Refresher on algorithms

Louis Jachiet

Louis JACHIET

1/

Optimizing programs

Should you optimize a program?

OPIMIZING OR JUST TAKING
TIME .20 THNGS RiGHT?

Louis JACHIET 2/14

Should you optimize a program?

HOW LONG CAN YOU WORK ON MAKING A ROUTINE. TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(PCROSS FIVE YEARS)

——————HOW OFTEN YOU DOTHE TPEK —
Oy Sbay DALY WEEKY MONHY YEPRY

1 secon0 | [T ony | 2woues | 3% | A e seros
5 seonDs |[E]ors| 12 Hooks | 2 ook HINZU'llEs HIMSJ'I'ES SefoRos
T

30 SECONDS 4 wEEKS @Dﬁ‘f‘:‘: |2 HouRS | 2 HOURS ﬂrs.uu;is HlN%‘l‘FS

[nemsmwal
o 4 mwe |G ([oevs [T on | H ook | 1rok | O

TME I
Yoy 5 MNwTES |9 mowms| TR0 2 pavs| 21 Hooks | 5 Hoves mgﬁ
SHAVE 30 e 6 vowms | U0 (B oavs | [T oy | 2 Houes
1 HowR 10 voxis| 2 vowe | (10] 0avs | (2] oavs | 5 Houks

zﬂmz

Louis JACHIET 3/14

Should you optimize a program?

If you have a solution that works and is fast enough. ..

Louis JACHIET 4 /14

Should you optimize a program?

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your
program

Louis JACHIET 4 /14

Should you optimize a program?

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your
program which means you should measure what takes time.

Louis JACHIET 4 /14

Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:

= Do some little tweaking

You can go for a 2x speed-up

Louis JACHIET 5/ 14

Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:
= Do some little tweaking
You can go for a 2x speed-up
= Change the language or use a well-optimized library

You can have a 100x speed-up, in a very favorable case

Louis JACHIET 5/ 14

Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:
= Do some little tweaking
You can go for a 2x speed-up
= Change the language or use a well-optimized library
You can have a 100x speed-up, in a very favorable case
= Use multiple computer

nx speed-up with n computers

Louis JACHIET 5/ 14

Why optimize?

If you have a program that is too slow you have three ways of
optimizing it:
= Do some little tweaking
You can go for a 2x speed-up
= Change the language or use a well-optimized library
You can have a 100x speed-up, in a very favorable case
= Use multiple computer
nx speed-up with n computers
= Change the algorithm

No limit on speed-up!

Louis JACHIET 5/ 14

Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3000 ns
Send 2K bytes over 1 Gbps network 20000 ns
Read 1 MB sequentially from memory 250000 ns
Round trip within same datacenter 500000 ns
Disk seek (hard drive) 10000000 ns
Read 1 MB sequentially from disk (hard drive) 20000000 ns
Send packet CA — Netherlands — CA 150000000 ns

Louis JACHIET 6/ 14

Defining algorithmic complexity

Defining algorithmic complexity

Turing machines

Turing machines

Church Turing thesis

Everything that can be computed, can be computed with a Turing

Machine.

Strong Church Turing thesis

Everything that can be computed efficiently, can be efficiently
computed with a deterministic Turing Machine.

Louis JACHIET 7/ 14

Turing machines

In practice

Turing machines are great at modeling large complexity classes P,
EXPTIME, L, etc. but bad for fined-grained complexity.

Example

Testing whether a string contains n times the letter a followed by n
times the letter b cannot be recognized by a deterministic Turing

Machine in linear time.

Louis JACHIET 8/ 14

How to define computational complexity?

In practice

We use a ill-defined, vague but useful notion of RAM-model:

= the memory is divided in register of limited size (64 in actual
computers)

= we have a memory indexed by addresses (this allows for arrays
and pointers)

= we can do basic arithmetic operation (+, —, X, /, %, etc.)

= all basic operation takes O(1)

Louis JACHIET 9/ 14

Defining algorithmic complexity

Notations

Bachmann-Landau notation

The parameter n

Usually the length of the problem. On TM this is the number of
bits, on RAM machines this is usually the number of machine
words.

= Small o: g(n) = o(f(n)) means g(n)/f(n) tends to 0.

Louis JACHIET 10 / 14

Bachmann-Landau notation

The parameter n

Usually the length of the problem. On TM this is the number of
bits, on RAM machines this is usually the number of machine

words.

Small o: g(n) = o(f(n)) means g(n)/f(n) tends to 0.
Big O: g(n) = O(f(n)) means g(n)/f(n) is bounded.
(f(n)) means f(n)/g(n) is bounded, i.e.

o
(]
>
0
S
Il
)

Big ©: g(n) = (n) means Ic s.t. ¢! < f(n)/g(n) < c
Big : g(n) = Q(f(n)) means 3c s.t. f(n)/g(n) < c for
infinitely many n.

Big ©: g(n) = &(f(n)) means 3c s.t. ¢! < f(n)/g(n) < ¢

for infinitely many n.

Louis JACHIET 10 / 14

Importance of the constant

The O notation “hides” the actual performance in the constant:

= it is very useful to develop algorithms
= it is generally gives the fastest algorithms

= but there are cases where the constant is huge

However, keep in mind that all computers have a finite memory. . .

Louis JACHIET 11 /14

Generic algorithmic approach

Know the basics of algorithms

= Divide and conquer

Louis JACHIET 12 / 14

Know the basics of algorithms

= Divide and conquer

= Sliding windows

Louis JACHIET 12 / 14

Know the basics of algorithms

= Divide and conquer
= Sliding windows

= Dynamic algorithms

Louis JACHIET 12 / 14

Know the basics of algorithms

= Divide and conquer

Sliding windows
= Dynamic algorithms

= Math-trick

Louis JACHIET 12 / 14

Know the basics of algorithms

= Divide and conquer
= Sliding windows
= Dynamic algorithms

= Math-trick

= Reduction of complexity

Louis JACHIET 12 / 14

Know the basics of algorithms

= Divide and conquer

= Sliding windows

= Dynamic algorithms

= Math-trick

= Reduction of complexity

= Data structure

Louis JACHIET 12 / 14

Use the right datastructure

= Array

Louis JACHIET 13 / 14

Use the right datastructure

= Array
= Linked Lists

Louis JACHIET 13 / 14

Use the right datastructure

= Array
= Linked Lists
= Hash table

Louis JACHIET 13 / 14

Use the right datastructure

= Array
Linked Lists
Hash table

= Balanced binary tree

Louis JACHIET 13 / 14

Use the right datastructure

= Array

= Linked Lists

= Hash table

= Balanced binary tree

= Queues

Louis JACHIET 13 / 14

Exercises

= Sort a list of integers
= Given two strings, are they anagrams?

= Given a list of pair (people,phone) and a list (people,mail),
what are the people that have both a phone and a mail?

= We define F,yo = Fp + Foy1 with Fp = F; =0, how to
compute F,?

= Given a list /, compute max; j(sum(/[i : j]))

Louis JACHIET 14 / 14

	Optimizing programs
	Defining algorithmic complexity
	Turing machines
	Notations

	Generic algorithmic approach

