CHAPTER 4

POISSON SPACE
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4 POISSON SPACE

4.1 Stochastic geometry

Definition 18. A configuration is a locally finite set of points of a set E: there
is a finite number of points in any bounded set. We denote D1 as the set of
configurations of F.

ExAMPLE 3 (Bernoulli Process).— The Bernoulli point process is a process based on a
finite set £ = {xq, -+, x,}. Each of these points is ON, independently of others and
with probability p. If we introduce Ay, ---, A, random independent variables of Bernoulli
distribution with p parameter, we can write:

Table 4.1: On the left, the set £. In the middle and at right, two possible realisations.

In full (red), the ON points.

EXAMPLE 4 (Binomial process).— The number of points is fixed to n and pu, a probability
measure on R? is given. According to u, the atoms are drawn randomly independent of
each other.

We can easily calculate that

and for the disjoint sets Ay, -+, A,

P(N(A) =&y, , N(A,) = k,) =
(By+ ...+ k)]
Fol. ke

W(ADR (A (41)

4.2 Poisson process

The point process, mathematically the richest, is the spatial Poisson process which we recog-
nise as that which generalises the Poisson process on the real line.
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4.2 POISSON PROCESS

Definition 19. Let u be a Radon measure on a Polish space E that is p(A) < oo
for every compact set A C E. The Poisson process with intensity pu is defined by its
Laplace transform: for any function f : F — R™,

E {exp(—/f dN)} = exp (— /E(l — e_f(s))du(s)) :

\ 7

To clarify that the intensity measure is p, we will often index the expectation by pu.
From the definition of a Poisson process, we immediately infer the Campbell formula by
differentiation.

r

Theorem 44 (Campbell Formula). Let f € L'(E, u),

B[ ran] = [ 7au

and if f € L?(E x E, @ ), then

E,

> f y>] = [ f(@.y) duz) duly).

T#YyeN

\

Particularly, for f = 14 where A is a compact of E, we note that E[N(A)] = u(A). If
i = A dzx, then X represents the average number of customers per unit area. An alternative
definition is as follows:

r

Theorem 45. Let u be a Radon measure on a Polish space E. The Poisson process
with intensity p is the probability measure on g such that:

o For every compact set A C E, N(A) follows a Poisson distribution with
parameter ((A).

o For A; and A, two disjoint subsets of (E, B(E)), the random variables N(A;)
and N(Ay) are independent.

\

From this second definition, we immediately deduce the result of the following result of
uniformity.

Theorem 46. Let N be a Poisson process with intensity u. Let A C E be a
compact set. Given that N(A) = n, the atoms are distributed according to a
binomial process for px(A) = u(ANA)/u(A).
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4 POISSON SPACE

Proof. Let Ay,---, A, be a partition of A or (ky,---, ky,) such that ky + ... + k,, = n.

P(N(A) =k, i=1,---,m|N(A) =n)
P(N(A) =k, i=1,---,m, N(A) = n)

P(N(A) = n)
P(N(A) =n)
(Az‘)kz

exp(— 2% p(A:) 1
eXp( (A))“(A
(

- kl 1]( <A>>

According to (4.1) for pa, we see that, given the number of atoms in A, they are distributed
according to a binomial process. O]

ExXAMPLE 5.— The M/M/oco queue is the queue with Poisson arrivals, independent
and identically distributed from exponential distribution service times, and an infinite
number of servers (without buffer). It is initially a theoretical object which is particularly
simple to analyse and also a model to which we can compare other situations. Due to the
independence of the inter-arrivals and service time, according to the second characterisation
of Poisson processes, the process:

N =23 o, s

n>1

where T, is the instant of nth arrival and S,, the nth service time, is a Poisson process
with du(t,z) = X dt ® ue™* dz intensity in E = R*T x R™.

Service time

Ny Ny

‘ Time

Exit time of clstmiem® of customer t 3

The customers who are still in service at the time are those who correspond to the points
in the shaded trapezium.
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4.2 POISSON PROCESS
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Table 4.2: A realisation of a Poisson process (on the left) and one of its thinning with

p =2/3 (on the right). Filled circles correspond to kept points

We deduce that X (t), the number of busy servers at time ¢ follows a Poisson distribution
with parameter

/Ot ( too pe He dx) Ads = )\/Ot e =) ds = p(1 — e M),
where p = A/p. If the system is not empty at time 0, we must add X (¢) the number
of initial customers still in service at time t. If X, follows a Poisson distribution with
parameter pg, the number of customers in service at time ¢ follows a Poisson distribution
with parameter ppe ™ because each and every customer has a probability e #* of being still
in service and the total is thus the thinning of a Poisson random variable. In conclusion,
X () then follows a Poisson distribution with parameter p + (pg — p)e . Irrespective of
the value of py, the stationary probability of X is a Poisson distribution with parameter p.

Theorem 47. Let N' and N? be two independent Poisson processes with respective
intensities ! and 2, their superposition N defined by:

/de:/de1+/de2 (4.2)

is a Poisson process with intensity p! + p?.

Definition 20. Let N be a Poisson process with intensity p and p : £ — [0, 1].
The (u, p)-thinned Poisson process is the process where an atom of the Poisson
process N in z is kept with probability p(z).

Theorem 48. A (1, p)-thinned Poisson process is a Poisson process of intensity
tt, defined by:

i(4) = [ pla) du(a).

Theorem [21] is a special case of the displacement theorem.
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4 POISSON SPACE

Definition 21. Let (€, A’, P’) be a probability space and (F, F) a Polish space.
A displacement is a measurable application © of ' x E — F such that the random
variables (O(w', x), © € E) are independent. For A € F, we have

O(z, A) =P (W : O, z) € A).

Thus 6(x, A) represents the probability that the point z is displaced in A. More math-
ematically, if we denote by ©(w’, .)*u the image measure of p through the application
O(w', .), we have:

Ep/ [0"u(A)] = Ep/ [/ (o, 2)eA} dﬂ(x)]
—/P’ (W', 2) € A) du(z /QxAdu()

Ep/ /1,4 d@*,u} ://A@(x, dy) du(z).

Therefore, for a non-negative function f, we obtain:

B | [ 07| = [ [ )bt dy) dp(a). (4.3)

This means that:

Definition 22. A displacement is said to be conservative when, for any compact

ACE:
Ep [O%u(A // z, dy) du(z) = p(A).

This means that on average, the total mass of the point process is preserved.

Definition 23. Let © be a displacement such that [, [ef®0(x, dy) du(z) =
p(A) and N be a point process, the displaced point process N© is defined by

© w') = Z 5@(“,/733).

zeN

Theorem 49. Let N be a Poisson process with intensity g on E and © be a
conservative displacement from E to F. The process N© is a Poisson process with
intensity x® defined by

KO(A) = [ 0, A) dp(x).

Proof. First, assume that f has a compact support denoted by A. We know that given
N(A), the atoms of N are independent, distributed according to p/u(A). Therefore, we
can write

00 w(A)

E[Femx—[;dNﬂ::E:

n=0

(z;) (xj)
u /nne f(A)
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4.2 POISSON PROCESS

According to the construction of N©, the random displacement is independent of N, thus,
we have

E [exp(—/fd]\f@)] = Ep/

n:

0 e—u(A) noo e
> /n [ /O« =) dﬂ(xj)]
n=0 j=1

—p(

e T o—OW2)) g
— , - W'z ) )
> e[ I pla;)

By definition of a displacement, the random variables (©(«w', z;),j = 1, ---, n) are
independent. By using (4.3),we obtain,

B [exp(—/f dN@)] _ ge;m) (EP’ /Ee*f(@(w',x)) du(z)])n

oo —pu(A) n
- ([ )
n

n=0

= exp <—u(A) —I—/A/Fe_f(y)ﬁ(x, dy) d,u(x)) :

As © is conservative, we obtain

Eexp(— [ £ dN®)| =exp (= [(1= ) [ bz, dy) dp())
F A
so NY is definitely a Poisson process with intensity u®.

We obtain the general case for f, by truncation ( apply the previous result to fy = f14)
and by a limit procedure (consider an increasing sequence of compacts (A,, n > 1) such
that U,A,, = E. Note that the existence of such a sequence is ensured by the Polish
character of E.). O

Proof of Theorem [21. | We consider F' = E U A where A is an external point. With
probability p(x), the atom x stays in z, with the complementary probability, it is moved to
A. This displacement is conservative as we keep the same number of atoms. The restriction
at E of the process thus obtained is the thinning of the initial process. Theorem [21] is
then a direct consequence of Theorem [22]. O

By applying Theorem [22] to the function (x € R? — rz) where r € R*, we obtain a
scaling property which is very useful in many applications.

Corollary 50. Let N be a Poisson process with intensity p on R%. Let r > 0, N"
is the dilation of NV process defined by

N™ — Z Sr-
zeN

The process N™ is a Poisson process with intensity p™ where u(™(A) = u(A/r) for
any A € B(E).
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4 POISSON SPACE

Corollary 51. Let N be a Poisson process with intensity A dz on R%. The process
of modules is independent of the process of arguments. The first is a Poisson
process with intensity 2A7rdr, and the second is a Poisson process of intensity
(271’)711[07%-](9) dé.

Proof. Theorem [22] implies that

N =3 djja, Arg(a)

zeN

is a Poisson process with A\r1jg 2q(0) dr df intensity. Hence, we have the result. O

4.3 Stochastic analysis

Theorem 52 (Cameron-Martin theorem). Let N and N’ be two point Poisson
processes, with respective intensity p and p/. Let us assume that p/ < p and let us
denote p = dy// du. Let A be a compact of E. Moreover, if p belongs to L' (1),
then for every bounded function F', we have

E[F(N,)]=E [F(NA) exp (/lnp dNy —|—/A(1 —p) dyﬂ .

Proof. We verify this identity for the exponential functions F' of the form exp(— [ f dN)
with f at compact support. On the basis of the definition [10],

E [exp(—/deA) exp (/A In pd Ny + /(1 —p) du)]
=E [exp(— (f —Inp) dNy) exp(/A(l —p) du)
—exp(— [(1—exp(—f +Inp) du+ [ (1-p) dp)

= exp(— /A(l — e )p dp)
=E[F(Ny)].

As a result, the measures on Ng, P N/ and R dPy, where

Rzexp(/lnpdNA—i-/(l—p) du)

have the same Laplace transform. Therefore, they are equal and the result follows for any
bounded function F' . O
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4.3 STOCHASTIC ANALYSIS

In what follows, for a configuration n

n, itz emn,
n&w= .
nU{z}, ifz &n.

Similarly,

As p is assumed to be diffuse E[N({z})] = p({z}) = 0. Therefore, for fixed z, almost
surely, 7 does not contain x. One of the essential formulas for the Poisson process is the
following.

Theorem 53 (Campbell-Mecke formula). Let N be a Poisson process with inten-
sity p. For any random field F' : 91 x E — R such that

E UE |F(N, z)| du(x)} < 0

then
E UE F(N, z) du(w)} _E UE F(N ez, z) dN(z)| . (4.4)

Proof. According to the first definition of the Poisson process, for f with compact support
and A a compact E, for any ¢t > 0,

E [exp(— /(f +1t1,) dN)] = eXp(—/E 1 — e 7@~ qy(z)).

According to the theorem of derivation under the summation sign, on one hand, we have

dt

iE [exp(—/(f—i—tlA)dN)} =—-E [e—fde/lA dN]

t=0
and on the other hand,
d
pr exp(— g 1 —e /@1 @ qu(z))| =-E U e_fdeJ“f(x)lA(:v) d,u(x)] :
=0

As [ fdAN — f(x) = [ f d(N © ), (4.4) is true for functions of the form Lae 7V We
admit that this is enough as far as the result is true for all the F' functions such that both
the members are well defined. O

Definition 24 (Discrete gradient). Let N be a Poisson process with intensity p.
Let F' : 9z — R be a measurable function such that E[F?] < co. We define
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4 POISSON SPACE

DomD as the set of square integrable random variables such that
E [/ IF(N & z) — F(N)|? du(z)] < oo.
E

For F' € Dom D, we set

D,F(N) = F(N & z) — F(N).

.

J

EXAMPLE 6.— For example, for f deterministic belonging to L?(u), F = [ f dN belongs

to Dom D and D, F = f(z) because
FINoz)= > fly)=> f)+/f(.

yeNU{z} yeN

Similarly, if F' = max,en f(y) then

0 if f(z) < F(N),
flx)—F if f(x) > F(N).

Definition 25 (Poisson divergence). We denote by Doms d, the set of vector fields
such that

< Q.

E [(/E UNSz, z)(dN(z) — d,u(:v))>2

Then, for such vector fields U,

SU(N) = é UN oz, 2)( AN(z) — du(z)).

A consequence of Campbell-Mecke formula is the integration by parts formula.

Theorem 54 (Integration by parts for Poisson process). For F' € Dom D and any
U e DOHlQ 5,

E [ /E D,F(N) U(N,z) dv(z)| = E[F(N) sU(N)].

Moreover, we have the analog to (2.14)

Corollary 55 (Skorohod isometry). For any U € Dom, 9,

E [507] :E[ /E U(N,z)? du(x)] +E[ /E /E D.U(N,y) D,U(N, z) du(z) duly)| .

Let p be a Radon measure on a Polish space EF and A be a compact of E. We in-
troduce the Glauber-Poisson process, which is denoted by 91*, whose dynamics is as

follows:
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4.3 STOCHASTIC ANALYSIS

. ‘)IA(O) =nc ‘ﬁA,

o Each atom of 77 has a life duration, independent of that of the other atoms, exponen-
tially distributed with parameter 1.

o Atoms are born at moments following a Poisson process with intensity p(A). On its
appearance, each atom is localised independently from all the others according to
p/p(A). It is also assigned in an independent manner, a life duration exponentially
distributed with parameter 1.

0 t Time

At every instant, MA(¢) is a configuration of E. We first observe that the total number
of atoms of A (t) follows exactly the same dynamics as the number of busy servers in a
M/M/oo queue with parameters p(A) and 1.

Theorem 56 (Glauber process). Assume that 914(0) is a point Poisson process
with intensity v. At each instant ¢, the distribution of 91 (¢) is that of a Poisson
process with intensity e *vy + (1 — e™")ua where v, is the restriction from v to A.
Particularly, if v, = ua, the distribution of 91*(¢) does not depend on t and is equal
to up. We denote E,, [X] as the expectation of a random variable X under this
induced probability.

Proof. For two disjoint parts A and B of A, by construction, the processes & 4 and &g are
independent and follow the same dynamics as that of a M/M/oco queue with respective
parameters (1(A), 1) and (u(B), 1). The result follows from the properties of the M/M /oo
queue established in example 5. O]

As all the sojourn time are exponentially distributed, 9" is a Markov process with
values in 9Mg. Far from the idea of developing the general theory of Markov pro-
cesses in the space of measures, we can study its infinitesimal generator and its semi

group.

[ Theorem 57. Let A be a compact of E. The infinitesimal generator of 9" is given ]
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4 POISSON SPACE

by
— EAF(N) = /A (F(N @ ) — F(N)) du(z)
+ / (F(N —8,) — F(N)) dN(z) (4.5)

for I’ bounded from 91, into R.

Proof. We reason in the same way as that of the Markov process. At a time t, there
may be a either a death or a birth. At the time of a departure, we choose the uniformly
killed atom among the existing atoms. The death rate is thus n(A) and every atom has a
probability n(A)~! of being killed. Therefore, the transition n toward n — §, take place
at rates of 1 for any x € 1. The birth rate is pu(A) and the position of the new atom is
distributed according to the measure ps/u(A) so the transition n toward 1 @ x occurs at

a rate dua(z) for each z € A. From it, we deduce (4.5). O
Theorem 58 (Ergodicity). The semi-group B is ergodic. Moreover, £, is invert-
ible from L2 in L2 where L2 is the subspace of L? of the random variables with null
expectation and we have

el = / PAF dt. (4.6)
0
For any z € F and any t > 0,
DSPAF = e "BAD,F. (4.7)
In addition,
B, | [ 1D FIV)E du(@)] < By, | [ IDFNP dpta)|. (@8)

Proof. Denote (xy, --- , x,) the atoms of 9M*(0) and (Y;, ---,Y,,) some independent
random variables exponentially distributed with parameter 1. We set

mA<O>[t] = Z ]‘{Yz‘Zt}éiBw
=1

the measure consisting of the atoms of 91*(0) surviving at time t. The distribution of
A (t) is that of the independent sum of a Poisson process with intensity (1 —e™*)u, and
of 94(0)[t]. According to Lemma 10.12, we know that for any F € L*

E1—e-tpuy [F(NA)] = By [F(NA) exp(In(1 — e )N (A) + e~"u(A))] .
Therefore, for any bounded function F' and any n € 91, we have the following identity:
PLE () = B [FN (1) | Y(0) = 1]
=E [F(nlt] + Na) exp(In(1 — e ")N(A) + e7'u(A)] . (4.9)
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4.3 STOCHASTIC ANALYSIS

Set

R(t) = exp(In(1 — e )N(A) + e "u(A)).
On the one hand, we have R(t) < ¢*™ and on the other hand, according to definition
10.2, E[R(t)] = 1, and this for any ¢ > 0. As 9*(0) has a finite number of atoms, 91*(0)][¢]

almost surely tends toward the zero measure when ¢ tends toward infinity . By dominated
convergence, we deduce that

P (1) = By [F(N))

that is to say, ‘B? is ergodic. The property (4.6) is a well-known relation between the
semi-group and infinitesimal generator. Formally, without worrying about the integral
convergence, we have

e ( / T RdL) = / T e P F ar
0 0
oo A
[T iprpa
/0 dtmt
—F_E[F]=F

according to ergodicity of B* and as F is centered. Let M*(¢, Nj) denote the value of
9 (¢) when the initial condition is N,. We can write

DM (t) = E [N, Ny @ 2)| — E [N, Nyl

Let Y, be the life duration of the atom located in z. If Y, > t then the atom is still
alive at ¢, thus M4 (¢, Ny @ ) = M (¢, Np) @ x. If the atom is already dead at t then
MNA(t, Ny @ x) = MA(t, Ny). As Y, is by construction, independent of Ny and M4, it is
legitimate to write

E [F(N\(t, Na @ )| Na| — E [F(R (£, Na) | N2
= E [Liy,on (FOW (L, Ny @ ) — F((t, Ny)) | Ny
+E [Lp, < (FOU (£, Ny)) = F(RM (¢, N))) | Na
= ¢ 'E D, F(M(t, Ny))]

hence we have the result. According to the representation (4.9) and Jensen’s inequality,
we see that )
BrE| < LR (4.10)

Therefore,
1D PV dpla)
= [ip. [ TRV, def? du(e)
= [ 1] e B D (N i dp()
< /A /0 T e B D, PN dt dul)
g/A/OOO e P D, F(Ny)|? dt dp(z)

-, /OOO ¢ B ||D,FPOMN(6) | 4(0) = N dt du(a),
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4 POISSON SPACE

where we have successively used equations (4.6) and (4.7), Jensen’s inequality and (4.10).
As 914(t) has the same distribution as 9*(0) if this one is chosen as a Poisson process
with ps intensity, when we take expectations of each side, we obtain the following identity:

By || 1083 FOVA) P di(a)
=B, [ [T e D RO @) de dut)
= [ [T e B, [IDeF PN dt dn(a)

—E,, [ [ ID.FOWP da)].

Hence, we have the result.

Theorem 59 (Covariance identity). Let F' and G be two functions belonging to
Dom D. The following identity is satisfied:

By, | [ DeF(N) D.G(Ny) dia(w)| = By, [F(N2) EAG(VA)]

In particular, if G is centered

By, [F(N\G(No)] = By, | [ DaF(N) Da(E5'G)(N) du(e)] . (411)

Proof. Let F and G belong to Dom D, according to (4.4) twice and the definition of £4,
we have

By, | [ DF(Ny) D.G(N) dp(a)]
By | [ (F(N) = F(Na = 8.))(G(N2) = G(Ns = 6,)) ANy (@)

= Tua

— B, [G(Nn)&oF] + By, | [ GINA(F(Ny @) = F(N2)) duo)]

~ By, | [ GONy = 8.)(P(Ny) = F(Ns - 6)) ANy (o)
= By, [G(NA)EAF(Ny)] .-

The result follows. O

Theorem 60. Let N be a Poisson process with intensity u on E and A be a
compact of E/. Let F' : 91y — R such that

D,F(Ny) <8, (u®P)— ae. and / 1D, F(N))? dulz) < o2, P — ace..
E
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4.3 STOCHASTIC ANALYSIS

For any r > 0, we have the following inequality

P(F(Ny) —E[F(Ny)] > 1) <exp (— 2Tﬁln(l + Tﬂ)) .

a2

Proof. Let A be a compact of E/; a bounded function F' of zero expectation. According to
Theorem 10.17, we can write the following identities:

E,, [F(Ny)eT W] = E,, [ [ Da €31 F(NA) Do) dp(a)

— By, | [ Du X PN — )00 dp(a)

The function (z — (e* — 1)/z) is continuously increasing on R; therefore, we have

By, [F(Ny)e ]

69D1F(NA) -1

= 0By | [ DR ) D)

05_1
< a2 S
< fo 05

€9F(NA) d,u(x)}

E,, [eeF(NA)] ]

This implies that
<a'———

i10g E,, [eeF(NA)} < 5

do

Therefore,
2

E,, [eeF(NA)} < exp (% /00(63“ —1) du) .

For = > 0, for any 6 > 0,

P(F(Ny) > ) = P(e/FN0) 5 of)

042

0
S e—Hq:E [eeF(NA)} S 6_937 exp (BA (eﬁu — 1)du> . (412)

This result is true for any 6, so we can optimise with respect to 6. At fixed = , we search the
value of # which cancels the derivative of the right-hand-side with respect to 6. Plugging
this value into (4.12), we can obtain the result. ]
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