_j)^2 \, \mathrm{d}s_1 \dots \, \mathrm{d}s_n$$
  
=  $\exp(\|h\|_{\mathcal{H}}^2) \frac{1}{n!} \int_{[0,1]^n} \dot{h}(s_j)^2 \, \mathrm{d}s_1 \dots \, \mathrm{d}s_n = \exp(\|h\|_{\mathcal{H}}^2) \frac{1}{n!} \|h\|_{\mathcal{H}}^{2n} \xrightarrow{n \to \infty} 0.$ 

The result follows.

**Definition 3.3 (Fock space).** The Fock space  $\mathfrak{F}_{\mu}(\mathcal{H})$  is the completion of the direct sum of the tensor powers of  $\mathcal{H}$ :

$$\mathfrak{F}_{\mu}(\mathcal{H}) = \mathbf{R} \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}.$$

It is an Hilbert space when equipped with the norm

$$\| \oplus_{n=0}^{\infty} h_n \|_{\mathfrak{F}^{\mu}(\mathcal{H})}^2 = \sum_{n=0}^{\infty} \frac{1}{n!} \| h_n \|_{\mathcal{H}^{\otimes n}}^2.$$

Theorem 2.2 says that the set of tensor products is dense in  $\mathcal{H}^{\otimes n}$ , hence for a continuous linear map A from  $\mathcal{H}$  into itself, we can define its tensor power on  $\mathcal{H}^{\otimes n}$  by the rule

$$A^{\otimes n} : \mathcal{H}^{\otimes n} \longrightarrow \mathcal{H}^{\otimes n}$$
$$\otimes_{j=1}^{n} h_j \longmapsto \otimes_{j=1}^{n} Ah_j$$

For an arbitrary element h of  $\mathcal{H}^{\otimes n}$ , the value of  $A^{\otimes n}h$  is defined by a limiting procedure.

**Definition 3.4 (Second quantization).** The second quantization of A is the map from  $\mathfrak{F}_{\mu}(\mathcal{H})$  into itself which coincides with  $A^{\otimes n}$  on the *n*-th chaos.

Theorem 3.2. The map

$$\begin{split} \Upsilon: \, \mathcal{E} \subset L^2(\mathcal{W} \to \mathbf{R}; \, \mu) & \longrightarrow \mathfrak{F}_{\mu}(\mathcal{H}) \\ F & \longmapsto \bigoplus_{n=0}^{\infty} \, \mathbf{E}\left[\nabla^{(n)} F\right], \end{split}$$

admits a continuous extension defined on  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ . We denote by  $\Upsilon_n F$ , the n-th term of the right-hand-side:  $\Upsilon_n F = \mathbf{E} \left[ \nabla^{(n)} F \right]$ .

*Proof.* Remark that for  $F = \Lambda_h \in \mathcal{E}$ ,

$$\nabla^{(n)}F = F h^{\otimes n}$$
, hence  $\mathbf{E}\left[\nabla^{(n)}F\right] = h^{\otimes n}$ ,

so we have

$$F = \mathbf{E}[F] + \sum_{n=1}^{\infty} \frac{1}{n!} J_n^s \left( \mathbf{E}\left[ \overbrace{\nabla^{(n)}}^{\cdot} F \right] \right).$$

Since the chaos are orthogonal,

$$\mathbf{E}\left[F^{2}\right] \geq \mathbf{E}\left[(F - \mathbf{E}\left[F\right])^{2}\right] = \sum_{n=1}^{\infty} \frac{1}{n!^{2}} \mathbf{E}\left[J_{n}^{s}\left(\mathbf{E}\left[\widehat{\nabla^{(n)}F}\right]\right)^{2}\right]$$
$$= \sum_{n=1}^{\infty} \frac{1}{n!} \left\|\mathbf{E}\left[\widehat{\nabla^{(n)}F}\right]\right\|_{L^{2}\left([0,1]^{n} \to \mathbf{R}; \lambda^{\otimes n}\right)}^{2} = \sum_{n=1}^{\infty} \frac{1}{n!} \left\|\mathbf{E}\left[\nabla^{(n)}F\right]\right\|_{\mathcal{H}^{\otimes n}}^{2}.$$

Thus, by linearity, for any  $F \in \mathcal{E}$ ,

$$\|\Upsilon F\|_{\mathfrak{F}_{\mu}(\mathcal{H})} \le \|F\|_{L^2(\mathcal{W}\to\mathbf{R};\,\mu)}.\tag{3.4}$$

If  $(F_n, n \ge 1)$  is a sequence of elements of  $\mathcal{E}$  which converges to F in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ , the sequence  $(\Upsilon F_n, n \ge 1)$  is Cauchy in the Hilbert space  $\mathfrak{F}_{\mu}(\mathcal{H})$ , hence convergent. Then,  $\Upsilon F$  can be unambiguously defined as  $\lim_{n\to\infty} \Upsilon F_n$  and (3.4) holds for any  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$ .

**Theorem 3.3 (Chaos decomposition).** For any  $F \in L^2(W \to \mathbf{R}; \mu)$ ,

$$F = \mathbf{E}[F] + \sum_{n=1}^{\infty} \frac{1}{n!} J_n^s \left( \dot{\widehat{\Upsilon_n F}} \right).$$
(3.5)

This can be formally written as

$$F = \mathbf{E}[F] + \sum_{n=1}^{\infty} \frac{1}{n!} J_n^s \left( \mathbf{E}\left[ \overbrace{\nabla^{(n)}}^{\cdot} F \right] \right),$$

keeping in mind that  $\mathbf{E}\left[\nabla^{(n)}F\right]$  is defined through  $\Upsilon$  for general random variables.

The chaos decomposition means that  $\mathfrak{F}_{\mu}(\mathcal{H})$  is isometrically isomorphic to  $L^{2}(\mathcal{W} \to \mathbf{R}; \mu)$ .

*Proof.* Without loss of generality, we may assume that  $\mathbf{E}[F] = 0$ . For  $F = \Lambda_h - 1$ , we know that

$$abla^{(n)}F = F h^{\otimes n}$$
, hence  $\Upsilon_n F = h^{\otimes n}$ .

Then, Theorem 3.1 means that Eqn. (3.5) holds true for  $F = \Lambda_h - 1$  for any  $h \in \mathcal{H}$ . By linearity of the maps  $\Upsilon_n$ , it is still true for linear combination of such random variables. Let  $(F_k, k \ge 1)$  a sequence of elements of  $\mathcal{E}$  converging to F in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ . Since  $\Upsilon$  is continuous in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ ,

$$\Upsilon F_k \xrightarrow{k \to \infty} \Upsilon F.$$

Since the chaos are orthogonal in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ 

$$\mathbf{E}\left[\left|\sum_{n=1}^{\infty} \frac{1}{n!} J_n^s(\Upsilon_n F_k) - \sum_{n=1}^{\infty} \frac{1}{n!} J_n^s(\Upsilon_n F)\right|^2\right] = \sum_{n=1}^{\infty} \frac{1}{n!} \mathbf{E}\left[\left|\Upsilon_n F_k - \Upsilon_n F\right|^2\right]$$
$$= \left\|\Upsilon(F_k - F)\right\|_{\oplus_{n=0}^{\infty} \mathcal{H}^{\otimes n}}^2.$$

This means that

$$0 = F_k - \sum_{n=0}^{\infty} \frac{1}{n!} J_n^s(\Upsilon_n F_k) \xrightarrow{k \to \infty} F - \sum_{n=0}^{\infty} \frac{1}{n!} J_n^s(\Upsilon_n F).$$

The proof is thus complete.

**Theorem 3.4 (Iterated integrals and iterated divergence).** For any  $h \in \mathcal{H}$ ,

$$J_n^s(\dot{h}^{\otimes n}) = \delta^n h^{\otimes n}.$$

Hence, for any  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$ ,

$$F = \mathbf{E}[F] + \sum_{n=1}^{\infty} \frac{1}{n!} \,\delta^n \big( \Upsilon_n F \big). \tag{3.6}$$

*Proof.* For  $F \in \mathcal{E}$ , the Taylor-MacLaurin formula says that

$$F(\omega + \tau h) = F(\omega) + \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \left\langle \nabla^{(n)} F(\omega), h^{\otimes n} \right\rangle_{\mathcal{H}^{\otimes n}}.$$

Hence,

$$\begin{split} \mathbf{E}\left[F(\omega+\tau h)\right] &= \mathbf{E}\left[F\right] + \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \left\langle \Upsilon_n F, h^{\otimes n} \right\rangle_{\mathcal{H}^{\otimes n}} \\ &= \mathbf{E}\left[F\right] + \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \mathbf{E}\left[F\delta^n h^{\otimes n}\right]. \end{split}$$

On the other hand, the Cameron-Martin theorem and Theorem 3.1 induce that

$$\mathbf{E}\left[F(\omega+\tau h)\right] = \mathbf{E}\left[F \Lambda_{\tau h}\right] = \mathbf{E}\left[F\right] + \sum_{n=1}^{\infty} \frac{1}{n!} \mathbf{E}\left[F J_n^s((\tau \dot{h})^{\otimes n})\right]$$
$$= \mathbf{E}\left[F\right] + \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \mathbf{E}\left[F J_n^s(\dot{h}^{\otimes n})\right].$$

The result follows by identification of the coefficient of the two power series. The very same method of identification can be used to prove the next results.

**Theorem 3.5 (Gradient and conditional expectation).** For any  $t \in [0,1]$ , for any  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$ ,

$$\mathbf{E}\left[F \mid \mathcal{F}_t\right] = \mathbf{E}\left[F\right] + \sum_{n=1}^{\infty} \frac{1}{n!} \,\delta^n \left(\Gamma_{\pi_t} \Upsilon_n F\right) \tag{3.7}$$

where we recall that  $\pi_t$  is the projection map

$$\pi_t : \mathcal{H} \longrightarrow \mathcal{H}$$
$$h \longmapsto I^1(\dot{h} \, \mathbf{1}_{[0,t]})$$

*Proof.* The well known identity

$$\begin{split} \mathbf{E} \left[ \exp\left(\int_0^1 \dot{h}(s) \, \mathrm{d}B(s) - \frac{1}{2} \int_0^1 \dot{h}(s)^2 \, \mathrm{d}s\right) \, | \, \mathcal{F}_t \right] \\ &= \exp\left(\int_0^t \dot{h}(s) \, \mathrm{d}B(s) - \frac{1}{2} \int_0^t \dot{h}(s)^2 \, \mathrm{d}s\right) \end{split}$$

can be written as

$$\mathbf{E}\left[\Lambda_{h}\,|\,\mathcal{F}_{t}\right]=\Lambda_{\pi_{t}h}.$$

Apply this equality to  $\tau h$  and consider the chaos expansion of both terms. Since the convergence of the series holds in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$ , we can apply Fubini's theorem straightforwardly.

$$1 + \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \mathbf{E} \left[ \delta^n h^{\otimes n} \, | \, \mathcal{F}_t \right] = 1 + \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \delta^n(\pi_t^{\otimes n} h^{\otimes n}).$$

This means that (3.7) holds for  $F \in \mathcal{E}$  and by density, it is true for any  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$ .

#### Lemma 3.1. The map

$$\partial_{\mathcal{W}} : \mathcal{E} \subset L^{2}(\mathcal{W} \to \mathbf{R}; \mu) \longrightarrow L^{2}(\mathcal{W} \times [0, 1] \to \mathbf{R}; \mu \otimes \lambda)$$
$$F \longmapsto \left( s \mapsto \mathbf{E} \left[ \dot{\nabla}_{s} F \, | \, \mathcal{F}_{s} \right], s \in [0, 1] \right)$$

can be extended as a continuous map from  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$  into  $L^2(\mathcal{W} \times [0, 1] \to \mathbf{R}; \mu \otimes \lambda)$ .

*Proof.* For  $F = \Lambda_k \in \mathcal{E}$ ,

$$\partial_{\mathcal{W}}F = \left(s\longmapsto \Lambda_k(s)\dot{k}(s)\right)$$

and

$$F = 1 + \int_0^1 \partial_{\mathcal{W}} F(s) \, \mathrm{d}B(s).$$

On the one hand, Itô isometry yields

$$\mathbf{E}\left[\left(\int_{0}^{1}\partial_{\mathcal{W}}F(s)\,\mathrm{d}B(s)\right)^{2}\right] = \|\partial_{\mathcal{W}}F\|_{L^{2}(\mathcal{W}\times[0,1])}^{2}.$$
(3.8)

On the other hand,

$$\mathbf{E}\left[\left(\int_{0}^{1}\partial_{\mathcal{W}}F(s)\,\mathrm{d}B(s)\right)^{2}\right] = \mathbf{E}\left[(F-1)^{2}\right] = \mathbf{E}\left[F^{2}\right] - 1 \leq \mathbf{E}\left[F^{2}\right].$$
 (3.9)

Let  $F \in L^2(\mathcal{W})$  be the limit of  $(F_n, n \geq 1)$  a sequence of elements of  $\mathcal{E}$ . Eqn. (3.8) and (3.9) imply that  $(\partial_{\mathcal{W}}F_n, n \geq 1)$  is Cauchy in  $L^2(\mathcal{W} \times [0, 1], \mu \otimes \lambda)$ , hence convergent to a limit, we define to be  $\partial_{\mathcal{W}}F$ .

**Theorem 3.6 (Itô-Clark-Ocone-Üstünel formula).** For  $F \in L^2(W \to \mathbf{R}; \mu)$ ,

$$F = \mathbf{E}[F] + \delta (I^{1}(\partial_{\mathcal{W}}F)).$$
(3.10)

For  $F \in \mathbb{D}_{1,2}$ , this boils down to

$$F = \mathbf{E}[F] + \int_0^1 \mathbf{E}\left[\dot{\nabla}_s F \,|\, \mathcal{F}_s\right] \, dB(s). \tag{3.11}$$

*Proof.* For  $F = \Lambda_k \in \mathcal{E}$ , recall that  $\dot{\nabla}F = \dot{k}$ , thus we do have

$$F = \mathbf{E}[F] + \int_0^1 \Lambda_k(s)\dot{k}(s) \, \mathrm{d}B(s) = \mathbf{E}[F] + \int_0^1 \mathbf{E}\left[\dot{\nabla}_s F \,|\, \mathcal{F}_s\right] \, \mathrm{d}B(s).$$

The proof follows by the density of  $\mathcal{E}$  in  $L^2(\mathcal{W} \to \mathbf{R}; \mu)$  and Lemma 3.1.

**Lemma 3.2.** Then, the set of pure tensors  $\dot{h}^{\otimes n}$  for  $h \in L^2([0,1] \to \mathbf{R}; \lambda)$  is dense in  $L^2_s([0,1]^n \to \mathbf{R}; \lambda^{\otimes n})$ .

*Proof.* We already know (see Theorem 2.2) that tensor products  $\dot{h}_1 \otimes \ldots \otimes \dot{h}_n$  with  $h_i \in L^2([0,1] \to \mathbf{R}; \lambda)$  are dense in  $L^2([0,1]^n \to \mathbf{R}; \lambda^{\otimes n})$  and that the symmetrization operation is continuous from  $L^2([0,1]^n \to \mathbf{R}; \lambda)$  into  $L^2_s([0,1]^n \to \mathbf{R}; \lambda^{\otimes n})$ . Apply the symmetrization to any approximating sequence to obtain a sequence of linear combinations of pure tensors which converges to the symmetrization of  $f_n$ , which is already  $f_n$ .

**Theorem 3.7 (Gradient of chaos).** For  $\dot{h}_n \in L^2([0,1]^n \to \mathbf{R}; \mu)$ , let  $\dot{h}(.,r)$  be the element of  $L^2_s$  defined by

$$\dot{h}_n(.,r) : [0,1]^{n-1} \longrightarrow \mathbf{R}$$
  
 $(s_1,\cdots,s_{n-1}) \longmapsto \dot{h}_n(s_1,\cdots,s_{n-1},r).$ 

Then,

$$\dot{\nabla}_r J_n^s(\dot{h}_n)(t) = n J_{n-1}^s(\dot{h}_n(.,r)).$$
 (3.12)

*Proof.* In view of Lemma 3.2, it is sufficient to prove (3.12) for  $\dot{h}_n = \dot{h}^{\otimes n}$ . It boils down to prove

$$\dot{\nabla}_r J_n^s(\dot{h}^{\otimes n}) = n J_{n-1}^s(\dot{h}^{\otimes n-1})\dot{h}.$$

Let  $h \in \mathcal{H}$ , we already know that  $\Lambda_h$  belongs to  $\mathbb{D}_{1,2}$  and that  $\nabla \Lambda_h = \Lambda_h h$ . Apply this reasoning to  $\tau h$ :

$$\begin{split} \nabla \left( \sum_{n=0}^{\infty} \frac{\tau^n}{n!} \ J_n^s(\dot{h}^{\otimes n}) \right) &= \sum_{n=0}^{\infty} \frac{\tau^{n+1}}{n!} \ J_n^s(\dot{h}^{\otimes n}) \ h = \sum_{n=1}^{\infty} \frac{\tau^n}{(n-1)!} \ J_{n-1}^s(\dot{h}^{\otimes n-1}) \ h \\ &= \sum_{n=1}^{\infty} \frac{\tau^n}{n!} \ n \ J_{n-1}^s(\dot{h}^{\otimes n-1}) \ h. \end{split}$$

Furthermore, if

$$\Lambda_h^{(N)} = \sum_{n=0}^N \frac{1}{n!} J_n^s(\dot{h}^{\otimes n}),$$

it holds that

$$\Lambda_h^{(N)} \xrightarrow{N \to \infty} \Lambda_h.$$

Consequently,  $(\nabla \Lambda_h^{(N)}, n \geq 1)$  converges weakly in  $\mathbb{D}_{1,2}(\mathcal{H})$  to  $\nabla \Lambda_h$ : For  $U \in \mathbb{D}_{1,2}(\mathcal{H}) \subset \operatorname{Dom}_2 \delta$ ,

$$\mathbf{E}\left[\left\langle \nabla \Lambda_{h}^{(N)}, U \right\rangle_{\mathcal{H}}\right] = \mathbf{E}\left[\Lambda_{h}^{(N)} \,\delta U\right] \xrightarrow{N \to \infty} \mathbf{E}\left[\Lambda_{h} \,\delta U\right] = \mathbf{E}\left[\left\langle \nabla \Lambda_{h}, U \right\rangle_{\mathcal{H}}\right].$$

Furthermore,

$$\mathbf{E}\left[\left\langle \nabla \Lambda_{\tau h}^{(N)}, U \right\rangle_{\mathcal{H}}\right] = \sum_{n=1}^{N} \frac{\tau^{n}}{n!} \mathbf{E}\left[\left\langle \nabla J_{n}^{s}(\dot{h}^{\otimes n}), U \right\rangle_{\mathcal{H}}\right],$$

hence,

$$\sum_{n=1}^{\infty} \frac{\tau^n}{n!} \mathbf{E}\left[\left\langle \nabla J_n^s(\dot{h}^{\otimes n}), U \right\rangle_{\mathcal{H}}\right] = \sum_{n=1}^{\infty} \frac{\tau^n}{n!} n \mathbf{E}\left[\left\langle J_{n-1}^s(\dot{h}^{\otimes n-1}) h, U \right\rangle_{\mathcal{H}}\right].$$

Identify the coefficient of  $\tau^n$ : For any  $U \in \mathbb{D}_{1,2}(\mathcal{H})$ 

$$\mathbf{E}\left[\left\langle \nabla J_{n}^{s}(\dot{h}^{\otimes n}), U \right\rangle_{\mathcal{H}}\right] = n \, \mathbf{E}\left[\left\langle J_{n-1}^{s}(\dot{h}^{\otimes n-1}) h, U \right\rangle_{\mathcal{H}}\right],$$

hence the result.

**Corollary 3.1.** A random variable  $F \in L^2(W)$  belongs to  $\mathbb{D}_{2,1}$  if and only if

$$\sum_{n=1}^{\infty} n^2 \, \|\Upsilon_n F\|_{L^2_s([0,1]^n)}^2 < \infty.$$

**Definition 3.5.** For  $\dot{f} \in L^2([0,1]^n \to \mathbf{R}; \lambda^{\otimes n})$  and  $\dot{g} \in L^2([0,1]^m \to \mathbf{R}; \lambda^{\otimes n})$ , for  $i \leq n \wedge m$ , the *i*-th contraction of  $\dot{f}$  and  $\dot{g}$  is defined by

$$(\dot{f} \otimes_{i} \dot{g})(t_{1}, \cdots, t_{n-i}, s_{1}, \cdots, s_{m-i})$$
  
=  $\int_{[0,1]^{i}} \dot{f}(t_{1}, \cdots, t_{n-i}, u_{1}, \cdots, u_{i}) \dot{g}(s_{1}, \cdots, s_{m-i}, u_{1}, \cdots, u_{i}) du_{1} \dots u_{i}.$ 

It is an element of  $L^2([0,1]^{n+m-2i})$ . Its symmetrization is denoted by  $\dot{f} \overset{s}{\otimes}_i g$ .

**Theorem 3.8 (Multiplication of iterated integrals).** For  $\dot{f} \in L^2([0,1]^n \to \mathbf{R}; \lambda^{\otimes n})$  and  $\dot{g} \in L^2([0,1]^m \to \mathbf{R}; \lambda^{\otimes n})$ ,

$$J_n^s(\dot{f})J_m^s(\dot{g}) = \sum_{i=0}^{n \wedge m} \frac{n!m!}{i!(n-i)!(m-i)!} \ J_{n+m-2i}(\dot{f} \overset{s}{\otimes}_i \dot{g}).$$
(3.13)

*Proof.* We give the proof for n = 1, the general case follows the same principle with much involved notations and computations (see [Üst14]).

For  $\psi \in \mathcal{E}$ ,

$$\mathbf{E}\left[J_m^s(\dot{g})J_1^s(\dot{f})\psi\right] = \mathbf{E}\left[\delta^m(g)\,\delta(f)\psi\right] = \mathbf{E}\left[\left\langle\nabla^{(m)}(\psi\,\delta(f)),\,g\right\rangle_{\mathcal{H}^{\otimes m}}\right].$$

Recall that  $\nabla \delta(f) = f$  and that  $\nabla^k \delta(f) = 0$  if  $k \ge 2$ . The Leibniz formula then implies that

$$\nabla^{(m)}(\psi\,\delta(f)) = \delta(f)\,\nabla^{(m)}\psi + m\,\nabla^{(m-1)}\psi\otimes f.$$

On the one hand,

$$\begin{split} \mathbf{E} \left[ \delta(f) \left\langle \nabla^{(m)} \psi, g \right\rangle_{\mathcal{H}^{\otimes m}} \right] &= \mathbf{E} \left[ \delta f \left\langle \nabla^{(m)} \psi, g \right\rangle_{\mathcal{H}^{\otimes m}} \right] \\ &= \mathbf{E} \left[ \left\langle \nabla^{(m+1)} \psi, g \otimes f \right\rangle_{\mathcal{H}^{\otimes (m+1)}} \right] \\ &= \mathbf{E} \left[ \psi \ \delta^{m+1} (g \overset{s}{\otimes_0} f) \right]. \end{split}$$

On the other hand, a simple application of Fubini's Theorem yields

$$\mathbf{E}\left[\left\langle \dot{\nabla}^{(m-1)}\psi\otimes f, g\right\rangle_{\mathcal{H}^{\otimes m}}\right]$$
  
=  $\int_{[0,1]^m} \dot{\nabla}^{(m-1)}_{s_1,\cdots,s_{m-1}}\psi \dot{f}(s_m) \dot{g}(s_1,\cdots,s_m) \,\mathrm{d}s_1\dots \,\mathrm{d}s_m.$ 

Since  $\dot{\nabla}^{(m-1)}\psi$  and  $\dot{g}$  are symmetric, we have

$$\begin{split} \int_{[0,1]^m} \dot{\nabla}^{(m-1)}_{s_1,\cdots,s_{m-1}} \psi \, \dot{f}(s_m) \, \dot{g}(s_1,\cdots,s_m) \, \mathrm{d}s_1 \dots \, \mathrm{d}s_m \\ &= \frac{1}{m!} \sum_{\tau \in \mathfrak{S}_m} \int_{[0,1]^m} \dot{\nabla}^{(m-1)}_{s_{\tau(1)},\cdots,s_{\tau(m-1)}} \psi \, \dot{f}(s_{\tau(m)}) \, \dot{g}(s_{\tau(1)},\cdots,s_{\tau(m)}) \, \mathrm{d}\mathfrak{s} \end{split}$$

where  $d\mathfrak{s} = ds_1 \dots ds_m$ . We partition  $\mathfrak{S}_m$  into the *m* disjoints sets

$$\mathfrak{S}_m^j = \{ \tau \in \mathfrak{S}_m, \tau(m) = j \}$$

We get

$$\sum_{\tau \in \mathfrak{S}_{m}} \int_{[0,1]^{m}} \dot{\nabla}^{(m-1)}_{s_{\tau(1)},\cdots,s_{\tau(m-1)}} \psi \,\dot{f}(s_{\tau(m)}) \,\dot{g}(s_{\tau(1)},\cdots,s_{\tau(m)}) \,\mathrm{d}\mathfrak{s}$$
$$= \sum_{j=1}^{m} \sum_{\tau \in \mathfrak{S}_{m}^{j}} \int_{[0,1]^{m-1}} \dot{\nabla}^{(m-1)}_{s_{\tau(1)},\cdots,s_{\tau(m-1)}} \psi \,\int_{[0,1]} \dot{f}(s) \,\dot{g}(s_{\tau(1)},\cdots,s) \,\mathrm{d}s \,\mathrm{d}\hat{\mathfrak{s}}_{j},$$
(3.14)

where  $d\hat{\mathfrak{s}}_j = ds_1 \dots ds_{j-1} ds_{j+1} \dots$  We can rewrite the last inner integral as

$$\int_{[0,1]^{m-1}} \dot{\nabla}_{s_{\tau(1)},\cdots,s_{\tau(m-1)}}^{(m-1)} \psi \ (\dot{f} \otimes_1 \dot{g})(s_{\tau(1)},\cdots,s_{\tau(m-1)}) \ \mathrm{d}s_{\tau(1)} \dots \ \mathrm{d}s_{\tau(m-1)}$$

which makes apparent that this integral does not depend on j, hence it appears m times in (3.14). Since  $\mathfrak{S}_m^j$  is in bijection with  $\mathfrak{S}_{m-1}$ , we obtain

$$\begin{split} &\frac{1}{m!} \sum_{\tau \in \mathfrak{S}_m} \int_{[0,1]^m} \dot{\nabla}_{s_{\tau(1)},\cdots,s_{\tau(m-1)}}^{(m-1)} \psi \, \dot{f}(s_{\tau(m)}) \, \dot{g}(s_{\tau(1)},\cdots,s_{\tau(m)}) \, \mathrm{d}\mathfrak{s} \\ &= \frac{1}{(m-1)!} \sum_{\sigma \in \mathfrak{S}_{m-1}} \int_{[0,1]^{m-1}} \dot{\nabla}_{s_{\sigma(1)},\cdots,s_{\sigma(m-1)}}^{(m-1)} \psi \, (\dot{f} \otimes_1 \dot{g})(s_{\sigma(1)},\cdots,s_{\sigma(m-1)}) \, \mathrm{d}\mathfrak{s}_j \\ &= \int_{[0,1]^{m-1}} (\theta \overset{s}{\otimes}_1 \dot{f})(s_1,\cdots,s_{m-1}) \, \mathrm{d}s_1 \dots \, \mathrm{d}s_{m-1} \\ &= \int_{[0,1]^{m-1}} \dot{\nabla}_{s_1,\cdots,s_{m-1}}^{(m-1)} \psi \, (\dot{f} \overset{s}{\otimes}_1 \dot{g})(s_1,\cdots,s_{m-1}) \, \mathrm{d}s_1 \dots \, \mathrm{d}s_{m-1} \end{split}$$

where

$$\theta : (s_1, \cdots, s_{m-1}, s) \longmapsto \dot{\nabla}^{(m-1)}_{s_1, \cdots, s_{m-1}} \psi \ g(s_1, \cdots, s_{m-1}, s).$$

Finally, we get

$$\mathbf{E}\left[\left\langle \dot{\nabla}^{(m-1)}\psi\otimes f, g\right\rangle_{\mathcal{H}^{\otimes m}}\right]$$
  
= 
$$\mathbf{E}\left[\int_{[0,1]^m} \dot{\nabla}^{(m-1)}_{s_1,\cdots,s_{m-1}}\psi\left(\dot{f}\overset{s}{\otimes}_1\dot{g}\right)(s_1,\cdots,s_{m-1})\,\mathrm{d}s_1\,\ldots\,\mathrm{d}s_m\right]$$
  
= 
$$\mathbf{E}\left[\phi\,\delta^{m-1}(\dot{f}\overset{s}{\otimes}_1\dot{g})\right]$$

The result follows by the density of  $\mathcal{E}$  in  $L^2(\mathcal{W})$ .

Corollary 3.2 (Divergence on chaos). Let

$$\dot{U}(t) = \sum_{n=0}^{\infty} J_n^s(\dot{h}_n(.,t))$$

where  $\dot{h}_n$  belongs to  $L^2([0,1]^{n+1})$  and is symmetric with respect to its n first variables. Then,

$$\delta U = \sum_{n=0}^{\infty} J_{n+1}^s(\tilde{h}_n)$$

where

$$\tilde{h}_{n}(t_{1},\cdots,t_{n},t_{n+1}) = \frac{1}{n+1} \left[ \dot{h}_{n}(t_{1},\cdots,t_{n},t_{n+1}) + \sum_{i=1}^{n} \dot{h}_{n}(t_{1},\cdots,t_{i-1},t_{n+1},t_{i+1},\cdots,t_{i}) \right].$$
 (3.15)

*Proof.* As before, we reduce the problem to  $\dot{h}_n(.,t) = \dot{h}^{\otimes n} \dot{g}(t)$ . Then,

$$J_n^s(\dot{h}^{\otimes n}\dot{g}(t)) = J_n^s(\dot{h}^{\otimes n})\,\dot{g}(t).$$

Eqn. (2.11), (3.13) and (3.12) imply

$$\begin{split} \delta(J_n^s(\dot{h}^{\otimes n})\,\dot{g}) &= J_n^s(\dot{h}^{\otimes n})J_1(\dot{g}) - \left\langle \nabla J_n^s(\dot{h}^{\otimes n}),\,g\right\rangle_{\mathcal{H}} \\ &= J_{n+1}^s(\dot{h}^{\otimes n}\overset{s}{\otimes}\dot{g}) + nJ_{n-1}^s(\dot{h}^{\otimes n}\overset{s}{\otimes}_1\dot{g}) - nJ_{n-1}^s(\dot{h}^{\otimes n-1})\int_0^1\dot{h}(s)\dot{g}(s)\,\,\mathrm{d}s. \end{split}$$
(3.16)

By its very definition,

$$(\dot{h}^{\otimes n} \overset{s}{\otimes}_{1} \dot{g})(t_{1}, \cdots, t_{n-1}) = \prod_{j=1}^{n-1} \dot{h}(t_{j}) \int_{0}^{1} \dot{h}(s) \dot{g}(s) \, \mathrm{d}s,$$

hence the last two terms of (3.16) do cancel each other. Since  $\dot{h}^{\otimes n-1}$  is already symmetric, the symmetrization of  $\dot{h}^{\otimes n-1}\otimes \dot{g}$  reduces to

$$(\dot{h}^{\otimes n-1} \overset{s}{\otimes} \dot{g})(t_1, \cdots, t_{n+1})$$

$$= \frac{1}{n+1} \left[ \prod_{j=1}^n \dot{h}(t_j) \dot{g}(t_{n+1}) + \sum_{\substack{i=1\\j \neq i}}^n \prod_{\substack{j=1\\j \neq i}}^n \dot{h}(t_j) \dot{g}(t_i) \dot{h}(t_{n+1}) \right],$$

3.2 Ornstein-Uhlenbeck operator

which corresponds to (3.16) for general  $\dot{h}_n$ .

#### 3.2 Ornstein-Uhlenbeck operator

In  $\mathbb{R}^n$ , the adjoint of the usual gradient is the divergence operator and the composition of divergence and gradient is the ordinary Laplacian. Since we have at our disposal, a notion of gradient and the corresponding divergence, we can consider the associated Laplacian, sometimes called Gross Laplacian, defined as

$$L = \delta \nabla$$

A simple calculation shows the following which justifies the physicists' denomination of L as the number operator.

**Theorem 3.9 (Number operator).** For  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$  of chaos decomposition

$$F = \mathbf{E}\left[F\right] + \sum_{n=1}^{\infty} J_n^s(\dot{h}_n).$$

Then,

$$LF = \sum_{n=1}^{\infty} n J_n^s(\dot{h}_n).$$

The map L is invertible from  $L_0^2 = \{F \in L^2(\mathcal{W} \to \mathbf{R}; \mu), \mathbf{E}[F] = 0\}$  into itself:

$$L^{-1}F = \sum_{n=1}^{\infty} \frac{1}{n} J_n^s(\dot{h}_n).$$

From there, it is customary to define the so-called Ornstein-Uhlenbeck operator from its action on chaos.

**Definition 3.6 (Ornstein-Ulenbeck operator).** Let  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$  of chaos decomposition

$$F = \mathbf{E}[F] + \sum_{n=1}^{\infty} J_n^s(\dot{h}_n).$$

For any t > 0,

$$P_t F = \mathbf{E}[F] + \sum_{n=1}^{\infty} e^{-nt} J_n^s(\dot{h}_n).$$

Formally, we can write  $P_t = e^{-tL}$ .

From these definitions, the following properties are straightforward

**Theorem 3.10.** For any  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$ , for any  $s, t \ge 0$ ,

$$P_{t+s}F = P_s(P_tF).$$

For any  $F \in \mathbb{D}_{p,1}$ ,

$$\nabla P_t F = e^{-t} P_t \nabla F. \tag{3.17}$$

The Ornstein-Uhlenbeck can be alternatively defined by the so-called Mehler formula:

**Theorem 3.11.** For any  $F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$ 

$$P_t F(\omega) = \int_{\mathcal{W}} F(e^{-t}\omega + \sqrt{1 - e^{-2t}}y) \ d\mu(y). \tag{3.18}$$

Its definition relies on the invariance by rotations of the Gaussian measure. In what follows, let  $\beta_t = \sqrt{1 - e^{-2t}}$ .

**Lemma 3.3.** For any t > 0, consider the transformation

$$R_t : \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W} \times \mathcal{W}$$
$$(\omega, \eta) \longmapsto \left( e^{-t} \omega + \beta_t \eta, \ -\beta_t \omega + e^{-t} \eta \right).$$

Then the image of  $\mu \otimes \mu$  by  $R_t$  is still  $\mu \otimes \mu$ .

*Proof.* Let  $h_1$  and  $h_2$  belong to  $\mathcal{W}^*$ . Then,

In view of the characterization of the Wiener measure, this completes the proof.

Proof (Proof of Theorem 3.11). We know that for  $F \in L^2(W \to \mathbf{R}; \mu)$ ,

$$\sum_{n=1}^{\infty} \frac{1}{n!} \mathbf{E} \left[ J_n^s (\dot{h}_n)^2 \right] < \infty.$$

If each kernel is multiplied by a constant smaller than 1, the convergence also holds, hence for any  $t \ge 0$ ,

3.2 Ornstein-Uhlenbeck operator

$$||P_tF||_{L^2(W\to\mathbf{R};\,\mu)} \le ||F||_{L^2(W\to\mathbf{R};\,\mu)}.$$

Denote temporarily

$$T_t F(\omega) = \int_{\mathcal{W}} F(e^{-t}\omega + \sqrt{1 - e^{-2t}}y) \, \mathrm{d}\mu(y).$$

We have

$$\int_{\mathcal{W}} T_t F(\omega)^2 \, \mathrm{d}\mu(\omega) = \int_{\mathcal{W}^2} F(e^{-t}\omega + \sqrt{1 - e^{-2t}}y)^2 \, \mathrm{d}\mu(\omega) \, \mathrm{d}\mu(y)$$
$$= \int_{\mathcal{W}^2} \bar{F} \big( R_t(\omega, \eta) \big)^2 \, \mathrm{d}\mu(\omega) \, \mathrm{d}\mu(y),$$

where

$$\bar{F} : \mathcal{W} \times \mathcal{W} \longrightarrow \mathbf{R}$$
$$(\omega, \eta) \longmapsto F(\omega).$$

According to Lemma 3.3,

$$\int_{\mathcal{W}^2} \bar{F} (R_t(\omega, \eta))^2 d\mu(\omega) d\mu(y) = \int_{\mathcal{W}^2} \bar{F}(\omega, \eta)^2 d\mu(\omega) d\mu(y)$$
$$= \|F\|_{L^2(W \to \mathbf{R}; \mu)}^2.$$

This means it is sufficient to prove (3.18) for the elements of  $\mathcal{E}$ . By definition,

$$\delta h \left( e^{-t} \omega + \beta_t y \right) = \delta (e^{-t} h)(\omega) + \delta (\beta_t h)(y)$$

and

$$||h||_{\mathcal{H}}^2 = ||e^{-t}h||_{\mathcal{H}}^2 + ||\beta_th||_{\mathcal{H}}^2.$$

Hence,

$$\Lambda_h(e^{-t}\omega + \beta_t y) = \Lambda_{e^{-t}h}(\omega)\Lambda_{\beta_t h}(y).$$

Hence,

$$\int_{\mathcal{W}} \Lambda_h \left( e^{-t} \omega + \beta_t y \right) \, \mathrm{d}\mu(y) = \Lambda_{e^{-t}h}(\omega) \int_{\mathcal{W}} \Lambda_{\beta_t h}(y) \, \mathrm{d}\mu(y) = \Lambda_{e^{-t}h}(\omega).$$

Now then, the chaos decomposition of  $\Lambda_{e^{-t}h}(\omega)$  is given by

$$\Lambda_{e^{-t}h}(\omega) = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} J_n^s \big( (e^{-t}\dot{h})^{\otimes n} \big) = 1 + \sum_{n=1}^{\infty} \frac{e^{-nt}}{n!} J_n^s \big( \dot{h}^{\otimes n} \big).$$

The proof is thus complete.

**Theorem 3.12.** The semi-group is ergodic and admits  $\mu$  as stationary measure. As a consequence,

$$\int_{\mathcal{W}} F \ d\mu - F = -\int_0^\infty L P_t F \ d\mu \tag{3.19}$$

and for F centered,

$$L^{-1}F = \int_0^\infty P_t F \ dt.$$
 (3.20)

*Proof.* From the Mehler formula, we see by dominated convergence that

$$P_t F(\omega) \xrightarrow[\text{w.p.1}]{t \to \infty} \int_{\mathcal{W}} F \, \mathrm{d}\mu.$$

In view of Lemma 3.3,

$$\int_{\mathcal{W}} P_t F(\omega) \, \mathrm{d}\mu(\omega) = \int_{\mathcal{W}^2} \bar{F}(R_t(\omega, y)) \, \mathrm{d}\mu(\omega) \, \mathrm{d}\mu(y)$$
$$= \int_{\mathcal{W}^2} \bar{F}(\omega, y) \, \mathrm{d}\mu(\omega) \, \mathrm{d}\mu(y) = \int_{\mathcal{W}} F(\omega) \, \mathrm{d}\mu(\omega).$$

This proves the stationarity of  $\mu$ . Now, it comes from the chaos decomposition that

$$\frac{d}{dt}P_tF = -LP_tF,$$

hence

$$P_t F(\omega) - P_0 F(\omega) = -\int_0^t L P_t F(\omega) \, \mathrm{d}t.$$

Let t go to infinity to obtain (3.19). Eqn. (3.20) is a direct consequence of the chaos decomposition.

The Mehler formula shows that  $P_t F$  is a convolution operator and as such has some strong regularization properties.

**Theorem 3.13 (Regularization).** For  $F \in L^2(W \to \mathbb{R}; \mu)$ , for any t > 0,  $P_tF$  belongs to  $\cap_{k \ge 1} \mathbb{D}_{k,p}$ . Moreover,

$$\left\langle \nabla^{(k)} P_t F, h \right\rangle_{\mathcal{H}^{\otimes k}} = \left( \frac{e^{-t}}{\beta_t} \right)^k \int_{\mathcal{W}} F(e^{-t}\omega + \beta_t y) \, \delta^k h(y) \, d\mu(y).$$

*Proof.* We give the proof for k = 1. The general situation is obtained by induction. For  $F \in \mathcal{S}$ ,

$$\left\langle \nabla^{(k)} P_t F, h \right\rangle_{\mathcal{H}} = \left. \frac{d}{d\varepsilon} P_t F(\omega + \varepsilon h) \right|_{\varepsilon = 0}$$

3.3 Exercises

The trick is then to consider that the translation by h operates not on  $\omega$  but on  $y{:}$ 

$$\begin{split} P_t F(\omega + \varepsilon h) &= \int_{\mathcal{W}} F\left(e^{-t}(\omega + \varepsilon h) + \beta_t y\right) \, \mathrm{d}\mu(y) \\ &= \int_{\mathcal{W}} F\left(e^{-t}\omega + \beta_t (y + \frac{\varepsilon e^{-t}}{\beta_t}h)\right) \, \mathrm{d}\mu(y). \end{split}$$

According to the Cameron-Martin (Theorem 1.8),

$$P_t F(\omega + \varepsilon h) = \int_{\mathcal{W}} F(e^{-t}\omega + \beta_t y) \exp\left(\varepsilon \frac{e^{-t}}{\beta_t} \delta h - \frac{\varepsilon^2 e^{-2t}}{\beta_t^2} \|h\|_{\mathcal{H}}^2\right) \, \mathrm{d}\mu(y).$$

Since,

$$\left. \frac{d}{d\varepsilon} \left( \varepsilon \frac{e^{-t}}{\beta_t} \delta h - \frac{\varepsilon^2 e^{-2t}}{\beta_t^2} \|h\|_{\mathcal{H}}^2 \right) \right|_{\varepsilon=0} = \frac{e^{-t}}{\beta_t} \delta h,$$

the result follows by dominated convergence.

The main application of the properties of the Ornstein-Uhlenbeck operator are the Meyer inequalities which merely state that an equivalence of norm.

**Theorem 3.14 (Meyer inequalities).** For any p > 1 and any  $k \ge 1$ , there exist  $c_{p,k}$  and  $C_{p,k}$  such that for any  $F \in \mathbb{D}_{p,k}$ ,

$$c_{p,k} \mathbf{E}\left[\left\|\nabla^{(k)}F\right\|_{\mathcal{H}^{\otimes}k}^{p}\right]^{1/p} \leq \mathbf{E}\left[\left|(\mathbf{I}+L)^{k/2}F\right|^{p}\right] \leq C_{p,k} \mathbf{E}\left[\left\|\nabla^{(k)}F\right\|_{\mathcal{H}^{\otimes}k}^{p}\right]^{1/p}.$$

## 3.3 Exercises

**Exercise 3.1.** Consider the Brownian sheet W which is the centered Gaussian process indexed by  $[0,1]^2$  with covariance kernel

$$\mathbf{E}[W(t_1, t_2)W(s_1, s_2)] = s_1 \wedge t_1 \ s_2 \wedge t_2 := R(s, t).$$

Let  $(X_{ij}, 1 \le i, j \le N)$  a family of  $N^2$  independent and identically distributed random variables with mean 0 and variance 1. Define

$$S_N(s,t) = \frac{1}{N} \sum_{i=1}^{\lfloor Ns \rfloor} \sum_{j=1}^{\lfloor Nt \rfloor} X_{ij}.$$

1. Show that  $(S_N(s_1, s_2), S_N(t_1, t_2))$  converges to a Gaussian random vector of covariance matrix  $(B(x_1, x_2), B(x_1, t_2))$ 

$$\Gamma = \begin{pmatrix} R(s,s) \ R(s,t) \\ R(s,t) \ R(t,t) \end{pmatrix}$$



**Fig. 3.1** Simulation of a sample of  $S_N$ .

2. For 
$$F \in L^2(\mathcal{W} \to \mathbf{R}; \mu)$$
 and  $\omega \in \mathcal{W}$ , show that  

$$P_t F(\omega) = \mathbf{E} \left[ F \left( e^{-t} \omega + W(., \beta_t^2) \right) \right].$$