
Refresher on algorithms

Louis Jachiet

Louis JACHIET 1 / 14



Optimizing programs



Should you optimize a program?

Louis JACHIET 2 / 14



Should you optimize a program?

Louis JACHIET 3 / 14



Should you optimize a program?

If you have a solution that works and is fast enough. . .

NO.

Also you should only optimize the time-consuming parts of your
program which means you should measure what takes time.

Louis JACHIET 4 / 14



Should you optimize a program?

If you have a solution that works and is fast enough. . . NO.

Also you should only optimize the time-consuming parts of your
program

which means you should measure what takes time.

Louis JACHIET 4 / 14



Should you optimize a program?

If you have a solution that works and is fast enough. . . NO.

Also you should only optimize the time-consuming parts of your
program which means you should measure what takes time.

Louis JACHIET 4 / 14



Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:

• Do some little tweaking
You can go for a 2× speed-up

• Change the language or use a well-optimized library
You can have a 100× speed-up, in a very favorable case

• Use multiple computer
n× speed-up with n computers

• Change the algorithm
No limit on speed-up!

Louis JACHIET 5 / 14



Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:

• Do some little tweaking
You can go for a 2× speed-up

• Change the language or use a well-optimized library
You can have a 100× speed-up, in a very favorable case

• Use multiple computer
n× speed-up with n computers

• Change the algorithm
No limit on speed-up!

Louis JACHIET 5 / 14



Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:

• Do some little tweaking
You can go for a 2× speed-up

• Change the language or use a well-optimized library
You can have a 100× speed-up, in a very favorable case

• Use multiple computer
n× speed-up with n computers

• Change the algorithm
No limit on speed-up!

Louis JACHIET 5 / 14



Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:

• Do some little tweaking
You can go for a 2× speed-up

• Change the language or use a well-optimized library
You can have a 100× speed-up, in a very favorable case

• Use multiple computer
n× speed-up with n computers

• Change the algorithm
No limit on speed-up!

Louis JACHIET 5 / 14



Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3 000 ns
Send 2K bytes over 1 Gbps network 20 000 ns
Read 1 MB sequentially from memory 250 000 ns
Round trip within same datacenter 500 000 ns
Disk seek (hard drive) 10 000 000 ns
Read 1 MB sequentially from disk (hard drive) 20 000 000 ns
Send packet CA → Netherlands → CA 150 000 000 ns

Louis JACHIET 6 / 14



Defining algorithmic complexity



Defining algorithmic complexity

Turing machines



Turing machines

Church Turing thesis
Everything that can be computed, can be computed with a Turing
Machine.

Strong Church Turing thesis
Everything that can be computed efficiently, can be efficiently
computed with a deterministic Turing Machine.

Louis JACHIET 7 / 14



Turing machines

In practice
Turing machines are great at modeling large complexity classes P,
EXPTIME, L, etc. but bad for fined-grained complexity.

Example
Testing whether a string contains n times the letter a followed by n
times the letter b cannot be recognized by a deterministic Turing
Machine in linear time.

Louis JACHIET 8 / 14



How to define computational complexity?

In practice
We use a ill-defined, vague but useful notion of RAM-model:

• the memory is divided in register of limited size (64 in actual
computers)

• we have a memory indexed by addresses (this allows for arrays
and pointers)

• we can do basic arithmetic operation (+,−,×, /,%, etc.)
• all basic operation takes O(1)

Louis JACHIET 9 / 14



Defining algorithmic complexity

Notations



Bachmann-Landau notation

The parameter n
Usually the length of the problem. On TM this is the number of
bits, on RAM machines this is usually the number of machine
words.

• Small o: g(n) = o(f (n)) means g(n)/f (n) tends to 0.
• Big O: g(n) = O(f (n)) means g(n)/f (n) is bounded.
• Big Ω: g(n) = Ω(f (n)) means f (n)/g(n) is bounded, i.e.

f (n) = O(g(n))
• Big Θ: g(n) = θ(n) means ∃c s.t. c−1 < f (n)/g(n) < c.

• Big Ω̃: g(n) = Ω̃(f (n)) means ∃c s.t. f (n)/g(n) < c for
infinitely many n.

• Big Θ̃: g(n) = Θ̃(f (n)) means ∃c s.t. c−1 < f (n)/g(n) < c
for infinitely many n.

Louis JACHIET 10 / 14



Bachmann-Landau notation

The parameter n
Usually the length of the problem. On TM this is the number of
bits, on RAM machines this is usually the number of machine
words.

• Small o: g(n) = o(f (n)) means g(n)/f (n) tends to 0.
• Big O: g(n) = O(f (n)) means g(n)/f (n) is bounded.
• Big Ω: g(n) = Ω(f (n)) means f (n)/g(n) is bounded, i.e.

f (n) = O(g(n))
• Big Θ: g(n) = θ(n) means ∃c s.t. c−1 < f (n)/g(n) < c.
• Big Ω̃: g(n) = Ω̃(f (n)) means ∃c s.t. f (n)/g(n) < c for

infinitely many n.
• Big Θ̃: g(n) = Θ̃(f (n)) means ∃c s.t. c−1 < f (n)/g(n) < c

for infinitely many n.
Louis JACHIET 10 / 14



Importance of the constant

The O notation “hides” the actual performance in the constant:

• it is very useful to develop algorithms
• it is generally gives the fastest algorithms
• but there are cases where the constant is huge

However, keep in mind that all computers have a finite memory. . .

Louis JACHIET 11 / 14



Generic algorithmic approach



Know the basics of algorithms

• Divide and conquer

• Sliding windows
• Dynamic algorithms
• Math-trick
• Reduction of complexity
• Data structure

Louis JACHIET 12 / 14



Know the basics of algorithms

• Divide and conquer
• Sliding windows

• Dynamic algorithms
• Math-trick
• Reduction of complexity
• Data structure

Louis JACHIET 12 / 14



Know the basics of algorithms

• Divide and conquer
• Sliding windows
• Dynamic algorithms

• Math-trick
• Reduction of complexity
• Data structure

Louis JACHIET 12 / 14



Know the basics of algorithms

• Divide and conquer
• Sliding windows
• Dynamic algorithms
• Math-trick

• Reduction of complexity
• Data structure

Louis JACHIET 12 / 14



Know the basics of algorithms

• Divide and conquer
• Sliding windows
• Dynamic algorithms
• Math-trick
• Reduction of complexity

• Data structure

Louis JACHIET 12 / 14



Know the basics of algorithms

• Divide and conquer
• Sliding windows
• Dynamic algorithms
• Math-trick
• Reduction of complexity
• Data structure

Louis JACHIET 12 / 14



Use the right datastructure

• Array

• Linked Lists
• Hash table
• Balanced binary tree
• Queues

Louis JACHIET 13 / 14



Use the right datastructure

• Array
• Linked Lists

• Hash table
• Balanced binary tree
• Queues

Louis JACHIET 13 / 14



Use the right datastructure

• Array
• Linked Lists
• Hash table

• Balanced binary tree
• Queues

Louis JACHIET 13 / 14



Use the right datastructure

• Array
• Linked Lists
• Hash table
• Balanced binary tree

• Queues

Louis JACHIET 13 / 14



Use the right datastructure

• Array
• Linked Lists
• Hash table
• Balanced binary tree
• Queues

Louis JACHIET 13 / 14



Exercises

• Sort a list of integers
• Given two strings, are they anagrams?
• Given a list of pair (people,phone) and a list (people,mail),

what are the people that have both a phone and a mail?
• We define Fn+2 = Fn + Fn+1 with F0 = F1 = 0, how to

compute Fn?
• Given a list l , compute maxi ,j(sum(l [i : j]))

Louis JACHIET 14 / 14


	Optimizing programs
	Defining algorithmic complexity
	Turing machines
	Notations

	Generic algorithmic approach

