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POISSON SPACE
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4 Poisson space

4.1 Stochastic geometry

Definition 18. A configuration is a locally finite set of points of a set E: there
is a finite number of points in any bounded set. We denote NE as the set of
configurations of E.

Example 3 (Bernoulli Process).– The Bernoulli point process is a process based on a
finite set E = {x1, · · · , xn}. Each of these points is ON, independently of others and
with probability p. If we introduce A1, · · · , An random independent variables of Bernoulli
distribution with p parameter, we can write:

N =
nÿ

i=1
Ai”xi .

Table 4.1: On the left, the set E. In the middle and at right, two possible realisations.

In full (red), the ON points.

Example 4 (Binomial process).– The number of points is fixed to n and µ, a probability
measure on R

2 is given. According to µ, the atoms are drawn randomly independent of
each other.

We can easily calculate that

P(N(A) = k) =
A

n

k

B

µ(A)k(1 ≠ µ(A))n≠k

and for the disjoint sets A1, · · · , An

P(N(A1) = k1, · · · , N(An) = kn) =
(k1 + . . . + kn)!

k1! . . . kn! µ(A1)k1 . . . µ(An)kn . (4.1)

4.2 Poisson process

The point process, mathematically the richest, is the spatial Poisson process which we recog-
nise as that which generalises the Poisson process on the real line.
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4.2 Poisson process

Definition 19. Let µ be a Radon measure on a Polish space E that is µ(�) < Œ
for every compact set � µ E. The Poisson process with intensity µ is defined by its
Laplace transform: for any function f : E æ R

+,

E

5
exp(≠

⁄
f dN)

6
= exp

3
≠

⁄

E
(1 ≠ e≠f(s))dµ(s)

4
.

To clarify that the intensity measure is µ, we will often index the expectation by µ.
From the definition of a Poisson process, we immediately infer the Campbell formula by
di�erentiation.

Theorem 44 (Campbell Formula). Let f œ L1(E, µ),

Eµ

5⁄
f dN

6
=

⁄

E
f dµ

and if f œ L2(E ◊ E, µ ¢ µ), then

Eµ

S

U
ÿ

x ”=yœN

f(x, y)
T

V =
⁄⁄

E◊E
f(x, y) dµ(x) dµ(y).

Particularly, for f = 1A where A is a compact of E, we note that E [N(A)] = µ(A). If
µ = ⁄ dx, then ⁄ represents the average number of customers per unit area. An alternative
definition is as follows:

Theorem 45. Let µ be a Radon measure on a Polish space E. The Poisson process
with intensity µ is the probability measure on NE such that:

• For every compact set � µ E, N(�) follows a Poisson distribution with
parameter µ(�).

• For �1 and �2 two disjoint subsets of (E, B(E)), the random variables N(�1)
and N(�2) are independent.

From this second definition, we immediately deduce the result of the following result of
uniformity.

Theorem 46. Let N be a Poisson process with intensity µ. Let � µ E be a
compact set. Given that N(�) = n, the atoms are distributed according to a
binomial process for µ�(A) = µ(A fl �)/µ(�).
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4 Poisson space

Proof. Let A1, · · · , Am be a partition of � or (k1, · · · , km) such that k1 + . . . + km = n.

P(N(Ai) = ki, i = 1, · · · , m
---- N(�) = n)

= P(N(Ai) = ki, i = 1, · · · , m, N(�) = n)
P(N(�) = n)

= P(N(Ai) = ki, i = 1, · · · , m)
P(N(�) = n)

=
exp(≠ qm

i=1 µ(Ai))
rm

i=1
µ(Ai)ki

ki!
exp(≠µ(�))µ(�)n

n!

= n!
k1! . . . km!

mŸ

i=1

A
µ(Ai)
µ(�)

Bki

.

According to (4.1) for µ�, we see that, given the number of atoms in �, they are distributed
according to a binomial process.

Example 5.– The M/M/Œ queue is the queue with Poisson arrivals, independent
and identically distributed from exponential distribution service times, and an infinite
number of servers (without bu�er). It is initially a theoretical object which is particularly
simple to analyse and also a model to which we can compare other situations. Due to the
independence of the inter-arrivals and service time, according to the second characterisation
of Poisson processes, the process:

N =
ÿ

nØ1
”(Tn, Sn)

where Tn is the instant of nth arrival and Sn the nth service time, is a Poisson process
with dµ(t, x) = ⁄ dt ¢ µe≠µx dx intensity in E = R

+ ◊ R
+.

Time

Service time

t
Exit time of customer 2Exit time of customer t 3

The customers who are still in service at the time are those who correspond to the points
in the shaded trapezium.
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4.2 Poisson process

Table 4.2: A realisation of a Poisson process (on the left) and one of its thinning with

p = 2/3 (on the right). Filled circles correspond to kept points

We deduce that X(t), the number of busy servers at time t follows a Poisson distribution
with parameter

⁄ t

0

3⁄ Œ

t≠s
µe≠µx dx

4
⁄ds = ⁄

⁄ t

0
e≠µ(t≠s) ds = fl(1 ≠ e≠µt),

where fl = ⁄/µ. If the system is not empty at time 0, we must add X(t) the number
of initial customers still in service at time t. If X0 follows a Poisson distribution with
parameter fl0, the number of customers in service at time t follows a Poisson distribution
with parameter fl0e≠µt because each and every customer has a probability e≠µt of being still
in service and the total is thus the thinning of a Poisson random variable. In conclusion,
X(t) then follows a Poisson distribution with parameter fl + (fl0 ≠ fl)e≠µt. Irrespective of
the value of fl0, the stationary probability of X is a Poisson distribution with parameter fl.

Theorem 47. Let N1 and N2 be two independent Poisson processes with respective
intensities µ1 and µ2, their superposition N defined by:

⁄
f dN =

⁄
f dN1 +

⁄
f dN2 (4.2)

is a Poisson process with intensity µ1 + µ2.

Definition 20. Let N be a Poisson process with intensity µ and p : E ≠æ [0, 1].
The (µ, p)-thinned Poisson process is the process where an atom of the Poisson
process N in x is kept with probability p(x).

Theorem 48. A (µ, p)-thinned Poisson process is a Poisson process of intensity
µp defined by:

µp(A) =
⁄

A
p(x) dµ(x).

Theorem [21] is a special case of the displacement theorem.
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4 Poisson space

Definition 21. Let (�Õ, AÕ, P
Õ) be a probability space and (F, F) a Polish space.

A displacement is a measurable application � of �Õ ◊E ≠æ F such that the random
variables (�(ÊÕ, x), x œ E) are independent. For A œ F , we have

◊(x, A) = P
Õ(ÊÕ : �(ÊÕ, x) œ A).

Thus ◊(x, A) represents the probability that the point x is displaced in A. More math-
ematically, if we denote by �(ÊÕ, .)úµ the image measure of µ through the application
�(ÊÕ, .), we have:

EPÕ [�úµ(A)] = EPÕ

5⁄
1{�(ÊÕ, x)œA} dµ(x)

6

=
⁄

P
Õ(�(ÊÕ, x) œ A) dµ(x) =

⁄
◊(x, A) dµ(x).

This means that:
EPÕ

5⁄
1A d�úµ

6
=

⁄ ⁄

A
◊(x, dy) dµ(x).

Therefore, for a non-negative function f , we obtain:

EPÕ

5⁄
f d�úµ

6
=

⁄ ⁄
f(y)◊(x, dy) dµ(x). (4.3)

Definition 22. A displacement is said to be conservative when, for any compact
� µ E:

EPÕ [�úµ(�)] =
⁄

�

⁄

F
◊(x, dy) dµ(x) = µ(A).

This means that on average, the total mass of the point process is preserved.

Definition 23. Let � be a displacement such that
s

�
s

F e≠f(y)◊(x, dy) dµ(x) =
µ(A) and N be a point process, the displaced point process N� is defined by

N�(ÊÕ) =
ÿ

xœN

”�(ÊÕ, x).

Theorem 49. Let N be a Poisson process with intensity µ on E and � be a
conservative displacement from E to F . The process N� is a Poisson process with
intensity µ� defined by

µ�(A) =
⁄

E
◊(x, A) dµ(x).

Proof. First, assume that f has a compact support denoted by �. We know that given
N(�), the atoms of N are independent, distributed according to µ/µ(�). Therefore, we
can write

E

5
F exp(≠

⁄

�
dN)

6
=

Œÿ

n=0

e≠µ(�)µ(�)n

n!

⁄

En

nŸ

j=1
e≠f(xj) dµ(xj)

µ(�) ·
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4.2 Poisson process

According to the construction of N�, the random displacement is independent of N , thus,
we have

E

5
exp(≠

⁄
fdN�)

6
= EPÕ

S

U
Œÿ

n=0

e≠µ(�)

n!

⁄

En

nŸ

j=1
e≠f(�(ÊÕ, xj)) dµ(xj)

T

V

=
Œÿ

n=0

e≠µ(�)

n! EPÕ

S

U
⁄

En

nŸ

j=1
e≠f(�(ÊÕ, xj)) dµ(xj)

T

V .

By definition of a displacement, the random variables (�(ÊÕ, xj), j = 1, · · · , n) are
independent. By using (4.3),we obtain,

E

5
exp(≠

⁄
f dN�)

6
=

Œÿ

n=0

e≠µ(�)

n!

3
EPÕ

5⁄

E
e≠f(�(ÊÕ, x)) dµ(x)

64n

=
Œÿ

n=0

e≠µ(�)

n!

3⁄
e≠f dµ�

4n

= exp
3

≠µ(�) +
⁄

�

⁄

F
e≠f(y)◊(x, dy) dµ(x)

4
.

As � is conservative, we obtain

E

5
exp(≠

⁄
f dN�)

6
= exp

3
≠

⁄

F
(1 ≠ e≠f(y))

⁄

�
◊(x, dy) dµ(x)

4
,

so N ◊ is definitely a Poisson process with intensity µ�.

We obtain the general case for f , by truncation ( apply the previous result to f� = f1�)
and by a limit procedure (consider an increasing sequence of compacts (�n, n Ø 1) such
that fin�n = E. Note that the existence of such a sequence is ensured by the Polish
character of E.).

Proof of Theorem [21. ] We consider F = E fi � where � is an external point. With
probability p(x), the atom x stays in x, with the complementary probability, it is moved to
�. This displacement is conservative as we keep the same number of atoms. The restriction
at E of the process thus obtained is the thinning of the initial process. Theorem [21] is
then a direct consequence of Theorem [22].

By applying Theorem [22] to the function (x œ R
d ‘æ rx) where r œ R

+, we obtain a
scaling property which is very useful in many applications.

Corollary 50. Let N be a Poisson process with intensity µ on R
d. Let r > 0, N r

is the dilation of N process defined by

N (r) =
ÿ

xœN

”rx.

The process N r is a Poisson process with intensity µ(r) where µ(r)(A) = µ(A/r) for
any A œ B(E).
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4 Poisson space

Corollary 51. Let N be a Poisson process with intensity ⁄ dx on R
d. The process

of modules is independent of the process of arguments. The first is a Poisson
process with intensity 2⁄firdr, and the second is a Poisson process of intensity
(2fi)≠1

1[0, 2fi](◊) d◊.

Proof. Theorem [22] implies that

N̂ =
ÿ

xœN
”ÎxÎ, Arg(x)

is a Poisson process with ⁄r1[0, 2fi](◊) dr d◊ intensity. Hence, we have the result.

4.3 Stochastic analysis

Theorem 52 (Cameron-Martin theorem). Let N and N Õ be two point Poisson
processes, with respective intensity µ and µÕ. Let us assume that µÕ π µ and let us
denote p = dµÕ/ dµ. Let � be a compact of E. Moreover, if p belongs to L1(µ�),
then for every bounded function F , we have

E [F (N Õ
�)] = E

5
F (N�) exp

3⁄
ln p dN� +

⁄

�
(1 ≠ p) dµ

46
.

Proof. We verify this identity for the exponential functions F of the form exp(≠
s

f dN)
with f at compact support. On the basis of the definition [10],

E

5
exp(≠

⁄
fdN�) exp

3⁄

�
ln pdN� +

⁄
(1 ≠ p) dµ

46

= E

5
exp(≠

⁄
(f ≠ ln p) dN�)

6
exp(

⁄

�
(1 ≠ p) dµ)

= exp(≠
⁄

(1 ≠ exp(≠f + ln p)) dµ +
⁄

�
(1 ≠ p) dµ)

= exp(≠
⁄

�
(1 ≠ e≠f )p dµ)

= E [F (N Õ
�)] .

As a result, the measures on NE, PN Õ
�
, and R dPN� where

R = exp
3⁄

ln p dN� +
⁄

(1 ≠ p) dµ
4

have the same Laplace transform. Therefore, they are equal and the result follows for any
bounded function F .
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4.3 Stochastic analysis

In what follows, for a configuration ÷

÷ ü x =

Y
]

[
÷, if x œ ÷,

÷ fi {x}, if x ”œ ÷.

Similarly,

÷ ° x =

Y
]

[
÷\{x}, if x œ ÷,

÷, if x ”œ ÷.

As µ is assumed to be di�use E [N({x})] = µ({x}) = 0. Therefore, for fixed x, almost
surely, ÷ does not contain x. One of the essential formulas for the Poisson process is the
following.

Theorem 53 (Campbell-Mecke formula). Let N be a Poisson process with inten-
sity µ. For any random field F : NE ◊ E æ R such that

E

5⁄

E
|F (N, x)| dµ(x)

6
< Œ

then
E

5⁄

E
F (N, x) dµ(x)

6
= E

5⁄

E
F (N ° x, x) dN(x)

6
. (4.4)

Proof. According to the first definition of the Poisson process, for f with compact support
and � a compact E, for any t > 0,

E

5
exp(≠

⁄
(f + t1�) dN)

6
= exp(≠

⁄

E
1 ≠ e≠f(x)≠t1�(x) dµ(x)).

According to the theorem of derivation under the summation sign, on one hand, we have

d

dt
E

5
exp(≠

⁄
(f + t1�)dN)

6-----
t=0

= ≠E

5
e≠

s
f dN

⁄
1� dN

6

and on the other hand,

d

dt
exp(≠

⁄

E
1 ≠ e≠f(x)≠t1�(x) dµ(x))

-----
t=0

= ≠E

5⁄
e≠

s
f dN+f(x)

1�(x) dµ(x)
6

.

As
s

f dN ≠ f(x) =
s

f d(N ° x), (4.4) is true for functions of the form 1�e≠
s

f dN . We
admit that this is enough as far as the result is true for all the F functions such that both
the members are well defined.

Definition 24 (Discrete gradient). Let N be a Poisson process with intensity µ.
Let F : NE ≠æ R be a measurable function such that E [F 2] < Œ. We define
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4 Poisson space

DomD as the set of square integrable random variables such that

E

5⁄

E
|F (N ü x) ≠ F (N)|2 dµ(x)

6
< Œ.

For F œ Dom D, we set

DxF (N) = F (N ü x) ≠ F (N).

Example 6.– For example, for f deterministic belonging to L2(µ), F =
s

f dN belongs
to Dom D and DxF = f(x) because

F (N ü x) =
ÿ

yœNfi{x}
f(y) =

ÿ

yœN

f(y) + f(x).

Similarly, if F = maxyœN f(y) then

DxF (N) =

Y
]

[
0 if f(x) Æ F (N),
f(x) ≠ F if f(x) > F (N).

Definition 25 (Poisson divergence). We denote by Dom2 ”, the set of vector fields
such that

E

C3⁄

E
U(N ° x, x)( dN(x) ≠ dµ(x))

42D

< Œ.

Then, for such vector fields U ,

”U(N) =
⁄

E
U(N ° x, x)( dN(x) ≠ dµ(x)).

A consequence of Campbell-Mecke formula is the integration by parts formula.

Theorem 54 (Integration by parts for Poisson process). For F œ Dom D and any
U œ Dom2 ”,

E

5⁄

E
DxF (N) U(N, x) d‹(x)

6
= E [F (N) ”U(N)] .

Moreover, we have the analog to (2.14)

Corollary 55 (Skorohod isometry). For any U œ Dom2 ”,

E

Ë
”U2

È
= E

5⁄

E
U(N, x)2 dµ(x)

6
+ E

5⁄

E

⁄

E
DxU(N, y) DyU(N, x) dµ(x) dµ(y)

6
.

Let µ be a Radon measure on a Polish space E and � be a compact of E. We in-
troduce the Glauber-Poisson process, which is denoted by N�, whose dynamics is as
follows:
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4.3 Stochastic analysis

• N�(0) = ÷ œ N�,

• Each atom of ÷ has a life duration, independent of that of the other atoms, exponen-
tially distributed with parameter 1.

• Atoms are born at moments following a Poisson process with intensity µ(�). On its
appearance, each atom is localised independently from all the others according to
µ/µ(�). It is also assigned in an independent manner, a life duration exponentially
distributed with parameter 1.

Figure 4.1: Realisation of a trajectory of N�

�

Time0

N�(t)

t

At every instant, N�(t) is a configuration of E. We first observe that the total number
of atoms of N�(t) follows exactly the same dynamics as the number of busy servers in a
M/M/Œ queue with parameters µ(�) and 1.

Theorem 56 (Glauber process). Assume that N�(0) is a point Poisson process
with intensity ‹. At each instant t, the distribution of N�(t) is that of a Poisson
process with intensity e≠t‹� + (1 ≠ e≠t)µ� where ‹� is the restriction from ‹ to �.
Particularly, if ‹� = µ�, the distribution of N�(t) does not depend on t and is equal
to µ�. We denote Eµ� [X] as the expectation of a random variable X under this
induced probability.

Proof. For two disjoint parts A and B of �, by construction, the processes GA and GB are
independent and follow the same dynamics as that of a M/M/Œ queue with respective
parameters (µ(A), 1) and (µ(B), 1). The result follows from the properties of the M/M/Œ
queue established in example 5.

As all the sojourn time are exponentially distributed, N� is a Markov process with
values in NE. Far from the idea of developing the general theory of Markov pro-
cesses in the space of measures, we can study its infinitesimal generator and its semi
group.

Theorem 57. Let � be a compact of E. The infinitesimal generator of N� is given
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4 Poisson space

by

≠ L�F (N) =
⁄

�
(F (N ü x) ≠ F (N)) dµ(x)

+
⁄

(F (N ≠ ”x) ≠ F (N)) dN(x) (4.5)

for F bounded from N� into R.

Proof. We reason in the same way as that of the Markov process. At a time t, there
may be a either a death or a birth. At the time of a departure, we choose the uniformly
killed atom among the existing atoms. The death rate is thus ÷(�) and every atom has a
probability ÷(�)≠1 of being killed. Therefore, the transition ÷ toward ÷ ≠ ”x take place
at rates of 1 for any x œ ÷. The birth rate is µ(�) and the position of the new atom is
distributed according to the measure µ�/µ(�) so the transition ÷ toward ÷ ü x occurs at
a rate dµ�(x) for each x œ �. From it, we deduce (4.5).

Theorem 58 (Ergodicity). The semi-group P� is ergodic. Moreover, L� is invert-
ible from L2

0 in L2
0 where L2

0 is the subspace of L2 of the random variables with null
expectation and we have

L≠1
� F =

⁄ Œ

0
P�

t F dt. (4.6)

For any x œ E and any t > 0,

DxP
�
t F = e≠tP�

t DxF. (4.7)

In addition,

Eµ�

5⁄

�
|Dx(L≠1

� F (N))|2 dµ(x)
6

Æ Eµ�

5⁄

�
|DxF (N)|2 dµ(x)

6
. (4.8)

Proof. Denote (x1, · · · , xn) the atoms of N�(0) and (Y1, · · · , Yn) some independent
random variables exponentially distributed with parameter 1. We set

N�(0)[t] =
ÿ

i=1
1{YiØt}”xi ,

the measure consisting of the atoms of N�(0) surviving at time t. The distribution of
N�(t) is that of the independent sum of a Poisson process with intensity (1 ≠ e≠t)µ� and
of N�(0)[t]. According to Lemma 10.12, we know that for any F œ L1

E(1≠e≠t)µ� [F (N�)] = Eµ�

Ë
F (N�) exp(ln(1 ≠ e≠t)N(�) + e≠tµ(�))

È
.

Therefore, for any bounded function F and any ÷ œ N�, we have the following identity:

P�
t F (÷) = E

Ë
F (N�(t)) |N�(0) = ÷

È

= E

Ë
F (÷[t] + N�) exp(ln(1 ≠ e≠t)N(�) + e≠tµ(�))

È
. (4.9)
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4.3 Stochastic analysis

Set
R(t) = exp(ln(1 ≠ e≠t)N(�) + e≠tµ(�)).

On the one hand, we have R(t) Æ eµ(�) and on the other hand, according to definition
10.2, E [R(t)] = 1, and this for any t Ø 0. As N�(0) has a finite number of atoms, N�(0)[t]
almost surely tends toward the zero measure when t tends toward infinity . By dominated
convergence, we deduce that

P�
t F (÷) tæŒ≠≠≠æ Eµ� [F (N�)]

that is to say, P� is ergodic. The property (4.6) is a well-known relation between the
semi-group and infinitesimal generator. Formally, without worrying about the integral
convergence, we have

L�(
⁄ Œ

0
P�

t Fdt) =
⁄ Œ

0
L�P

�
t F dt

= ≠
⁄ Œ

0

d

dt
P�

t F dt

= F ≠ E [F ] = F

according to ergodicity of P� and as F is centered. Let N�(t, N�) denote the value of
N�(t) when the initial condition is N�. We can write

DxP
�F (t) = E

Ë
N�(t, N� ü x)

È
≠ E

Ë
N�(t, N�)

È
.

Let Yx be the life duration of the atom located in x. If Yx Ø t then the atom is still
alive at t, thus N�(t, N� ü x) = N�(t, N�) ü x. If the atom is already dead at t then
N�(t, N� ü x) = N�(t, N�). As Yx is by construction, independent of N� and N�, it is
legitimate to write

E

Ë
F (N�(t, N� ü x) | N�

È
≠ E

Ë
F (N�(t, N�) | N�

È

= E

Ë
1{YxØt}(F (N�(t, N� ü x)) ≠ F (N�(t, N�)) | N�

È

+E

Ë
1{YxÆt}(F (N�(t, N�)) ≠ F (N�(t, N�))) | N�

È

= e≠t
E

Ë
DxF (N�(t, N�))

È

hence we have the result. According to the representation (4.9) and Jensen’s inequality,
we see that ---P�

t F
---
2

Æ P�
t F 2. (4.10)

Therefore,
⁄

�
|Dx(L≠1

� F (N�))|2 dµ(x)

=
⁄

�
|Dx

⁄ Œ

0
P�

t F (N�) dt|2 dµ(x)

=
⁄

�
|
⁄ Œ

0
e≠tP�

t DxF (N�) dt|2 dµ(x)

Æ
⁄

�

⁄ Œ

0
e≠t|P�

t DxF (N�)|2 dt dµ(x)

Æ
⁄

�

⁄ Œ

0
e≠tP�

t |DxF (N�)|2 dt dµ(x)

=
⁄

�

⁄ Œ

0
e≠t

E

Ë
|DxF |2(N�(t)) |N�(0) = N�

È
dt dµ(x),
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4 Poisson space

where we have successively used equations (4.6) and (4.7), Jensen’s inequality and (4.10).
As N�(t) has the same distribution as N�(0) if this one is chosen as a Poisson process
with µ� intensity, when we take expectations of each side, we obtain the following identity:

Eµ�

5⁄

�
|Dx(L≠1

� F (N�))|2 dµ(x)
6

= Eµ�

5⁄

�

⁄ Œ

0
e≠t|DxF |2(N�(t)) dt dµ(x)

6

=
⁄

�

⁄ Œ

0
e≠t

Eµ�

Ë
|DxF |2(N�)

È
dt dµ(x)

= Eµ�

5⁄

�
|DxF (N�)|2 dµ(x)

6
.

Hence, we have the result.

Theorem 59 (Covariance identity). Let F and G be two functions belonging to
Dom D. The following identity is satisfied:

Eµ�

5⁄

�
DxF (N�) DxG(N�) dµ(x)

6
= Eµ� [F (N�)L�G(N�)] .

In particular, if G is centered

Eµ� [F (N�)G(N�)] = Eµ�

5⁄

�
DxF (N�) Dx(L≠1

� G)(N�) dµ(x)
6

. (4.11)

Proof. Let F and G belong to Dom D, according to (4.4) twice and the definition of L�,
we have

Eµ�

5⁄

�
DxF (N�) DxG(N�) dµ(x)

6

= Eµ�

5⁄

�
(F (N�) ≠ F (N� ≠ ”x))(G(N�) ≠ G(N� ≠ ”x)) dN�(x)

6

= Eµ� [G(N�)L�F ] + Eµ�

5⁄
G(N�)(F (N� ü x) ≠ F (N�)) dµ(x)

6

≠ Eµ�

5⁄
G(N� ≠ ”x)(F (N�) ≠ F (N� ≠ ”x)) dN�(x)

6

= Eµ� [G(N�)L�F (N�)] .

The result follows.

Theorem 60. Let N be a Poisson process with intensity µ on E and � be a
compact of E. Let F : N� æ R such that

DxF (N�) Æ —, (µ ¢ P) ≠ a.e. and
⁄

E
|DxF (N�)|2 dµ(x) Æ –2, P ≠ a.e..
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4.3 Stochastic analysis

For any r > 0, we have the following inequality

P(F (N�) ≠ E [F (N�)] > r) Æ exp
A

≠ r

2—
ln(1 + r—

–2 )
B

·

Proof. Let � be a compact of E, a bounded function F of zero expectation. According to
Theorem 10.17, we can write the following identities:

Eµ�

Ë
F (N�)e◊F (N�)

È
= Eµ�

5⁄
Dx(L≠1

� F (N�)) Dx(e◊F (N�)) dµ(x)
6

= Eµ�

5⁄

�
Dx(L≠1

� F (N�))(e◊DxF (N�) ≠ 1)e◊F (N�) dµ(x)
6

.

The function (x ‘æ (ex ≠ 1)/x) is continuously increasing on R; therefore, we have

Eµ�

Ë
F (N�)e◊F (N�)

È

= ◊ Eµ�

C⁄

�
Dx(L≠1

� F (N�)) DxF (N�) e◊DxF (N�) ≠ 1
◊DxF (N�) e◊F (N�) dµ(x)

D

Æ ◊–2 e◊— ≠ 1
◊—

Eµ�

Ë
e◊F (N�)

È
.

.

This implies that
d

d◊
log Eµ�

Ë
e◊F (N�)

È
Æ –2 e◊— ≠ 1

—
·

Therefore,

Eµ�

Ë
e◊F (N�)

È
Æ exp

A
–2

—

⁄ ◊

0
(e—u ≠ 1) du

B

.

For x > 0, for any ◊ > 0,

P(F (N�) > x) = P(e◊F (N�) > e◊x)

Æ e≠◊x
E

Ë
e◊F (N�)

È
Æ e≠◊x exp

A
–2

—

⁄ ◊

0
(e—u ≠ 1)du

B

. (4.12)

This result is true for any ◊, so we can optimise with respect to ◊. At fixed x , we search the
value of ◊ which cancels the derivative of the right-hand-side with respect to ◊. Plugging
this value into (4.12), we can obtain the result.
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