
BIG DATA ARCHITECTURES:
- INTRODUCING DISTRIBUTION
- HANDLING HETEROGENEITY
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From databases to Big Data
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From databases to Big Data
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Dimensions of Big Data architectures

• Data model(s):
– Relations, trees (XML, JSON), graphs (RDF, others…), nested

relations
– Query language

• Heterogeneity (DM, QL): none, some, a lot
• Hardware: 

– Hardware type: from disk to memory
– Scale of distribution: small (~10-20 sites) or large (~10.000 sites) 

• ACID properties
• Interoperability and control:

– Who decides: data structure, data publication, data placement
– What is the logical relation between datasets, how do they relate?
– Who does what when processing queries or updates
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DISTRIBUTED RELATIONAL
DATABASES
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Distributed relational databases
• Oldest distributed architecture ('70s): IBM System R*
• Illustrate/introduce the main priciples
• Data is relational (tables).
• Data is distributed among many nodes (sites, peers...)

– Data catalog: information on which data is stored where
• Catalog stored at a master/central server.
• E.g., « Paris sales are stored in Paris », « Lyon sales are 

stored in Paris », « Client data is stored in London », etc.
• Queries are distributed (may come from any site)

– First analyzed through catalog
• Query processing is distributed

– Operators may run on different sites à network transfer
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Traditional distributed relational
databases (since 1970)

Servers DB1@site1: R1(a,b), S1(a,c)
Server DB2@site2: R2(a,b), S2(a,c), 
Server DB3@site3: R3(a,b),           S3(a,c) defined as: 

select * from DB1.S1 union all 
select * from DB2.S2 union all 
select R1.a as a, R2.b as c 
from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a 

DB3@site3 decides what to import from site1, site2 (« hard links »)
Site1, site2 are independent servers
Also: replication policies, distribution etc. (usually with one or a few 
masters)
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Query evaluation in distributed 
relational database: query unfolding
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DB1: R1(a,b), S1(a,c)
DB2: R2(a,b), S2(a,c), 
DB3: R3(a,b), S3(a,c) defined as: 

select * from S1 union all 
select * from S2 union all 
select r1.a as a, r2.b as c 
from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a 

Query on  DB3: 

select a
from S3
where a = 3;

The query is formulated on S3, 
but there is no actual data there!
• The query is reformulated (or 

unfolded) based on the 
definition of S3

In classical DBMSs, a query over a view is also unfolded (demo) 



How is a query unfolded?

• Based on logical algebra
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Distributed query optimization
Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4} 16 plans!

R@s1 S@s2 T@s3 U@s4

q@s5

?

? ?

Plan pruning criteria if all the sites and network 
connections have equal performance:
• Ship the smaller collection

R@s1 T@s3

S@s2

q@s4
One choice:

@s1

@s1
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Distributed query optimization
Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4

16 plans!
One choice:

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network 
connections have equal performance:

• Ship the smaller collection
• Transfer to join partner or the query site

@s1

@s2
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Distributed query optimization
Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4

16 plans!
One choice:

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network 
connections have equal performance:

• Ship the smaller collection.
• Transfer to join partner or the query site

This plan illustrates total effort != response time

@s1

@s2
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Distributed query optimization
technique: semijoin reducers

• R join S = (R semijoin S) join S

– Useful in distributed settings to reduce transfers: if the 
distinct S.b values are smaller than the non-joining R tuples

– Example: 1.000.000 tuples in R, 1.000.000 tuples in S, 
900.000 distinct values of R.a, 10 distinct values of S.b
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Distributed query optimization
technique: semijoin reducers

• R join S = (R semijoin S) join S

– Useful in distributed settings to reduce transfers: if the distinct S.b
values are smaller than the non-matching R tuples

– Symetrical alternative: R join S = R join (S semijoin R)
– This gives one more alternative in every join à search space

explosion
– Heuristics [Stocker, Kossmann et al., ICDE 2001] 
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R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more 
exactly:



Modern distributed databases: 
H-Store (à VoltDB)

• From the team of Michael Stonebraker
(Turing Award, author of the Postgres system)
– H-Store: research prototype
– VoltDB: commercial product issued from H-Store

• Main goal: quick OLTP (online transaction processing), 
e.g., sales, likes, posts...

• Built to run on cluster for horizontal scalability

• Share-nothing architecture: each node stores tables 
shards (+ k replication for durability)
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Frequent concept in Big Data 
architectures: shards

• Shard =  small fragment of a data collection (e.g., a table)
• The assignment of data items (e.g., tuples) 

into shards is often done by hashing on 
tuple key
– The table must have at least one key
– Assume R.a is key of R. Then, for each tuple r from R: 

• Compute h(r.a) = k
• Tuple r will be part of shard number k

– Hashing ensures (with high probability) uniform
distribution

• Key-based hashing is a very frequent data distribution 
mechanism!
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Transactions in H-Store

• Applications call stored procedures = code which also
contains SQL queries
– Each contained SQL query is partially unknown (depends

on parameters specified at runtime); 
H-Store "pre-optimizes" it

– E.g., purchaseProduct(productID, clientID, cardNo)
• 1 transaction = 1 call of a stored procedure

– E.g., purchaseProduct(prod101, cl10, 12345678)

• Can be submitted to any node, together with parameters
• The node can run the procedure up to the query(ies) à

updated, completely known plan à transaction manager
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Modern distributed database: 
MemSQL (à SingleStore)

MemSQL runs with
– a master aggregator, responsible of the metadata

(catalog)
– possibly more 

aggregators
– at least one leaf, 

each of which
stores part(s) of
some table(s)

– In each leaf, there
are partitions
(by default: 1 per CPU core) 

Availability group: a set of machines + a set of replica
machines (one-to-one) 
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Query processing in MemSQL
• Indexes managed within each partition
• In general, every query runs with a level of parallelism equal to the 

number of partitions

• Select queries are executed by the leaves which hold some
partition(s) with data matching the query 

• Aggregation queries run at the leaves involved and at the 
aggregator(s)

• Join queries
– Easy if one input is a reference (small) table: one that is

replicated fully to every machine in the cluster
– Otherwise, they recommend sharing the shard key across

tables to be joined
• Also called co-partitioning, we will be seeing this again

– Otherwise, joins will incur data transfer within the cluster. 
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MEDIATOR SYSTEMS: 
HETEROGENEOUS DATA INTEGRATION
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Common data model 
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language, 

and schema (also called source schemas). 
– DM and QL may or may not differ across sources

• A mediator with its own DM, QL and mediator schema
– Queries are asked against the mediator schema

• Wrappers interface the sources to the mediator’s model 
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Common data model 
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language, 

and schema (also called source schemas). 
– DM and QL may differ across sources

• A mediator with its own DM, QL and mediator schema

• ACID: mostly read-only; size: small
• Control: Independent publishing; mediator-driven integration
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Source 1 
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…
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schema

Query
Q

Mediator data model
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Mediator
schema
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data model

Query
Q
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Wrapper Wrapper



Many-mediator systems
• Each mediator interacts with a subset of 

the sources
• Mediators interact w/ each other

– A mediator can play the role of a
source for processing a given query
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Mediator DM

Source 1 
schema

Source 3 
schema…

Mediator
schema

Source 3 
data model

Query
Q

Source 1 
data model

Wrapper 1 Wrapper 3

Source 4 
schema

Source 6 
schema…

Mediator
schema

Source 6 
data model

Source 4 
data model

Wrapper 4 Wrapper 6

Source 7 
schema

Source 9 
schema…

Mediator
schema

Source 9 
data model

Source 7 
data model

Wrapper 7 Wrapper 9

Mediator DM

Mediator DM

Q1.1 Q1.3

Q2

Q2.4 Q2.6



Many-mediator systems
• Each mediator interacts with a 

subset of the sources
• Mediators interact w/ each other
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Mediator DM

Source 1 
schema

Source 3 
schema…

Mediator
schema

Source 3 
data model

Q result

Source 1 
data model

Wrapper 1 Wrapper 3

Source 4 
schema

Source 6 
schema…

Mediator
schema

Source 6 
data model

Source 4 
data model

Wrapper 4 Wrapper 6

Source 7 
schema

Source 9 
schema…

Mediator
schema

Source 9 
data model

Source 7 
data model

Wrapper 7 Wrapper 9

Mediator DM

Mediator DM

Q1.1 res. Q1.3 res.

Q2
result

Q2.4 res. Q2.6 res.

• Size: Small
• Data mapping/query translation 

have complex logics



Connecting the source schemas
to the global schema

Architectures for Big Data (TPTDATAIA921)         Ioana Manolescu 25

Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Wrapper 1 Wrapper 3

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

Wrapper 2

• Sample scenario: 



Connecting the source schemas
to the global schema
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• Data only exists in the sources.
• Applications only have access to, and only query, 

the mediator schema. 

• How to express the relation between
– the mediator schema acccessible to applications, and
– the source schemas reflecting the real data
– so that a query over the mediator schema can be

automatically translated into a query over the source 
schemas ?

• Three approaches exist (see next)



Connecting the source schemas to the 
global schema: Global-as-view (GAV)

s1:ParisHotels(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price), 

Restaurant(city, street, name, rating)

Defining Hotel as a view over the source schemas:
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel
Defining Restaurant as a view over the source schemas:
define view Restaurant as select * from s3:Restaurant
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Connecting the source schemas to the 
global schema: Global-as-View
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



Query processing in global-as-view (GAV)
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel

Query: 

select * from Hotel where city='Paris' and price<200 becomes:

select * from (select 'Paris' as city... union... select 'Lyon' as city...)
where city='Paris' and price < 200                      which becomes:

select * from (select 'Paris' as city...)
where city='Paris' and price < 200                     which becomes: 

select * from s1:ParisHotels where price < 200
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Query processing in global-as-view (GAV)
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define view Hotel as
select 'Paris' as city, street, name, null as roomDesc, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, descr as roomDesc, price from s2:LyonHotel
define view Restaurant as select * from s3:Restaurant

Query: 
select h.street, r.rating from Hotels h, Restaurant r where h.city=r.city and 
r.city='Lyon' and and h.street=r.street and h.price<200                                becomes: 
select h.street, r.rating from (select 'Paris' as city... from s1:ParisHotels
union all select 'Lyon' as city... from s2:LyonHotel) h, (select * from s3:Restaurant) r 
where h.city=r.city and r.city='Lyon' and h.street=r.street and h.price<200 

which becomes: 
select h.street,r.rating from (select ... from s2:LyonHotel) h, s3:Restaurant r where
r.city='Lyon' and h.street=r.street and h.price<200                                which becomes:
select h.street, r.rating from s2:LyonHotel h, s3.Restaurant r where r.city='Lyon' and 
h.price<200 and h.street=r.street



Concluding remarks on global-as-view
(GAV)

• Query processing = view unfolding: replacing the 
view name with its definition
– Just like queries over views in a centralized database
– Heuristic: push as many operators (select, project, join; 

navigate…) on the sources as possible

• Weakness: changes in the data sources require
changes of the global schema
– In the worst case, all applications written based on this

global schema need to be updated
– Hard to maintain
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Global-as-View: Adding a new source
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 4  schema
GrenobleHotel(street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



Global-as-View: Removing a source (1)
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



Global-as-View: Removing a source (2)
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
ParisPackage(hotelName, hotelAddress, 
restaurantName, restaurantRating)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

If Source3.Restaurant withdraws, the ParisPackage relation in the 
global schema becomes empty; applications cannot even access
Source1.ParisHotels, even though they are still available.



Connecting the source schemas to the 
global schema: Local-as-view (LAV)

s1:ParisHotel(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price), Restaurant(city, street, name, rating)

Defining s1:ParisHotels as a view over the global schema:
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
Defining s2:LyonHotel as a view over the global schema:
define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice
from Hotel where city='Lyon'
Defining s3:Restaurant as a view over the global schema:
define view s3:Restaurant as
select * from Restaurant
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Connecting the source schemas to the 
global schema: Local-as-View

Architectures for Big Data (TPTDATAIA921)         Ioana Manolescu 36

Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



GAV and LAV  have different expressive 
power

• Some GAV scenarios cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress, 

r.name as restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The view only contains (hotel, restaurant) pairs that are 
on the same street in Paris

• Not possible to express this with LAV mappings
– LAV describes each source individually w.r.t. the global schema
– Not in correlation with data available in other sources !
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GAV and LAV  have different expressive 
power

• There exist LAV scenarios that cannot be
expressed in GAV

• Example: s3:MHotels(city, street, name, price) only has 
data about Marseille hotels, s4:WHotels(city, street, 
name price) has only data about Wien hotels
– Assume Hotels is defined as: 

select * from Mhotels union all select * from WHotels
– A query about hotels in Rome will also be sent to s3 and s4, 

although it will bring no results
– LAV query processing avoids this (see next)
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GAV and LAV  have different expressive 
power

• There exist GAV scenarios that cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress, r.name as 
restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The closest we can do is define s1.ParisHotel and s3.Restaurants each as a 
projection over ParisPackage

• But this changes the semantics of ParisPackage: 
– It does not express that only Paris restaurants are in ParisPackage
– Not possible to express that only (hotel, restaurants) on the same street are 

available through the integration system  
– ParisPackage becomes the cartesian product of ParisHotel with all 

restaurants... 
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Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice from Hotel
where city='Lyon’

define view s3:Restaurant as
select * from Restaurant

Query: 
select h.street, h.price, r.rating
from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street
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Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
define view s2:LyonHotel as
select street, name, descr as roomDesc, price as 
roomPrice from Hotel where city='Lyon'
define view s3:Restaurant as
select * from Restaurant
Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street
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Step 1: identify
potentially useful
views



Query processing in Local-as-View (LAV)

Step 2: generate view combinations that may
be used to answer the query (one view for each
query table): 

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and each
view, check:

– If the view returns the attributes we
need:
• Those returned by the query, and 
• Those on which possible query

joins are based
– If the view selections (if any) are 

compatible with those of the query
If one condition is not met, discard the 
view combination.

define view s1:ParisHotels as 
select street, name, price as roomPrice
from Hotel where city='Paris'
The  query needs: 
– street, price, rating (returned): the view

provides them
– city and street for the join: street is

provided, city is not (but it is a constant, thus
known)

The view has a selection on the city which the 
query does not have à The view provides part
of the data needed by the query.  The view
selection is compatible with the query.
The view s1:ParisHotels is OK.

define view s3:Restaurant as select * from
Restaurant
The view s3:Restaurants is OK. 
The view combination s1:ParisHotels, 
s3:Restaurants is OK provided that
Restaurant.city is set to Paris. 
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Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street



Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one 
view for each table in the query): 

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and 
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views, 
possibly selections and projections à
rewriting

Query rewriting using s1:ParisHotels and 
s3:Restaurant:
select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street

This is a partial rewriting, and so is:

Query rewriting using s2:LyonHotel and 
s3:Restaurant:
select h.street, h.price, r.rating
from s2:LyonHotels h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street
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Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one 
view for each table in the query): 

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and 
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views, 
possibly selections and projections à
rewriting
Step 5: return the union of the rewritings 
thus obtained

Full query rewriting:

select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street
union all 
select h.street, h.price, r.rating
from s2:LyonHotel h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street
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Query processing in Local-as-View (LAV)
define view s1:ParisHotels as... from Hotel where city='Paris'
define view s2:LyonHotel as... from Hotel where city='Lyon'
define view s3:Restaurant as select * from Restaurant
Query: 
select h.street, h.price, r.rating
from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street

Rewriting of the query using the views:

select h1.street, h1.price, r3.rating
from s1:ParisHotels h1, s3:Restaurant r3
where h1.city=r3.city and h1.street=r3.street

union all 

select h2.street, h2.price, r3.rating
from s2:LyonHotels h2, s3:Restaurant r3
where h2.city=r3.city and h2.street=r3.street

Architectures for Big Data (TPTDATAIA921)         Ioana Manolescu 45



Concluding remarks on
Local-as-View (LAV)

Query processing
• The problem of finding all rewritings given the source and 

global schemas and the view definitions = view-based
query rewriting, NP-hard in the size of the (schema+view
definitions). 
– These are often much smaller than the data

The schema definition is more robust:
• One can independently add/remove sources from the 

system without the global schema being affected at all 
(see next)

• Thus, no application needs to be aware of the changes in 
the schema
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Local-as-View: adding a new source
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Source 1 schema
ParisHotels(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Source 4  schema
GrenobleHotel(street, 
name, rating)

We add a new mapping
relating the new source 
to the global schema. 
Invisible to the applications!



Local-as-View: Removing a source
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Source 1 schema
ParisHotels(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

We remove the mapping
of the removed source.
ParisHotels still available.
Invisible to the applications!



Connecting the source schemas to the global 
schema: Global-Local-as-View (GLAV)

Generalizes both GAV and LAV
1 mapping = 1 pair (query over 1 or several sources schemas, 

query over the mediator schema)

Semantics: there is a tuple in QiMediator(...) for each result of QiSources(...)
• A GAV mapping is a particular case of GLAV mapping where QMediator is exactly

one mediator relation
• A LAV mapping is a particular case of GLAV mapping where QSources is exactly

one source relation
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Q1Mediator(m:r1, m:r2, m:r3, ...) ßà Q1Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q2Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q3Sources(s1:t1, s2:t1, ...)



Connecting the source schemas to the global 
schema: Global-Local-as-View (GLAV)
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Source 1 schema
Source 3  schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Q1Mediator

Q1Sources



Connecting the source schemas to the global 
schema: Global-Local-as-View (GLAV)
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Source 1 schema
Source 3  schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Q2Mediator

Q2Sources



Global-Local-as-View: example
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Previous LAV mapping of Source 1:
Q1Mediator: select street, name, price as roomPrice from Hotel where city='Paris'
Q1Sources:    select * from ParisHotel

Source 3  schema
Restaurants(city, street, 
name, rating)



Global-Local-as-View: example
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Previous GAV mapping of Hotel:
Q2Mediator: select * from Hotel
Q2Sources:    select 'Paris' as city, street, name, null as descr, roomPrice as price from ParisHotel

union 
select 'Lyon' as city, street, name, roomDesc as descr, roomPrice as price from LyonHotel

Source 3  schema
Restaurants(city, street, 
name, rating)



Global-Local-as-View: example
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
SuperOffer(Hotel, Restaurant, hCity, 
hPrice, rRating) 

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

New GLAV mapping: 
Q3Mediator: select * from SuperOffer where hCity='Lyon'
Q3Sources:   select lh.name, r.name, h.roomPrice * 0.5 as hPrice, r.rating as rRating

from LyonHotel lh, Restaurants r 
where r.city='Lyon' and name='Lion d'Or' and r.street=lh.street

Source 3  schema
Restaurants(city, street, 
name, rating)

This cannot be expressed
either in LAV or GAV.

This mapping says: "each result of Q3Sources leads to a SuperOffer in Lyon".
Other mappings could define more SuperOffers in Lyon, or in other cities, or with rRating=3... 



Query Processing in GLAV

Architectures for Big Data (TPTDATAIA921)         Ioana Manolescu 55

Source 1 
schema

Mediator schema

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

R1(...)       R2(...)       R3(...)       R4(...) ...

Source 1 
schema

Source 1 
schema

User queries asked on the 
mediator schema.
Q1Mediator, Q2Mediator, ... are 
queries over this schema
1. Apply LAV-style rewriting 

considering each QiMediator
as a view over the mediator
schema.
– This leads to rewritings 

of Q over QiMediator
relations (Q1Mediator, 
Q2Mediator, ...)

2. For each such rewriting, in 
GAV style, replace the symbol
QiMediator by the query
QiSources. 
– Then unfold à query

over the sources 
themselves. 

Examples: find all super offers in 
Paris? in Lyon? 



Concluding remarks on GLAV

• The most flexible approach
– Can express LAV, GAV, and more

• If a source changes or sources are added, as long as 
Q1Sources can be rewritten, applications will not be
impacted
– Only the "invisible" part of the system (the mappings) may

have to be adapted

• Query rewriting remains expensive because it
includes view-based query rewriting (NP-hard) as 
well as query unfolding (simple)
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Modern mediators: 
GLAV with RDF global schema
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Source 1 
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1 
schema

Source 1 
schema

Idea 1: RDF global schema
• Flexible! 
• We can use ontologies to add

semantics
Idea 2: write GLAV mappings, e.g.:
1. Q1Sources: an SQL query

returning (x, y, z) tuples
Q1Mediator: 
(x, 'friend', y), (y, 'worksfor' z)
Q1Mediator "creates RDF out of 
relational data"

2. Q2Sources: a JSON query
returning (z) nodes
Q2Mediator: 
(z, 'type', Company) 

If common z value, the graphs built
by Q1,2Mediator connect!



Modern mediators: 
GLAV with RDF global schema
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Source 1 
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1 
schema

Source 1 
schema

PhD Maxime BURON (2017-2020)

BDA PhD Award 2020, now a 
post-doc at Oxford

Obi-Wan system:

https://pages.saclay.inria.fr/maxi
me.buron/projects/obi-wan/

Also: OntoP @ U. Bolzano, Oxford

https://pages.saclay.inria.fr/maxime.buron/projects/obi-wan/


Concluding remarks on mediators

• Data integration: treat several data sources as a single one 
– Old problem that is not going away (quite the contrary)!

• Needs: 
1. Understand the sources and how they relate to the global schema we

want
2. Then, either: 

1. Extract the data from the sources,
transform it into the global schema, and 
load it into a data warehouse (ETL), or

2. Devise a mediator which interacts with the sources and provides the illusion 
of a single database. 
We have seen GAV, LAV and GLAV mediation. 
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DATA SPACES, DATA LAKES
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Data spaces

• "Data spaces" (Franklin, Halevy, Maier, 2005): 
– Many heterogeneous data sources...
– On a single or on multiple machines
– But, unlike data integration systems, the sources 

• May not be structured: text, email, Web pages, directories... 
– Therefore, different data models, or unstructured (text)

• May not reside in databases
– Therefore, limited query language

• Too many sources, too heterogeneous à
integrated schema hard or impossible to defineà
no integrated schema!
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Data spaces
• How to query the data space? 

Use keywords!
• User query: kw1, kw2, …, kwm
• Answers:

– From a text file: minimal text
fragments that contain all kwds

– From a database:
• One tuple it if contains all the

kwds, or
• A few tuples if they join and they contain all the kwds, or
• A minimal JSON tree that contains all the kwds,  etc.

– Score to decide which answers to return first
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Data lakes
• Popular term, started around 2010 (cca)
• Mostly in companies
• Many data sources: hundreds, thousands
– Most of the time relational. Also: text, JSON
– Developed more or less independently of each other, 

with no knowledge of each other
• Different schemas; different names for same things; 

slightly different semantics (e.g., "customer" vs. "customer
who bought something in the last year")

– Some relationships probably exist between the 
schemas of the different databases

– ... but finding and expressing them has become
beyond current human capacity
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Data lake: usage
• Positive vendor vision:

• The hard part is BLEND because this requires understanding data which...
– Has been designed 10 years ago by someone who has since left the company...
– Was meant for (or was gathered by) an application the company no longer uses..
– Lacks documentation (or the documentation obsolete)...
– Overlaps partially with a few other sources and (it is feared) with many others...

• No point in learning from data we don't understand!
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Data lakes: problems and products
• Problems: 

– Automatically summarizing a data source: data profiling
– Identifying relationships between different data sources: data 

matching, data profiling, data cleaning
• So that the data lake is not a "data swamp"
• Build an understanding/relationships between the data sources 

over time
– Query processing over data sources whose relationships are well

understood follow the mediator or the warehouse (ETL) path

Data lake products: 
• https://www.ibm.com/analytics/data-management/data-lake
• https://blogs.oracle.com/emeapartnerbiepm/oracle-analytics-

cloud-data-lake-edition-available
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