CHAPTER 4

POISSON SPACE

4.1 Stochastic geometry

Definition 18. A configuration is a locally finite set of points of a set E: there is a finite number of points in any bounded set. We denote \mathfrak{N}_E as the set of configurations of E.

EXAMPLE 3 (Bernoulli Process).— The Bernoulli point process is a process based on a finite set $E = \{x_1, \dots, x_n\}$. Each of these points is ON, independently of others and with probability p. If we introduce A_1, \dots, A_n random independent variables of Bernoulli distribution with p parameter, we can write:

$$N = \sum_{i=1}^{n} A_i \delta_{x_i}$$

Table 4.1: On the left, the set E. In the middle and at right, two possible realisations. In full (red), the ON points.

EXAMPLE 4 (Binomial process).– The number of points is fixed to n and μ , a probability measure on \mathbb{R}^2 is given. According to μ , the atoms are drawn randomly independent of each other.

We can easily calculate that

$$\mathbf{P}(N(A) = k) = \binom{n}{k} \mu(A)^k (1 - \mu(A))^{n-k}$$

and for the disjoint sets A_1, \cdots, A_n

$$\mathbf{P}(N(A_1) = k_1, \cdots, N(A_n) = k_n) =$$

$$\frac{(k_1 + \ldots + k_n)!}{k_1! \dots k_n!} \ \mu(A_1)^{k_1} \dots \mu(A_n)^{k_n}.$$
 (4.1)

4.2 Poisson process

The point process, mathematically the richest, is the spatial Poisson process which we recognise as that which generalises the Poisson process on the real line. **Definition 19.** Let μ be a Radon measure on a Polish space E that is $\mu(\Lambda) < \infty$ for every compact set $\Lambda \subset E$. The Poisson process with intensity μ is defined by its Laplace transform: for any function $f : E \to \mathbf{R}^+$,

$$\mathbf{E}\left[\exp(-\int f \, \mathrm{d}N)\right] = \exp\left(-\int_{E} (1 - e^{-f(s)}) \mathrm{d}\mu(s)\right).$$

To clarify that the intensity measure is μ , we will often index the expectation by μ . From the definition of a Poisson process, we immediately infer the Campbell formula by differentiation.

Theorem 44 (Campbell Formula). Let $f \in L^1(E, \mu)$, $\mathbf{E}_{\mu} \left[\int f \, \mathrm{d}N \right] = \int_E f \, \mathrm{d}\mu$ and if $f \in L^2(E \times E, \, \mu \otimes \mu)$, then $\mathbf{E}_{\mu} \left[\sum_{x \neq y \in N} f(x, \, y) \right] = \iint_{E \times E} f(x, \, y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y).$

Particularly, for $f = \mathbf{1}_A$ where A is a compact of E, we note that $\mathbf{E}[N(A)] = \mu(A)$. If $\mu = \lambda \, dx$, then λ represents the average number of customers per unit area. An alternative definition is as follows:

Theorem 45. Let μ be a Radon measure on a Polish space E. The Poisson process with intensity μ is the probability measure on \mathfrak{N}_E such that:

- For every compact set $\Lambda \subset E$, $N(\Lambda)$ follows a Poisson distribution with parameter $\mu(\Lambda)$.
- For Λ_1 and Λ_2 two disjoint subsets of $(E, \mathcal{B}(E))$, the random variables $N(\Lambda_1)$ and $N(\Lambda_2)$ are independent.

From this second definition, we immediately deduce the result of the following result of *uniformity*.

Theorem 46. Let N be a Poisson process with intensity μ . Let $\Lambda \subset E$ be a compact set. Given that $N(\Lambda) = n$, the atoms are distributed according to a binomial process for $\mu_{\Lambda}(A) = \mu(A \cap \Lambda)/\mu(\Lambda)$.

Proof. Let A_1, \dots, A_m be a partition of Λ or (k_1, \dots, k_m) such that $k_1 + \dots + k_m = n$.

$$\begin{aligned} \mathbf{P}(N(A_i) &= k_i, i = 1, \cdots, m \mid N(\Lambda) = n) \\ &= \frac{\mathbf{P}(N(A_i) = k_i, i = 1, \cdots, m, N(\Lambda) = n)}{\mathbf{P}(N(\Lambda) = n)} \\ &= \frac{\mathbf{P}(N(A_i) = k_i, i = 1, \cdots, m)}{\mathbf{P}(N(\Lambda) = n)} \\ &= \frac{\exp(-\sum_{i=1}^m \mu(A_i)) \prod_{i=1}^m \frac{\mu(A_i)^{k_i}}{k_i!}}{\exp(-\mu(\Lambda)) \frac{\mu(\Lambda)^n}{n!}} \\ &= \frac{n!}{k_1! \dots k_m!} \prod_{i=1}^m \left(\frac{\mu(A_i)}{\mu(\Lambda)}\right)^{k_i}. \end{aligned}$$

According to (4.1) for μ_{Λ} , we see that, given the number of atoms in Λ , they are distributed according to a binomial process.

EXAMPLE 5.- The $M/M/\infty$ queue is the queue with Poisson arrivals, independent and identically distributed from exponential distribution service times, and an infinite number of servers (without buffer). It is initially a theoretical object which is particularly simple to analyse and also a model to which we can compare other situations. Due to the independence of the inter-arrivals and service time, according to the second characterisation of Poisson processes, the process:

$$N = \sum_{n \ge 1} \delta_{(T_n, S_n)}$$

where T_n is the instant of *n*th arrival and S_n the *n*th service time, is a Poisson process with $d\mu(t, x) = \lambda \, \mathrm{d}t \otimes \mu e^{-\mu x} \, \mathrm{d}x$ intensity in $E = \mathbf{R}^+ \times \mathbf{R}^+$.

Exit time of clusting of customer t 3

The customers who are still in service at the time are those who correspond to the points in the shaded trapezium.

Table 4.2: A realisation of a Poisson process (on the left) and one of its thinning with p = 2/3 (on the right). Filled circles correspond to kept points

We deduce that X(t), the number of busy servers at time t follows a Poisson distribution with parameter

$$\int_0^t \left(\int_{t-s}^\infty \mu e^{-\mu x} \, \mathrm{d}x \right) \lambda \mathrm{d}s = \lambda \int_0^t e^{-\mu(t-s)} \, \mathrm{d}s = \rho(1 - e^{-\mu t}),$$

where $\rho = \lambda/\mu$. If the system is not empty at time 0, we must add X(t) the number of initial customers still in service at time t. If X_0 follows a Poisson distribution with parameter ρ_0 , the number of customers in service at time t follows a Poisson distribution with parameter $\rho_0 e^{-\mu t}$ because each and every customer has a probability $e^{-\mu t}$ of being still in service and the total is thus the thinning of a Poisson random variable. In conclusion, X(t) then follows a Poisson distribution with parameter $\rho + (\rho_0 - \rho)e^{-\mu t}$. Irrespective of the value of ρ_0 , the stationary probability of X is a Poisson distribution with parameter ρ .

Theorem 47. Let N^1 and N^2 be two independent Poisson processes with respective intensities μ^1 and μ^2 , their superposition N defined by:

$$\int f \, \mathrm{d}N = \int f \, \mathrm{d}N^1 + \int f \, \mathrm{d}N^2 \tag{4.2}$$

is a Poisson process with intensity $\mu^1 + \mu^2$.

Definition 20. Let N be a Poisson process with intensity μ and $p : E \longrightarrow [0, 1]$. The (μ, p) -thinned Poisson process is the process where an atom of the Poisson process N in x is kept with probability p(x).

Theorem 48. A (μ, p) -thinned Poisson process is a Poisson process of intensity μ_p defined by:

$$\mu_p(A) = \int_A p(x) \, \mathrm{d}\mu(x).$$

Theorem [21] is a special case of the displacement theorem.

Definition 21. Let $(\Omega', \mathcal{A}', \mathbf{P}')$ be a probability space and (F, \mathcal{F}) a Polish space. A displacement is a measurable application Θ of $\Omega' \times E \longrightarrow F$ such that the random variables $(\Theta(\omega', x), x \in E)$ are independent. For $A \in \mathcal{F}$, we have

$$\theta(x, A) = \mathbf{P}'(\omega' : \Theta(\omega', x) \in A).$$

Thus $\theta(x, A)$ represents the probability that the point x is displaced in A. More mathematically, if we denote by $\Theta(\omega', .)^*\mu$ the image measure of μ through the application $\Theta(\omega', .)$, we have:

$$\begin{aligned} \mathbf{E}_{\mathbf{P}'}\left[\Theta^*\mu(A)\right] &= \mathbf{E}_{\mathbf{P}'}\left[\int \mathbf{1}_{\{\Theta(\omega', x)\in A\}} \, \mathrm{d}\mu(x)\right] \\ &= \int \mathbf{P}'(\Theta(\omega', x)\in A) \, \mathrm{d}\mu(x) = \int \theta(x, A) \, \mathrm{d}\mu(x). \end{aligned}$$

This means that:

$$\mathbf{E}_{\mathbf{P}'}\left[\int \mathbf{1}_A \, \mathrm{d}\Theta^*\mu\right] = \int \int_A \theta(x, \, \mathrm{d}y) \, \mathrm{d}\mu(x).$$

Therefore, for a non-negative function f, we obtain:

$$\mathbf{E}_{\mathbf{P}'}\left[\int f \, \mathrm{d}\Theta^*\mu\right] = \int \int f(y)\theta(x, \, \mathrm{d}y) \, \mathrm{d}\mu(x). \tag{4.3}$$

Definition 22. A displacement is said to be conservative when, for any compact $\Lambda \subset E$:

$$\mathbf{E}_{\mathbf{P}'}\left[\Theta^*\mu(\Lambda)\right] = \int_{\Lambda} \int_{F} \theta(x, \, \mathrm{d}y) \, \mathrm{d}\mu(x) = \mu(A).$$

This means that on average, the total mass of the point process is preserved.

Definition 23. Let Θ be a displacement such that $\int_{\Lambda} \int_{F} e^{-f(y)} \theta(x, dy) d\mu(x) = \mu(A)$ and N be a point process, the *displaced* point process N^{Θ} is defined by

$$N^{\Theta}(\omega') = \sum_{x \in N} \delta_{\Theta(\omega', x)}.$$

Theorem 49. Let N be a Poisson process with intensity μ on E and Θ be a conservative displacement from E to F. The process N^{Θ} is a Poisson process with intensity μ^{Θ} defined by

$$\mu^{\Theta}(A) = \int_{E} \theta(x, A) \, \mathrm{d}\mu(x).$$

Proof. First, assume that f has a compact support denoted by Λ . We know that given $N(\Lambda)$, the atoms of N are independent, distributed according to $\mu/\mu(\Lambda)$. Therefore, we can write

$$\mathbf{E}\left[F\exp(-\int_{\Lambda} \mathrm{d}N)\right] = \sum_{n=0}^{\infty} \frac{e^{-\mu(\Lambda)}\mu(\Lambda)^n}{n!} \int_{E^n} \prod_{j=1}^n e^{-f(x_j)} \frac{\mathrm{d}\mu(x_j)}{\mu(\Lambda)} \cdot$$

According to the construction of N^{Θ} , the random displacement is independent of N, thus, we have

$$\mathbf{E}\left[\exp(-\int f \mathrm{d}N^{\Theta})\right] = \mathbf{E}_{\mathbf{P}'}\left[\sum_{n=0}^{\infty} \frac{e^{-\mu(\Lambda)}}{n!} \int_{E^n} \prod_{j=1}^n e^{-f(\Theta(\omega', x_j))} \mathrm{d}\mu(x_j)\right]$$
$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(\Lambda)}}{n!} \mathbf{E}_{\mathbf{P}'}\left[\int_{E^n} \prod_{j=1}^n e^{-f(\Theta(\omega', x_j))} \mathrm{d}\mu(x_j)\right].$$

By definition of a displacement, the random variables $(\Theta(\omega', x_j), j = 1, \dots, n)$ are independent. By using (4.3), we obtain,

$$\mathbf{E}\left[\exp(-\int f \, \mathrm{d}N^{\Theta})\right] = \sum_{n=0}^{\infty} \frac{e^{-\mu(\Lambda)}}{n!} \left(\mathbf{E}_{\mathbf{P}'}\left[\int_{E} e^{-f(\Theta(\omega',x))} \, \mathrm{d}\mu(x)\right]\right)^{n}$$
$$= \sum_{n=0}^{\infty} \frac{e^{-\mu(\Lambda)}}{n!} \left(\int e^{-f} \, \mathrm{d}\mu^{\Theta}\right)^{n}$$
$$= \exp\left(-\mu(\Lambda) + \int_{\Lambda} \int_{F} e^{-f(y)}\theta(x, \, \mathrm{d}y) \, \mathrm{d}\mu(x)\right).$$

As Θ is conservative, we obtain

$$\mathbf{E}\left[\exp(-\int f \, \mathrm{d}N^{\Theta})\right] = \exp\left(-\int_{F} (1 - e^{-f(y)}) \int_{\Lambda} \theta(x, \, \mathrm{d}y) \, \mathrm{d}\mu(x)\right),$$

so N^{θ} is definitely a Poisson process with intensity μ^{Θ} .

We obtain the general case for f, by truncation (apply the previous result to $f_{\Lambda} = f \mathbf{1}_{\Lambda}$) and by a limit procedure (consider an increasing sequence of compacts $(\Lambda_n, n \ge 1)$ such that $\cup_n \Lambda_n = E$. Note that the existence of such a sequence is ensured by the Polish character of E.).

Proof of Theorem [21.] We consider $F = E \cup \Delta$ where Δ is an external point. With probability p(x), the atom x stays in x, with the complementary probability, it is moved to Δ . This displacement is conservative as we keep the same number of atoms. The restriction at E of the process thus obtained is the thinning of the initial process. Theorem [21] is then a direct consequence of Theorem [22].

By applying Theorem [22] to the function $(x \in \mathbf{R}^d \mapsto rx)$ where $r \in \mathbf{R}^+$, we obtain a scaling property which is very useful in many applications.

Corollary 50. Let N be a Poisson process with intensity μ on \mathbf{R}^d . Let r > 0, N^r is the dilation of N process defined by

$$N^{(r)} = \sum_{x \in N} \delta_{rx}.$$

The process N^r is a Poisson process with intensity $\mu^{(r)}$ where $\mu^{(r)}(A) = \mu(A/r)$ for any $A \in \mathcal{B}(E)$.

Corollary 51. Let N be a Poisson process with intensity $\lambda \, dx$ on \mathbf{R}^d . The process of modules is independent of the process of arguments. The first is a Poisson process with intensity $2\lambda \pi r dr$, and the second is a Poisson process of intensity $(2\pi)^{-1} \mathbf{1}_{[0, 2\pi]}(\theta) \, d\theta$.

Proof. Theorem [22] implies that

$$\hat{N} = \sum_{x \in \mathbf{N}} \delta_{\|x\|, \operatorname{Arg}(x)}$$

is a Poisson process with $\lambda r \mathbf{1}_{[0,2\pi]}(\theta) \, \mathrm{d}r \, \mathrm{d}\theta$ intensity. Hence, we have the result.

4.3 Stochastic analysis

Theorem 52 (Cameron-Martin theorem). Let N and N' be two point Poisson processes, with respective intensity μ and μ' . Let us assume that $\mu' \ll \mu$ and let us denote $p = d\mu'/d\mu$. Let Λ be a compact of E. Moreover, if p belongs to $L^1(\mu_{\Lambda})$, then for every bounded function F, we have

$$\mathbf{E}\left[F(N'_{\Lambda})\right] = \mathbf{E}\left[F(N_{\Lambda})\exp\left(\int \ln p \, \mathrm{d}N_{\Lambda} + \int_{\Lambda}(1-p) \, \mathrm{d}\mu\right)\right].$$

Proof. We verify this identity for the exponential functions F of the form $\exp(-\int f \, dN)$ with f at compact support. On the basis of the definition [10],

$$\begin{split} \mathbf{E} \left[\exp(-\int f \mathrm{d}N_{\Lambda}) \exp\left(\int_{\Lambda} \ln p \mathrm{d}N_{\Lambda} + \int (1-p) \, \mathrm{d}\mu\right) \right] \\ &= \mathbf{E} \left[\exp(-\int (f - \ln p) \, \mathrm{d}N_{\Lambda}) \right] \exp(\int_{\Lambda} (1-p) \, \mathrm{d}\mu) \\ &= \exp(-\int (1 - \exp(-f + \ln p)) \, \mathrm{d}\mu + \int_{\Lambda} (1-p) \, \mathrm{d}\mu) \\ &= \exp(-\int_{\Lambda} (1 - e^{-f}) p \, \mathrm{d}\mu) \\ &= \mathbf{E} \left[F(N'_{\Lambda}) \right]. \end{split}$$

As a result, the measures on \mathfrak{N}_E , $\mathbf{P}_{N'_{\Lambda}}$, and $R \, \mathrm{d}\mathbf{P}_{N_{\Lambda}}$ where

$$R = \exp\left(\int \ln p \, \mathrm{d}N_{\Lambda} + \int (1-p) \, \mathrm{d}\mu\right)$$

have the same Laplace transform. Therefore, they are equal and the result follows for any bounded function F . $\hfill \square$

In what follows, for a configuration η

$$\eta \oplus x = \begin{cases} \eta, \text{ if } x \in \eta, \\ \eta \cup \{x\}, \text{ if } x \notin \eta. \end{cases}$$

Similarly,

$$\eta \ominus x = \begin{cases} \eta \setminus \{x\}, \text{ if } x \in \eta, \\ \eta, \text{ if } x \notin \eta. \end{cases}$$

As μ is assumed to be diffuse $\mathbf{E}[N(\{x\})] = \mu(\{x\}) = 0$. Therefore, for fixed x, almost surely, η does not contain x. One of the essential formulas for the Poisson process is the following.

Theorem 53 (Campbell-Mecke formula). Let N be a Poisson process with intensity μ . For any random field $F : \mathfrak{N}_E \times E \to \mathbf{R}$ such that

$$\mathbf{E}\left[\int_{E}|F(N,\,x)|\,\,\mathrm{d}\mu(x)\right]<\infty$$

then

$$\mathbf{E}\left[\int_{E} F(N, x) \, \mathrm{d}\mu(x)\right] = \mathbf{E}\left[\int_{E} F(N \ominus x, x) \, \mathrm{d}N(x)\right]. \tag{4.4}$$

Proof. According to the first definition of the Poisson process, for f with compact support and Λ a compact E, for any t > 0,

$$\mathbf{E}\left[\exp(-\int (f+t\mathbf{1}_{\Lambda}) \, \mathrm{d}N)\right] = \exp(-\int_{E} 1 - e^{-f(x)-t\mathbf{1}_{\Lambda}(x)} \, \mathrm{d}\mu(x)).$$

According to the theorem of derivation under the summation sign, on one hand, we have

$$\frac{d}{dt}\mathbf{E}\left[\exp(-\int (f+t\mathbf{1}_{\Lambda})\mathrm{d}N)\right]\Big|_{t=0} = -\mathbf{E}\left[e^{-\int f\,\mathrm{d}N}\int\mathbf{1}_{\Lambda}\,\mathrm{d}N\right]$$

and on the other hand,

$$\left. \frac{d}{dt} \exp\left(-\int_E 1 - e^{-f(x) - t\mathbf{1}_{\Lambda}(x)} \, \mathrm{d}\mu(x)\right) \right|_{t=0} = -\mathbf{E}\left[\int e^{-\int f \, \mathrm{d}N + f(x)} \mathbf{1}_{\Lambda}(x) \, \mathrm{d}\mu(x)\right].$$

As $\int f \, dN - f(x) = \int f \, d(N \ominus x)$, (4.4) is true for functions of the form $\mathbf{1}_{\Lambda} e^{-\int f \, dN}$. We admit that this is enough as far as the result is true for all the F functions such that both the members are well defined.

Definition 24 (Discrete gradient). Let N be a Poisson process with intensity μ . Let $F : \mathfrak{N}_E \longrightarrow \mathbf{R}$ be a measurable function such that $\mathbf{E}[F^2] < \infty$. We define DomD as the set of square integrable random variables such that

$$\mathbf{E}\left[\int_{E}|F(N\oplus x)-F(N)|^2\,\mathrm{d}\mu(x)\right]<\infty.$$

For $F \in \text{Dom } D$, we set

$$D_x F(N) = F(N \oplus x) - F(N).$$

EXAMPLE 6.– For example, for f deterministic belonging to $L^2(\mu)$, $F = \int f \, dN$ belongs to Dom D and $D_x F = f(x)$ because

$$F(N \oplus x) = \sum_{y \in N \cup \{x\}} f(y) = \sum_{y \in N} f(y) + f(x).$$

Similarly, if $F = \max_{y \in N} f(y)$ then

$$D_x F(N) = \begin{cases} 0 & \text{if } f(x) \le F(N), \\ f(x) - F & \text{if } f(x) > F(N). \end{cases}$$

Definition 25 (Poisson divergence). We denote by $\text{Dom}_2 \delta$, the set of vector fields such that

$$\mathbf{E}\left[\left(\int_E U(N\ominus x, x)(\mathrm{d}N(x) - \mathrm{d}\mu(x))\right)^2\right] < \infty.$$

Then, for such vector fields U,

$$\delta U(N) = \int_E U(N \ominus x, x) (\mathrm{d}N(x) - \mathrm{d}\mu(x)).$$

A consequence of Campbell-Mecke formula is the integration by parts formula.

Theorem 54 (Integration by parts for Poisson process). For $F \in \text{Dom } D$ and any $U \in \text{Dom}_2 \delta$,

$$\mathbf{E}\left[\int_{E} D_{x}F(N) \ U(N,x) \ \mathrm{d}\nu(x)\right] = \mathbf{E}\left[F(N) \ \delta U(N)\right]$$

Moreover, we have the analog to (2.14)

Corollary 55 (Skorohod isometry). For any
$$U \in \text{Dom}_2 \delta$$
,
 $\mathbf{E} \left[\delta U^2 \right] = \mathbf{E} \left[\int_E U(N,x)^2 \, d\mu(x) \right] + \mathbf{E} \left[\int_E \int_E D_x U(N,y) \, D_y U(N,x) \, d\mu(x) \, d\mu(y) \right].$

Let μ be a Radon measure on a Polish space E and Λ be a compact of E. We introduce the Glauber-Poisson process, which is denoted by \mathfrak{N}^{Λ} , whose dynamics is as follows:

- $\mathfrak{N}^{\Lambda}(0) = \eta \in \mathfrak{N}_{\Lambda},$
- Each atom of η has a life duration, independent of that of the other atoms, exponentially distributed with parameter 1.
- Atoms are born at moments following a Poisson process with intensity $\mu(\Lambda)$. On its appearance, each atom is localised independently from all the others according to $\mu/\mu(\Lambda)$. It is also assigned in an independent manner, a life duration exponentially distributed with parameter 1.

At every instant, $\mathfrak{N}^{\Lambda}(t)$ is a configuration of E. We first observe that the total number of atoms of $\mathfrak{N}^{\Lambda}(t)$ follows exactly the same dynamics as the number of busy servers in a $M/M/\infty$ queue with parameters $\mu(\Lambda)$ and 1.

Theorem 56 (Glauber process). Assume that $\mathfrak{N}^{\Lambda}(0)$ is a point Poisson process with intensity ν . At each instant t, the distribution of $\mathfrak{N}^{\Lambda}(t)$ is that of a Poisson process with intensity $e^{-t}\nu_{\Lambda} + (1 - e^{-t})\mu_{\Lambda}$ where ν_{Λ} is the restriction from ν to Λ . Particularly, if $\nu_{\Lambda} = \mu_{\Lambda}$, the distribution of $\mathfrak{N}^{\Lambda}(t)$ does not depend on t and is equal to μ_{Λ} . We denote $\mathbf{E}_{\mu_{\Lambda}}[X]$ as the expectation of a random variable X under this induced probability.

Proof. For two disjoint parts A and B of Λ , by construction, the processes \mathfrak{G}_A and \mathfrak{G}_B are independent and follow the same dynamics as that of a $M/M/\infty$ queue with respective parameters $(\mu(A), 1)$ and $(\mu(B), 1)$. The result follows from the properties of the $M/M/\infty$ queue established in example 5.

As all the sojourn time are exponentially distributed, \mathfrak{N}^{Λ} is a Markov process with values in \mathfrak{N}_E . Far from the idea of developing the general theory of Markov processes in the space of measures, we can study its infinitesimal generator and its semi group.

Theorem 57. Let Λ be a compact of E. The infinitesimal generator of \mathfrak{N}^{Λ} is given

by

$$-\mathfrak{L}_{\Lambda}F(N) = \int_{\Lambda} (F(N \oplus x) - F(N)) \, d\mu(x) + \int (F(N - \delta_x) - F(N)) \, dN(x) \quad (4.5)$$

for F bounded from \mathfrak{N}_{Λ} into **R**.

Proof. We reason in the same way as that of the Markov process. At a time t, there may be a either a death or a birth. At the time of a departure, we choose the uniformly killed atom among the existing atoms. The death rate is thus $\eta(\Lambda)$ and every atom has a probability $\eta(\Lambda)^{-1}$ of being killed. Therefore, the transition η toward $\eta - \delta_x$ take place at rates of 1 for any $x \in \eta$. The birth rate is $\mu(\Lambda)$ and the position of the new atom is distributed according to the measure $\mu_{\Lambda}/\mu(\Lambda)$ so the transition η toward $\eta \oplus x$ occurs at a rate $d\mu_{\Lambda}(x)$ for each $x \in \Lambda$. From it, we deduce (4.5).

Theorem 58 (Ergodicity). The semi-group \mathfrak{P}^{Λ} is ergodic. Moreover, \mathfrak{L}_{Λ} is invertible from L_0^2 in L_0^2 where L_0^2 is the subspace of L^2 of the random variables with null expectation and we have

$$\mathfrak{L}_{\Lambda}^{-1}F = \int_0^\infty \mathfrak{P}_t^{\Lambda}F \, \mathrm{d}t. \tag{4.6}$$

For any $x \in E$ and any t > 0,

$$D_x \mathfrak{P}_t^{\Lambda} F = e^{-t} \mathfrak{P}_t^{\Lambda} D_x F.$$
(4.7)

In addition,

$$\mathbf{E}_{\mu_{\Lambda}}\left[\int_{\Lambda} |D_x(\mathfrak{L}_{\Lambda}^{-1}F(N))|^2 \, \mathrm{d}\mu(x)\right] \le \mathbf{E}_{\mu_{\Lambda}}\left[\int_{\Lambda} |D_xF(N)|^2 \, \mathrm{d}\mu(x)\right].$$
(4.8)

Proof. Denote (x_1, \dots, x_n) the atoms of $\mathfrak{N}^{\Lambda}(0)$ and (Y_1, \dots, Y_n) some independent random variables exponentially distributed with parameter 1. We set

$$\mathfrak{N}^{\Lambda}(0)[t] = \sum_{i=1} \mathbf{1}_{\{Y_i \ge t\}} \delta_{x_i},$$

the measure consisting of the atoms of $\mathfrak{N}^{\Lambda}(0)$ surviving at time t. The distribution of $\mathfrak{N}^{\Lambda}(t)$ is that of the independent sum of a Poisson process with intensity $(1 - e^{-t})\mu_{\Lambda}$ and of $\mathfrak{N}^{\Lambda}(0)[t]$. According to Lemma 10.12, we know that for any $F \in L^1$

$$\mathbf{E}_{(1-e^{-t})\mu_{\Lambda}}\left[F(N_{\Lambda})\right] = \mathbf{E}_{\mu_{\Lambda}}\left[F(N_{\Lambda})\exp(\ln(1-e^{-t})N(\Lambda) + e^{-t}\mu(\Lambda))\right].$$

Therefore, for any bounded function F and any $\eta \in \mathfrak{N}_{\Lambda}$, we have the following identity:

$$\mathfrak{P}_{t}^{\Lambda}F(\eta) = \mathbf{E}\left[F(\mathfrak{N}^{\Lambda}(t)) \mid \mathfrak{N}^{\Lambda}(0) = \eta\right]$$
$$= \mathbf{E}\left[F(\eta[t] + N_{\Lambda})\exp(\ln(1 - e^{-t})N(\Lambda) + e^{-t}\mu(\Lambda))\right]. \quad (4.9)$$

 Set

$$R(t) = \exp(\ln(1 - e^{-t})N(\Lambda) + e^{-t}\mu(\Lambda)).$$

On the one hand, we have $R(t) \leq e^{\mu(\Lambda)}$ and on the other hand, according to definition 10.2, $\mathbf{E}[R(t)] = 1$, and this for any $t \geq 0$. As $\mathfrak{N}^{\Lambda}(0)$ has a finite number of atoms, $\mathfrak{N}^{\Lambda}(0)[t]$ almost surely tends toward the zero measure when t tends toward infinity. By dominated convergence, we deduce that

$$\mathfrak{P}_t^{\Lambda} F(\eta) \xrightarrow{t \to \infty} \mathbf{E}_{\mu_{\Lambda}} \left[F(N_{\Lambda}) \right]$$

that is to say, \mathfrak{P}^{Λ} is ergodic. The property (4.6) is a well-known relation between the semi-group and infinitesimal generator. Formally, without worrying about the integral convergence, we have

$$\mathfrak{L}_{\Lambda}(\int_{0}^{\infty}\mathfrak{P}_{t}^{\Lambda}F\,\mathrm{d}t) = \int_{0}^{\infty}\mathfrak{L}_{\Lambda}\mathfrak{P}_{t}^{\Lambda}F\,\mathrm{d}t$$
$$= -\int_{0}^{\infty}\frac{d}{dt}\mathfrak{P}_{t}^{\Lambda}F\,\mathrm{d}t$$
$$= F - \mathbf{E}\left[F\right] = F$$

according to ergodicity of \mathfrak{P}^{Λ} and as F is centered. Let $\mathfrak{N}^{\Lambda}(t, N_{\Lambda})$ denote the value of $\mathfrak{N}^{\Lambda}(t)$ when the initial condition is N_{Λ} . We can write

$$D_{x}\mathfrak{P}^{\Lambda}F(t) = \mathbf{E}\left[\mathfrak{N}^{\Lambda}(t, N_{\Lambda} \oplus x)\right] - \mathbf{E}\left[\mathfrak{N}^{\Lambda}(t, N_{\Lambda})\right]$$

Let Y_x be the life duration of the atom located in x. If $Y_x \ge t$ then the atom is still alive at t, thus $\mathfrak{N}^{\Lambda}(t, N_{\Lambda} \oplus x) = \mathfrak{N}^{\Lambda}(t, N_{\Lambda}) \oplus x$. If the atom is already dead at t then $\mathfrak{N}^{\Lambda}(t, N_{\Lambda} \oplus x) = \mathfrak{N}^{\Lambda}(t, N_{\Lambda})$. As Y_x is by construction, independent of N_{Λ} and \mathfrak{N}^{Λ} , it is legitimate to write

$$\begin{split} \mathbf{E} \left[F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda} \oplus x) \mid N_{\Lambda} \right] &- \mathbf{E} \left[F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda}) \mid N_{\Lambda} \right] \\ &= \mathbf{E} \left[\mathbf{1}_{\{Y_{x} \geq t\}} (F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda} \oplus x)) - F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda})) \mid N_{\Lambda} \right] \\ &+ \mathbf{E} \left[\mathbf{1}_{\{Y_{x} \leq t\}} (F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda})) - F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda}))) \mid N_{\Lambda} \right] \\ &= e^{-t} \mathbf{E} \left[D_{x} F(\mathfrak{N}^{\Lambda}(t, N_{\Lambda})) \right] \end{split}$$

hence we have the result. According to the representation (4.9) and Jensen's inequality, we see that

$$\left|\mathfrak{P}_{t}^{\Lambda}F\right|^{2} \leq \mathfrak{P}_{t}^{\Lambda}F^{2}.$$
(4.10)

Therefore,

$$\begin{split} \int_{\Lambda} |D_x(\mathfrak{L}_{\Lambda}^{-1}F(N_{\Lambda}))|^2 \, \mathrm{d}\mu(x) \\ &= \int_{\Lambda} |D_x \int_0^{\infty} \mathfrak{P}_t^{\Lambda}F(N_{\Lambda}) \, \mathrm{d}t|^2 \, \mathrm{d}\mu(x) \\ &= \int_{\Lambda} |\int_0^{\infty} e^{-t} \mathfrak{P}_t^{\Lambda} D_x F(N_{\Lambda}) \, \mathrm{d}t|^2 \, \mathrm{d}\mu(x) \\ &\leq \int_{\Lambda} \int_0^{\infty} e^{-t} |\mathfrak{P}_t^{\Lambda} D_x F(N_{\Lambda})|^2 \, \mathrm{d}t \, \mathrm{d}\mu(x) \\ &\leq \int_{\Lambda} \int_0^{\infty} e^{-t} \mathfrak{P}_t^{\Lambda} |D_x F(N_{\Lambda})|^2 \, \mathrm{d}t \, \mathrm{d}\mu(x) \\ &= \int_{\Lambda} \int_0^{\infty} e^{-t} \mathbf{E} \left[|D_x F|^2(\mathfrak{N}^{\Lambda}(t))| \, \mathfrak{N}^{\Lambda}(0) = N_{\Lambda} \right] \, \mathrm{d}t \, \mathrm{d}\mu(x), \end{split}$$

where we have successively used equations (4.6) and (4.7), Jensen's inequality and (4.10). As $\mathfrak{N}^{\Lambda}(t)$ has the same distribution as $\mathfrak{N}^{\Lambda}(0)$ if this one is chosen as a Poisson process with μ_{Λ} intensity, when we take expectations of each side, we obtain the following identity:

$$\begin{aligned} \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} |D_{x}(\mathfrak{L}_{\Lambda}^{-1}F(N_{\Lambda}))|^{2} d\mu(x) \right] \\ &= \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} \int_{0}^{\infty} e^{-t} |D_{x}F|^{2}(\mathfrak{N}^{\Lambda}(t)) dt d\mu(x) \right] \\ &= \int_{\Lambda} \int_{0}^{\infty} e^{-t} \mathbf{E}_{\mu_{\Lambda}} \left[|D_{x}F|^{2}(N_{\Lambda}) \right] dt d\mu(x) \\ &= \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} |D_{x}F(N_{\Lambda})|^{2} d\mu(x) \right]. \end{aligned}$$

Hence, we have the result.

Theorem 59 (Covariance identity). Let F and G be two functions belonging to Dom D. The following identity is satisfied:

$$\mathbf{E}_{\mu_{\Lambda}}\left[\int_{\Lambda} D_{x}F(N_{\Lambda}) D_{x}G(N_{\Lambda}) d\mu(x)\right] = \mathbf{E}_{\mu_{\Lambda}}\left[F(N_{\Lambda}) \mathfrak{L}_{\Lambda}G(N_{\Lambda})\right].$$

In particular, if G is centered

$$\mathbf{E}_{\mu_{\Lambda}}\left[F(N_{\Lambda})G(N_{\Lambda})\right] = \mathbf{E}_{\mu_{\Lambda}}\left[\int_{\Lambda} D_{x}F(N_{\Lambda}) D_{x}(\mathfrak{L}_{\Lambda}^{-1}G)(N_{\Lambda}) d\mu(x)\right].$$
(4.11)

Proof. Let F and G belong to Dom D, according to (4.4) twice and the definition of \mathfrak{L}_{Λ} , we have

$$\begin{split} \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} D_{x} F(N_{\Lambda}) D_{x} G(N_{\Lambda}) d\mu(x) \right] \\ &= \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} (F(N_{\Lambda}) - F(N_{\Lambda} - \delta_{x})) (G(N_{\Lambda}) - G(N_{\Lambda} - \delta_{x})) dN_{\Lambda}(x) \right] \\ &= \mathbf{E}_{\mu_{\Lambda}} \left[G(N_{\Lambda}) \mathfrak{L}_{\Lambda} F \right] + \mathbf{E}_{\mu_{\Lambda}} \left[\int G(N_{\Lambda}) (F(N_{\Lambda} \oplus x) - F(N_{\Lambda})) d\mu(x) \right] \\ &- \mathbf{E}_{\mu_{\Lambda}} \left[\int G(N_{\Lambda} - \delta_{x}) (F(N_{\Lambda}) - F(N_{\Lambda} - \delta_{x})) dN_{\Lambda}(x) \right] \\ &= \mathbf{E}_{\mu_{\Lambda}} \left[G(N_{\Lambda}) \mathfrak{L}_{\Lambda} F(N_{\Lambda}) \right]. \end{split}$$

The result follows.

Theorem 60. Let N be a Poisson process with intensity μ on E and Λ be a compact of E. Let $F : \mathfrak{N}_{\Lambda} \to \mathbf{R}$ such that

$$D_x F(N_\Lambda) \le \beta$$
, $(\mu \otimes \mathbf{P}) - \text{ a.e. and } \int_E |D_x F(N_\Lambda)|^2 d\mu(x) \le \alpha^2$, $\mathbf{P} - a.e.$.

For any r > 0, we have the following inequality

$$\mathbf{P}(F(N_{\Lambda}) - \mathbf{E}[F(N_{\Lambda})] > r) \le \exp\left(-\frac{r}{2\beta}\ln(1 + \frac{r\beta}{\alpha^2})\right)$$

Proof. Let Λ be a compact of E, a bounded function F of zero expectation. According to Theorem 10.17, we can write the following identities:

$$\begin{aligned} \mathbf{E}_{\mu_{\Lambda}} \left[F(N_{\Lambda}) e^{\theta F(N_{\Lambda})} \right] &= \mathbf{E}_{\mu_{\Lambda}} \left[\int D_{x}(\mathfrak{L}_{\Lambda}^{-1}F(N_{\Lambda})) D_{x}(e^{\theta F(N_{\Lambda})}) d\mu(x) \right] \\ &= \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} D_{x}(\mathfrak{L}_{\Lambda}^{-1}F(N_{\Lambda}))(e^{\theta D_{x}F(N_{\Lambda})} - 1)e^{\theta F(N_{\Lambda})} d\mu(x) \right]. \end{aligned}$$

The function $(x \mapsto (e^x - 1)/x)$ is continuously increasing on **R**; therefore, we have

$$\begin{split} \mathbf{E}_{\mu_{\Lambda}} \left[F(N_{\Lambda}) e^{\theta F(N_{\Lambda})} \right] \\ &= \theta \, \mathbf{E}_{\mu_{\Lambda}} \left[\int_{\Lambda} D_x (\mathbf{\mathfrak{L}}_{\Lambda}^{-1} F(N_{\Lambda})) \, D_x F(N_{\Lambda}) \, \frac{e^{\theta D_x F(N_{\Lambda})} - 1}{\theta D_x F(N_{\Lambda})} \, e^{\theta F(N_{\Lambda})} \, \mathrm{d}\mu(x) \right] \\ &\leq \theta \alpha^2 \, \frac{e^{\theta \beta} - 1}{\theta \beta} \, \mathbf{E}_{\mu_{\Lambda}} \left[e^{\theta F(N_{\Lambda})} \right]. \end{split}$$

This implies that

$$\frac{d}{d\theta} \log \mathbf{E}_{\mu_{\Lambda}} \left[e^{\theta F(N_{\Lambda})} \right] \le \alpha^2 \frac{e^{\theta \beta} - 1}{\beta} \cdot$$

Therefore,

$$\mathbf{E}_{\mu_{\Lambda}}\left[e^{\theta F(N_{\Lambda})}\right] \leq \exp\left(\frac{\alpha^{2}}{\beta}\int_{0}^{\theta}(e^{\beta u}-1) \,\mathrm{d}u\right).$$

For x > 0, for any $\theta > 0$,

$$\mathbf{P}(F(N_{\Lambda}) > x) = \mathbf{P}(e^{\theta F(N_{\Lambda})} > e^{\theta x})$$

$$\leq e^{-\theta x} \mathbf{E}\left[e^{\theta F(N_{\Lambda})}\right] \leq e^{-\theta x} \exp\left(\frac{\alpha^{2}}{\beta} \int_{0}^{\theta} (e^{\beta u} - 1) \mathrm{d}u\right). \quad (4.12)$$

This result is true for any θ , so we can optimise with respect to θ . At fixed x, we search the value of θ which cancels the derivative of the right-hand-side with respect to θ . Plugging this value into (4.12), we can obtain the result.