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Optimizing programs



Should you optimize a program?

OPIMIZING OR JUST TAKING
TIME .20 THNGS RiGHT?
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Should you optimize a program?

HOW LONG CAN YOU WORK ON  MAKING A ROUTINE. TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(PCROSS FIVE YEARS)
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Should you optimize a program?

If you have a solution that works and is fast enough. ..
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Should you optimize a program?

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your
program
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Should you optimize a program?

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your
program which means you should measure what takes time.
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Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:

= Do some little tweaking

You can go for a 2x speed-up
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Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:
= Do some little tweaking
You can go for a 2x speed-up
= Change the language or use a well-optimized library

You can have a 100x speed-up, in a very favorable case
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Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:
= Do some little tweaking
You can go for a 2x speed-up
= Change the language or use a well-optimized library
You can have a 100x speed-up, in a very favorable case
= Use multiple computer
nx speed-up with n computers
= Change the algorithm

No limit on speed-up!
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Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3000 ns
Send 2K bytes over 1 Gbps network 20000 ns
Read 1 MB sequentially from memory 250000 ns
Round trip within same datacenter 500000 ns
Disk seek (hard drive) 10000000 ns
Read 1 MB sequentially from disk (hard drive) 20000000 ns
Send packet CA — Netherlands — CA 150000000 ns
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Defining algorithmic complexity




Defining algorithmic complexity

Turing machines



Turing machines

Church Turing thesis

Everything that can be computed, can be computed with a Turing

Machine.

Strong Church Turing thesis

Everything that can be computed efficiently, can be efficiently
computed with a deterministic Turing Machine.
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Turing machines

In practice

Turing machines are great at modeling large complexity classes P,
EXPTIME, L, etc. but bad for fined-grained complexity.

Example

Testing whether a string contains n times the letter a followed by n
times the letter b cannot be recognized by a deterministic Turing

Machine in linear time.
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How to define computational complexity?

In practice

We use a ill-defined, vague but useful notion of RAM-model:

= the memory is divided in register of limited size (64 in actual
computers)

= we have a memory indexed by addresses (this allows for arrays
and pointers)

= we can do basic arithmetic operation (+, —, X, /, %, etc.)

= all basic operation takes O(1)
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Defining algorithmic complexity

Notations



Bachmann-Landau notation

The parameter n

Usually the length of the problem. On TM this is the number of
bits, on RAM machines this is usually the number of machine
words.

= Small o: g(n) = o(f(n)) means g(n)/f(n) tends to 0.
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Bachmann-Landau notation

The parameter n

Usually the length of the problem. On TM this is the number of
bits, on RAM machines this is usually the number of machine

words.

Small o: g(n) = o(f(n)) means g(n)/f(n) tends to 0.
Big O: g(n) = O(f(n)) means g(n)/f(n) is bounded.
(f(n)) means f(n)/g(n) is bounded, i.e.
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Big ©: g(n) = (n) means Ic s.t. ¢! < f(n)/g(n) < c
Big : g(n) = Q(f(n)) means 3c s.t. f(n)/g(n) < c for
infinitely many n.

Big ©: g(n) = &(f(n)) means 3c s.t. ¢! < f(n)/g(n) < ¢

for infinitely many n.
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Importance of the constant

The O notation “hides” the actual performance in the constant:

= it is very useful to develop algorithms
= it is generally gives the fastest algorithms

= but there are cases where the constant is huge

However, keep in mind that all computers have a finite memory. . .
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Generic algorithmic approach




Know the basics of algorithms

= Divide and conquer
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Know the basics of algorithms

= Divide and conquer

= Sliding windows

= Dynamic algorithms

= Math-trick

= Reduction of complexity

= Data structure
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Use the right datastructure

= Array
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Use the right datastructure

= Array
= Linked Lists
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Use the right datastructure
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= Hash table
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Use the right datastructure

= Array
Linked Lists
Hash table

= Balanced binary tree
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Use the right datastructure

= Array

= Linked Lists

= Hash table

= Balanced binary tree

= Queues
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Exercises

= Sort a list of integers
= Given two strings, are they anagrams?

= Given a list of pair (people,phone) and a list (people,mail),
what are the people that have both a phone and a mail?

= We define F,yo = Fp + Foy1 with Fp = F; =0, how to
compute F,?

= Given a list /, compute max; j(sum(/[i : j]))
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