
Chapter 2

Wiener space

§ 1 Gaussian random variables

We begin by basic definitions about Gaussian random variables and vectors.

Definition 2.1 (Gaussian random variable). A real valued random variable X is
Gaussian whenever its characteristic function is of the form

E
Ë
e

itX
È

= e
itm

e
≠‡

2
t
2
/2

.

It is well known that E [X] = m and Var(X) = ‡
2.

This definition means that whenever we know that a random variable is Gaussian, it is
su�cient to compute its average and its variance to fully determine its distribution. A
Gaussian random vector is not simply a collection of Gaussian random variables. It is
true that all the coordinates of a Gaussian vector are Gaussian but they do satisfy a
supplementary condition. In what follows, the Euclidean scalar product on Rn is defined
by

Èx, yÍ =
nÿ

j=1

xjyj.

Definition 2.2 (Gaussian random vector). A random vector X in Rn, i.e. X =
(X1, · · · , Xn), is a Gaussian random vector whenever for any t = (t1, · · · , tn) œ Rn,
the real-valued random variable

Èt, XÍ =
nÿ

j=1

tjXj

is Gaussian.

In view of the remark following the definition 2.1, we have

E
Ë
e

iÈt, XÍ
È

= e
iÈt, mÍ

e
≠

1
2 È�X t, tÍ

, (2.1)

where
�X =

1
cov(Xj, Xk), 1 Æ j, k Æ n

2
.
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Chapter 2 Wiener space

is the so-called covariance matrix of X.

Remark.– Somehow hidden in the previous definition lies the identity

Var Èt, XÍ =
nÿ

i,j=1

cov(Xj, Xk)titj (2.2)

for any t = (t1, · · · , tn) œ Rn. Since a variance is always non-negative, this means that �X

satisfies the identity

È�Xt, tÍ =
nÿ

i,j=1

�X(i, j) titj Ø 0,

which induces that the eigenvalues of �X are non-negative.

The main feature of Gaussian vectors is that they are stable by a�ne transforma-
tion.

Theorem 2.1. Let X be an Rn-valued Gaussian vector, B œ Rp and A a linear
map (i.e. a matrix) from Rn into Rp. The random Y = AX + B is an Rp-valued
Gaussian vector whose characteristics are given by

E [Y ] = AE [X] + B, �Y = A�XA
t
,

where A
t is the transpose of A.

Remark.– If � is non-negative symmetric matrix, one can define �1/2, a symmetric non-
negative matrix whose square equals �. If X = (X1, · · · , Xn) is a vector of independent
standard Gaussian random variables, then the previous theorem entails that �1/2

X is a
Gaussian vector of covariance matrix �.

Beyond this stability by a�ne transformation, the set of Gaussian vectors enjoys another
remarkable stability property.

Theorem 2.2. Let (Xn, n Ø 1) be a sequence of Gaussian vectors which converges
in distribution to some random vector X. Then, X is a Gaussian vector and the
(�Xn

, n Ø 1) tends to �X .

Remark that for X ≥ N (0, In), a standard Gaussian vector in Rn,

E
Ë
ÎXÎ

2

Rn

È
=

nÿ

j=1

E
Ë
X

2

j

È
= n.

This means that the mean norm of such a random variable goes to infinity as the dimension
grows. Thus, we cannot construct a Gaussian distribution on an infinite dimensional space
like RN, by just extending what we do on Rn.
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§ 1 Gaussian random variables

The construction of measures on functional spaces is a delicate question which is satisfac-
tory solved (only) for Gaussian measures. Recall that a Brownian motion is defined as
follows.

Definition 2.3. The Brownian motion B = (B(t), t Ø 0) is the (unique) centered,
Gaussian process on R+ with independent increments such that

E [B(t)B(s)] = t · s.

Its sample-paths are Hölder continuous of any order strictly less than 1/2.

There are several possibilities to prove the existence of such a process. The most intuitive
is probably the Donsker-Lamperti theorem [Don51, Lam62].

Theorem 2.3 (Donsker-Lamperti). Let (Xn, n Ø 1) be a sequence of independent,
identically random variables such that E [|X1|

2p] < Œ. Then,

1
Ô

n

[nt]ÿ

j=1

Xj =∆ B(t)

in the topology of Hol(“) for any “ < (p ≠ 1)/2p, i.e.

E
S

UF

3 1
Ô

n

[n.]ÿ

j=1

Xj

4T

V næŒ
≠≠≠æ E [F (B)]

for any F : Hol(“) æ R bounded and continuous.
For p = 1, i.e. square integrable random variables, the convergence holds in
C([0, T ]; R) for any T > 0.

This means that the distribution of this process is a probability on either C or Hol(“) for
any “ < 1/2. However, the construction of the Brownian motion via the random walk
is not fully satisfactory as we cannot write B as the sum of a series. The construction
of Itô-Nisio is more interesting in this respect. We need to introduce a few functional
spaces before going further. In the sequel, we shall consider di�erent families of fractional
Sobolev spaces.

Definition 2.4 (Riemann-Liouville fractional spaces). For – > 0, for f œ L
2([0, 1]),

I
–
f(t) = 1

�(–)

⁄
t

0

(t ≠ s)–≠1
f(s) ds. (2.3)

The space I–,2 is the set I
–(L2[0, 1]) equipped with the scalar product

ÈI
–
f, I

–
gÍ

I–,2
= Èf, gÍ

L2 =
⁄

1

0

f(s)g(s) ds.

Since the map (f ‘æ I
–
f) is one-to-one (cf. [SKM93]), this defines a scalar product.
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Chapter 2 Wiener space

More generally, for p Ø 1, I–,1 is the space I
–(Lp) equipped with norm

ÎI
–
fÎI–,p

= ÎfÎLp .

Another useful scale of functions is the Slobodetzky family of fractional Sobolev spaces.

Definition 2.5 (Slobodetzky spaces). For – œ (0, 1] and p Ø 1, the space –,p is the
space of measurable functions over [0, 1] such that

ÎfÎ
p

–,p
:= ÎfÎ

p

Lp +
⁄⁄

[0,1]2

|f(t) ≠ f(s)|p
|t ≠ s|1+–p

ds dt < Œ.

These spaces are interesting essentially because of the following embeddings [SKM93].

Theorem 2.4. For any –
ÕÕ

> –
Õ
> – > 1/p, we have

I–ÕÕ,p µ W–Õ,p µ I–,p µ Hol(– ≠ 1/p) µ C.

Moreover, since polynomials belong to any I–,p and are dense in C, the space of
continuous functions on [0, 1], all these spaces are dense in C.

As a consequence, we retrieve easily the Kolmogorov lemma about the regularity of
Brownian sample-paths.

Lemma 2.5. For any – œ [0, 1/2) and any p Ø 1, the sample-paths of a Brownian
motion belong to W–,p with probability 1.

Proof. It is su�cient to prove that

E
C⁄⁄

[0,1]2

|B(t) ≠ B(s)|p
|t ≠ s|1+–p

ds dt

D

< Œ.

Since B(t) ≠ B(s) is a Gaussian random variable,

E [|B(t) ≠ B(s)|p] = cp E
Ë
|B(t) ≠ B(s)|2

È
p/2

= cp|t ≠ s|
p/2

.

The function (s, t) ‘≠æ |t ≠ s|
≠1+(1/2≠–)p is integrable provided that – < 1/2, hence the

result.

An alternative construction is due to Itô and Nisio [IN68]. Consider (ḣm, m Ø 0) a
complete orthonormal basis of L

2. By the very definition of the scalar product on H, this
entails that (hm = I

1
ḣm, m Ø 0) is a complete orthonormal basis of H. One may choose

the family given by:

h0(t) = t and hm(t) =
Ô

2
fim

sin(fimt) for m Ø 1.
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§ 1 Gaussian random variables

Then, consider the sequence of approximations given by

Sn(t) =
nÿ

m=0

Xm hm(t) (2.4)

where (Xm, m Ø 0) is a sequence of independent, standard Gaussian random variables. We
then have the following extension of the Itô-Nisio theorem.

Theorem 2.6. For any (–, p) such that 0 < –≠1/p < 1/2, the sequence (Sn, n Ø 1)
converges in –,p with probability 1. Moreover, the limit process, denoted by B, is
Gaussian, centered with covariance

E [B(t)B(s)] = min(t, s).

Hence B is distributed as a Brownian motion.

We first need a general lemma.

Lemma 2.7. Let

ÊM =
ÿ

m,nØM

ÎSn ≠ SmÎW÷,p
and TM = sup

nØM

ÎSn ≠ SMÎW÷,p
.

If (TM , M Ø 1) converges in probability to 0 then (Sn, n Ø 1) is convergent with
probability 1.

Proof. It is clear that
1
TM Æ ‘

2
=∆

1
ÊM Æ 2‘

2
,

hence
P(ÊM > 2‘) Æ P(TM > ‘).

If (TM , M Ø 1) converges in probability to 0, then so does (ÊM , M Ø 1). Consequently,
there is a subsequence which converges with probability 1 but ÊM is decreasing, hence the
whole sequence (ÊM , M Ø 1) converges to 0 with probability 1.

This means that (Sn, n Ø 1) is a.e. a Cauchy sequence in a complete Banach space, hence
is convergent.

Proof of Theorem 2.6. The Doob inequality for Banach valued martingales states that

E [T p

M
] Æ

p

p ≠ 1 sup
nØM

E
Ë
ÎSn ≠ SMÎ

p

W÷,p

È
. (2.5)
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Chapter 2 Wiener space

Since Sn ≠ SM is a Gaussian process

E
5----(Sn ≠ SM)(t) ≠ (Sn ≠ SM)(s)

----
p
6

= cpE
C----(Sn ≠ SM)(t) ≠ (Sn ≠ SM)(s)

----
2
D

p/2

= cpE
S

U
3 nÿ

m=M+1

Xm

1
hm(t) ≠ hm(s)

24
2

T

V
p/2

.

Since the Xm’s are independent with unit variance,

E
S

U
3 nÿ

m=M+1

Xm

1
hm(t) ≠ hm(s)

24
2

T

V =
nÿ

m=M+1

1
hm(t) ≠ hm(s)

2
2

. (2.6)

The trick is to note that

hm(t) = Èḣm, 1[0,t]ÍL2 = Èhm, t · .ÍH.

This means that the right-hand-side of (2.6) is the Cauchy remainder of the series
Œÿ

m=0

Èhm, t · . ≠ s · .Í
2

H
= Ît · . ≠ s · .Î

2

H
= |t ≠ s|,

according to the Parseval identity. Since ÷ < 1/2,
⁄

[0,1]2
|t ≠ s|

p/2
|t ≠ s|

≠1≠÷p ds dt =
⁄

2

[0,1

|t ≠ s|
≠1+(1/2≠÷)p ds dt < Œ.

It follows that

sup
nØM

E
Ë
ÎSn ≠ SMÎ

p

W÷,p

È

Æ cp

⁄
2

[0,1]

3 Œÿ

m=M+1

Èhm, t · . ≠ s · .Í
2

H

4
p/2

|t ≠ s|
≠1≠÷p ds dt

MæŒ
≠≠≠≠æ 0,

by the dominated convergence theorem. The result follows from (2.5), the Markov
inequality and Lemma 2.7.

We mentioned in Theorem 2.2 that the limit of Gaussian vectors are automatically Gaussian,
the same holds similarly for Gaussian processes hence the limit of Sn is a Gaussian process,
which we denote by B.

We have

E [B(t)B(s)] = E
C

Œÿ

m=0

XmÈhm, t · .ÍH ◊

Œÿ

mÕ=0

XmÕÈhmÕ , s · .ÍH

D

= E
C

Œÿ

m=0

X
2

m
Èhm, t · .ÍHÈhm, s · .ÍH

D

=
Œÿ

m=0

Èhm, t · .ÍHÈhm, s · .ÍH

= Èt · ., s · .ÍH,
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§ 1 Gaussian random variables

according to the Parseval equality. The very definition of the scalar product on H entails
that

Èt · ., s · .ÍH =
⁄

1

0

1[0,t](r)1[0,s](r) dr = t · s.

Several other constructions as limit of stochastic processes lead to a Brownian motion.
As a conclusion of these theorems, it appears that the distribution of B is a probability
measure on the Banach spaces C([0, 1]; R), Hol(“) or W–,p. Now, if we reverse the problem,
how can we characterize a probability measure on, say, C([0, 1]; R)? How do we determine
that it coincides with the Brownian motion distribution?

In finite dimension, a probability measure is characterized by its Fourier transform, often
called its characteristic function. As shown in [IN68], this still holds in separable Banach
spaces.

Definition 2.6. For µ a probability measure on a separable Banach space (whose
dual is denoted by ú), its characteristic functional is

„µ : ú
≠æ C

z ‘≠æ

⁄
e

iÈz,wÍú, dµ(w).

Theorem 2.8. For µ and ‹ two probability measures on W ,

(„µ = „‹) =∆ (µ = ‹).

From now on, will be any of the space W–,p for 0 < – ≠ 1/p < 1/2 or C([0, 1], R) and ú is
its dual. In preparation of the chapter about fractional Brownian motion, we reserve the
notation H to the space I1,2.

The Hilbert space I1,2 is the Riemann-Liouville fractional space of functions with a square
integrable derivative. It plays the rôle of pivotal space, meaning that it is identified it with
its dual. This is represented by the ƒ symbol. The map emb is the embedding from I1,2

into and embú is its adjoint map: For any z œ
ú and h œ I1,2,

Èz, emb(h)Íú, = Èembú(z), hÍI1,2 .

Example 1.– As the map I
1, the first order quadrature operator, is an isometric isomor-

phism between L
2 and H, it is common to identify these two spaces. Since we already

identified H and its dual, it must not be done without great care.

According to Theorem 2.4, I1,2 µ Hol(1/2). Thus, the Dirac measure Áa is a continuous
linear map on I1,2. Let xa be its representation in I1,2. We must have for any f œ I1,2,

Áa(f) = f(a) = f(a) ≠ f(0) = Èxa, fÍ
I1,2

=
⁄

1

0

ẋa(s)ḟ(s) ds,

13



Chapter 2 Wiener space

where ḟ = (I1)≠1
f is the derivative of f . The sole candidate is ẋa = 1[0,a], hence

xa(s) = a · s, i.e. embú(Áa) = . · a.

Hence, embú(Áa) = a · ., which corresponds to the function 1[0,a] in L
2.

For the sequel, it is useful to have in mind the diagram 2.1.

ú
H

ú = (I1,2)ú

L
2

H = I1,2

emb
ú

ƒ

I
1

emb

Figure 2.1: Embeddings and identification for Wiener spaces.

With the notations of Theorem 2.6, we have

Theorem 2.9. For any z œ
ú,

E
Ë
e

iÈz,BÍú,

È
= exp

3
≠

1
2Î embú(z)Î2

H

4
. (2.7)

Proof. From Theorem 2.6, we have

Èz, BÍú, = lim
næŒ

nÿ

m=0

Xm Èz, emb(hm)Íú,.

Remark that the random variable Èz, BÍú, is the limit of a sum of independent Gaussian
random variables. By dominated convergence, we get

E
Ë
e

iÈz,BÍú,

È
= lim

næŒ

nŸ

m=0

E [iXm Èz, emb(hm)Íú,]

= lim
næŒ

nŸ

m=0

exp
3

≠
1
2Èz, emb(hm)Í2

ú,

4

= exp
A

≠
1
2

Œÿ

m=0

Èembú(z), hmÍ
2
ú,

B

= exp
3

≠
1
2Î embú(z)Î2

H

4
,

according to the Parseval equality.

The dual bracket between an element of ú and an element of is defined by construction of
the dual of . But we not only have the Banach structure on , we also have a measure. We
can take advantage of this richer framework to extend the above mentioned dual bracket
to elements of H and .
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§ 1 Gaussian random variables

In what follows, the letter Ê represents the generic element of . We denote by µ the
distribution of B on .

Definition 2.7 (Wiener integral). The map

” : embú(ú) ™ H ≠æ L
2(µ)

embú(z) ‘≠æ Èz, ÊÍú,
.

is an isometry. Its unique extension to H is called the Wiener integral.

Proof. The very definition of µ entails that for any z œ
ú, the random variable (”z)(Ê) =

Èz, ÊÍú,
is a centered Gaussian random variable of variance Î embú(z)Î2

H
. Otherwise stated,

for h œ embú(W ú),
Î”(h)ÎLµ = ÎhÎH.

Since emb(H) is dense in , then embú(ú) is dense in H. Thus, we can extend ” as a linear
isometry from H into L

2(µ).

Remark.– For h œ
ú and k œ H

Èh, Ê + emb(k)Íú,
= ”(embú(h))(Ê) + Èembú(h), kÍ

H
.

Passing to the limit, we have

”h(Ê + k) = ”h(Ê) + Èh, kÍ
H

, (2.8)

for any h œ H.

Remark.– As we have seen above, Îs· .ÎH = s. Moreover, for any 0 Æ s1 < . . . < sn Æ 1,

Èsi+1 · . ≠ si · ., sj+1 · . ≠ sj · .Í
H

= (si+1 ≠ si)1{i}(j).

Hence, the vector 3
”(si+1 · . ≠ si · .), i = 0, · · · , n ≠ 1

4

has the distribution of the corresponding increments of a Brownian motion.

Remark.– Furthermore, let (hm, m Ø 0) be a complete orthonormal basis of H. The
sequence (”hm(Ê), m Ø 0) is a sequence of independent standard Gaussian variables, hence

B =
Œÿ

m=0

”hm hm (2.9)

is convergent with probability 1 in and defines a Brownian motion on .

The most useful theorem for the sequel states that if we translate the Brownian sample-path
by an element of H, then the distribution of this new process is absolutely continuous
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Chapter 2 Wiener space

with respect to the initial Wiener measure. This is the transposition in infinite dimension
of the trivial result in dimension 1:

E [F (N (m, 1))] = (2fi)≠1/2

⁄

R
f(x + m)e≠x

2
/2 dx

= (2fi)≠1/2

⁄

R
f(x)exm≠m

2
/2

e
≠x

2
/2 dx.

Theorem 2.10 (Cameron-Martin). For any h œ H, for any bounded function
F : æ R,

E [F (B + emb(h))] = E
5
F (B) exp

3
”h(B) ≠

1
2ÎhÎ

2

H

46
. (2.10)

Proof. Let

Th : ≠æ

Ê ‘≠æ Ê + emb(h)

whose inverse is T≠h. Eqn. (2.10) can be rewritten

E [F ¶ Th] = E [F�h] where �h = exp
3

”h ≠
1
2ÎhÎ

2

H

4
.

It is equivalent to
E [F ¶ T≠h �h] = E [F ] . (2.11)

This means that the pushforward of the measure �hµ by the map T≠h is the Wiener
measure µ. In view of (2.7), we have to prove that for any z œ

ú,

E
5
exp

3
i Èz, B ≠ emb(h)Íú,

4
exp

3
”h(B) ≠

1
2ÎhÎ

2

H

46

= exp
3

≠
1
2Î embú(z)Î2

H

4
. (2.12)

Remark that

i Èz, B ≠ emb(h)Íú,
+ ”h(B) ≠

1
2ÎhÎ

2

H

= i”

1
embú(z) ≠ ih

2
(B) ≠ i Èembú(z), hÍ

H
≠

1
2ÎhÎ

2

H
. (2.13)

In view of the definition of the Wiener integral,

E
5
exp

3
i”

1
embú(z) ≠ ih

2
(B)

46
= exp

3
≠

1
2Î embú(z) ≠ ihÎ

2

H

4
.

Since H is a real (not a complex) Hilbert space,

Î embú(z) ≠ ihÎ
2

H
= Î embú(z)Î2

H
≠ ÎhÎ

2

H
≠ 2i Èembú(z), hÍ

H
. (2.14)

Plug (2.14) into (2.13) to get (2.12).
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§ 1 Gaussian random variables

A quick refresher about Hilbert spaces

We shall often encounter partial functions: For a function of several variables, say f(t, s),
we denote by f(t, .) the partial function

f(t, .) : E ≠æ R
s ‘≠æ f(t, s).

Definition 2.8. A Hilbert space (H, È., .Í
H

) is a vector space H which is complete
for the topology induced by the scalar product È., .Í

H
.

Recall that a metric space E is separable whenever there exists a denumerable family
which is dense: There exists (xn, n Ø 1) such that for any ‘ > 0, any x œ X, one can find
some xn such that d(x, xn) < ‘. By construction, the set of rational numbers is such a set
in R. All the spaces we are going to consider, even the seemingly ugliest, are separable
hence we can safely forget this subtlety.

Theorem 2.11. Any separable Hilbert space H admits a complete orthonormal
basis (CONB for short) (en, n Ø 1), i.e. on the one hand

Èen, emÍ
H

= 1{n}(m)

and on the other hand, any x œ H can be written

x =
Œÿ

n=1

Èx, enÍ
H

en

which means
lim

NæŒ

....x ≠

Nÿ

n=1

Èx, enÍ
H

en

....
H

= 0.

We will use repeatedly in diverse contexts the Parseval inequality which says the follow-
ing.

Corollary 2.12 (Parseval). Let (en, n Ø 1) be a CONB. For any x œ H,

ÎxÎH2 =
Œÿ

n=1

Èx, enÍ
2

H
and Èx, yÍH =

Œÿ

n=1

Èx, enÍ
H

Èy, enÍ
H

.

The classical example of Hilbert spaces is the space of square integrable functions from a
measurable space (E; µ) into R:

L
2(E; µ) = {f : E æ R,

⁄

E

|f(x)|2 dµ(x) < Œ},

with the scalar product

Èf, gÍ
L2(E;µ)

=
⁄

E

f(x) g(x) dµ(x).
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Chapter 2 Wiener space

We already saw other interesting Hilbert spaces like I1,2. In fact, this space is a partic-
ular instance of Hilbert spaces which appear very naturally in the theory of Gaussian
processes.

Self-reproducing Hilbert spaces

Assume we are given a symmetric function R on E◊E satisfying

nÿ

k,l=1

R(tk, tl) ck cl Ø 0

for any n Ø 1, any t1, · · · , tn œ E and any c1, · · · , cn œ R, with equality if and only if ck = 0
for all k. Then, R is said to be symmetric positive definite kernel.

Definition 2.9. Consider H0 = span(R(t, .), t œ E) and define an inner product
on H0 by

ÈR(t, .), R(s, .)Í
H0

= R(t, s). (2.15)

Then, H is the completion of H0 with respect to this inner product: The set of
functions of the form

f(s) =
Œÿ

i=1

–iR(ti, s)

for some denumerable family (tk, k Ø 1) of elements of E and some real numbers
(–k, k Ø 1) such that

Œÿ

i=1

–
2

i
R(ti, ti) < Œ.

Lemma 2.13 (Representation of an RKHS). Assume that there exist a measure µ,
a function K : E ◊ E æ R such that

R(s, t) =
⁄

E

K(s, r) K(t, r) dµ(r), (2.16)

and that the linear map defined by K is one-to-one:
3

’t œ E,

⁄

E

K(t, s)g(s) dµ(s) = 0
4

=∆ g = 0 µ ≠ a.s.

Then the Hilbert space constructed above is equal to K(L2(E; µ)): The space of
functions of the form

f(t) =
⁄

E

K(t, s)g(s) dµ(s)

for some g œ L
2(E; µ), equipped with the inner product

ÈKf, KgÍ
K(L2(E;µ))

= Èf, gÍ
L2(E;µ)

.
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§ 1 Gaussian random variables

Proof. Since K

3
K(t, .)

4
(s) = R(t, s),

K

3 nÿ

k=1

–kK(tk, .)
4

=
nÿ

k=1

–kR(tk, .).

On the one hand,
Î

nÿ

k=1

–kR(tk, .)Î2

H
=

nÿ

k=1

nÿ

l=1

–k–lR(tk, tl)

and on the other hand,

Î

nÿ

k=1

–kK(tk, .)Î2

L2(E;µ)
=

⁄

E

3 nÿ

k=1

–kK(tk, s)
4

2

dµ(s)

=
nÿ

k=1

nÿ

l=1

–k–l

⁄⁄

E◊E

K(tk, s)K(tl, s) dµ(s)

=
nÿ

k=1

nÿ

l=1

–k–lR(tk, tl),

in view of (2.16).

Example 2.– Consider E = [0, 1], µ the Lebesgue measure and R(t, s) = min(t, s). It is
easy to see that

min(t, s) =
⁄

1

0

1[0,t](r) 1[0,s](r) dr.

This means that the RKHS defined by R is equal to I1,2 since for K(t, r) = 1[0,t](r),

Kf(t) =
⁄

1

0

K(t, r)f(r) dr = I
1
f(t).

Dual of an Hilbert space

In Rn, it is known that any linear form on Rn is necessarily continuous and can be
represented by a vector of Rn: If T is a linear map from Rn to R then these exists
x0 œ Rn such that

T (x) = Èx, x0ÍRn .

This result can be extended to Hilbert spaces.

Theorem 2.14. Let T be a continuous linear map from H into R. There exists a
unique xT œ H such that

T (x) = ÈxT , xÍ
H

, for all x œ H. (2.17)

Moreover, the map

ÿH : H
ú

≠æ H

T ‘≠æ xT
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is a (bijective) isometry.

Example 3.– According to Theorem 2.4, I1,2 µ Hol(1/2). Thus, the Dirac measure Áa is
a continuous linear map on I1,2. Let xa be its representation in I1,2. We must have for any
f œ I1,2,

Áa(f) = f(a) = f(a) ≠ f(0) = Èxa, fÍ
I1,2

=
⁄

1

0

ẋa(s)ḟ(s) ds,

where ḟ = (I1)≠1
f is the derivative of f . The sole candidate is ẋa = 1[0,a], hence

xa(s) = a · s, i.e. ÿI1,2(Áa) = . · a.

Compact maps in Hilbert spaces

Definition 2.10. A linear map T between two Hilbert spaces H1 and H2 is said to
be compact whenever the image of any bounded subset in H1 is a relatively compact
subset (i.e. its closure is compact) in H2. It can be written: For any h œ H1

Th =
Œÿ

n=1

⁄n Èfn, hÍ
H1

gn

where (fn, n Ø 1) and (gn, n Ø 1) are orthonormal sets of respectively H1 and H2.
Moreover, (⁄n, n Ø 1) is a sequence of positive real numbers with sole accumulation
point zero. If for some rank N , ⁄n = 0 for n Ø N , the operator is said to be of
finite rank.

Among those operators, some will play a crucial rôle in the sequel.

Definition 2.11 (Trace class operators). Let H be a Hilbert space and (en, n Ø 1)
be a CONB on H. A linear map A from H into itself is said to be trace-class
whenever ÿ

nØ1

| ÈAen, enÍ | < Œ.

Then, its trace is defined as

trace(A) =
ÿ

nØ1

ÈAen, enÍ .

In the decomposition of Definition 2.10, this means that
Œÿ

n=1

|⁄n| < Œ.
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Definition 2.12 (Hilbert-Schmidt operators). Let H1 and H2 be two Hilbert space
and (en, n Ø 1) (resp. (fp, p Ø 1)) a CONB of H1 (resp. H2). A linear map A from
H1 into H2 is said to be Hilbert-Schmidt whenever

ÎAÎ
2

HS
=

ÿ

nØ1

ÎAenÎ
2

H2 =
ÿ

nØ1

ÿ

pØ1

ÈAen, fpÍ
2

H2
< Œ.

If H1 = H2, in the decomposition of Definition 2.10, this means that
Œÿ

n=1

⁄
2

n
< Œ.

Note that a linear map from H into itself can be described by an infinite matrix: To
characterize A, since H has a basis, it is su�cient to determine its values on this basis.
This means that A is completly determined by the family (ÈAen, ekÍ

H
, n, k Ø 1), which is

nothing but a kind of an infinite matrix. We can also write

ÈAen, ekÍ
H

= ÈA, en ¢ ekÍ
H¢H

,

so that A appears as a linear map on H ¢ H.

Theorem 2.15. If H = L
2(µ) and A is Hilbert-Schmidt then there exists a kernel

which we still denote by A : H ◊ H æ R such that for any f œ H,

Af(x) =
⁄

H

A(x, y) f(y) dµ(y)

and
ÎAÎ

2

HS
=

⁄⁄

H◊H

|A(x, y)|2 dµ(x) dµ(y).

Theorem 2.16 (Composition of Hilbert-Schmidt maps). With the same notations
as above, the composition of two Hilbert-Schmidt is trace class.
Actually, this is an equivalence: A trace-class map can always be written as the
composition of two Hilbert-Schmidt operators. Moreover,

| trace(A ¶ B)| Æ
ÿ

nØ1

---ÈA ¶ Ben, enÍ
H

--- Æ ÎAÎHSÎBÎHS. (2.18)

Lemma 2.17 (Composition of integral maps). If H = L
2(µ) and A, B are Hilbert-

Schmidt maps on H. Then, B ¶ A is trace-class and

trace(B ¶ A) =
⁄⁄

H◊H

B(x, y)A(y, x) dµ(x) dµ(y).
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Proof. We must verify the finiteness of
ÿ

nØ1

| ÈBAen, enÍ
H

|.

By the definition of the adjoint, applying twice the Cauchy-Schwarz inequality, we have
ÿ

nØ1

| ÈBAen, enÍ
H

| =
ÿ

nØ1

| ÈAen, B
ú
enÍ

H
| Æ

ÿ

nØ1

ÎAenÎHÎB
ú
enÎH

Æ

Q

a
ÿ

nØ1

ÎAenÎ
2

H

R

b
1/2

Q

a
ÿ

nØ1

ÎB
ú
enÎ

2

H

R

b
1/2

= ÎAÎHSÎB
ú
ÎHS.

The Parseval identity (twice) yields

trace(B ¶ A) =
ÿ

nØ1

ÈAen, B
ú
enÍ

H
=

ÿ

nØ1

ÿ

kØ1

ÈAen, ekÍ
H

ÈB
ú
en, ekÍ

H

=
ÿ

nØ1

ÿ

kØ1

ÈA, ek ¢ enÍ
H¢H

ÈB
ú
, ek ¢ enÍ

H¢H
= ÈA, B

ú
Í

H¢H
.

By the identification of A, B and their kernel,

ÈA, B
ú
Í

H¢H
=

⁄⁄

H◊H

A(x, y)Bú(x, y) dµ(x) dµ(y)

=
⁄⁄

H◊H

A(x, y)B(y, x) dµ(x) dµ(y).

The proof is thus complete.

Example 4 (Hilbert-Schmidt embeddings in fractional Liouville spaces).– Since I
–

¶ I
– =

I
–+–, we have

I–,2 µ I–,2 for any – > –.

Lemma 2.18. The embedding emb of I–,2 into I–,2 is Hilbert-Schmidt if and only
if – ≠ – > 1/2.

Proof. Let (en, n Ø 1) be CONB of L
2([0, 1]) and set hn = I

–
en. Then (hn, n Ø 1) is a

CONB of I–,2. We must prove that
Œÿ

n=1

Î emb(hn)Î2

I–,2 < Œ.

By the very definition of the norm in I–,2, this is equivalent to show
Œÿ

n=1

ÎI
–≠–(en)Î2

L2 < Œ.

But this latter sum turns to be equal to the Hilbert-Schmidt norm of I
–≠– viewed as a

linear map from L
2 into itself. In view of Proposition 2.15, I

–≠– is Hilbert-Schmidt if and
only if ⁄⁄

[0,1]2
|t ≠ s|

2((–≠–)≠1) ds dt < Œ.

This only happens if – ≠ – > 1/2.
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§ 2 Exercises

Exercice 2.1.–

From Theorem 2.4, we know that I–,2 ™ L
2 for any – > 0.

Show that this embedding is Hilbert-Schmidt if and only if – > 1/2.

Exercice 2.2.–

For – > 1/2, I–,2 ™ Hol(– ≠ 1/2) µ C hence, the Dirac measure ‘· belongs to I
ú

–,2
. Let j–

be the canonical isometry between I
ú

–,2
and I–,2.

Show that
j–(‘· ) = 1

�(–)I
–

3
(· ≠ .)–≠1

4
.

Exercice 2.3.–

Following the proof of Theorem 2.6, show that (Sn, n Ø 0) as defined in (2.4) is convergent
in I–,2 for – < 1/2.

It is important to remark that (ḣn, n Ø 0) is an orthonormal family of L
2.

Show that for any z œ I–,2,

E
Ë
e

iÈz,

q
n

XnhnÍI–,2
È

= exp(≠1
2ÈV–z, zÍI–,2)

where
V– = I

–
¶ I

1≠–
¶ (I1≠–)ú

¶ (I–)≠1
.
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