
BIG DATA ARCHITECTURES:
- INTRODUCING DISTRIBUTION
- HANDLING HETEROGENEITY

Ioana Manolescu 1Architectures for Big Data (TPTDATAIA921)

From databases to Big Data

Architectures for Big Data (TPT-DATAAI921) IPP, 2021-2022 Ioana Manolescu 2

Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed

main-memory
databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures

From databases to Big Data

Architectures for Big Data (TPT-DATAAI921) IPP, 2021-2022 Ioana Manolescu 3

Relational DBMS:

Schema: set of tables

Denormalize
the data

JSON
DBMS

XML
DBMS

Give up on
a priori
schema

Add semantics
to data

Allow multiple
object types

RDF
DBMS

Property
graph
DBMS

Key-value
DBMS

Property
graph + RDF

DBMS

Heterogeneous
data model DBMS:

mediators, data lakes,
integrated graphs

Dimensions of Big Data architectures

• Data model(s):
– Relations, trees (XML, JSON), graphs (RDF, others…), nested

relations
– Query language

• Heterogeneity (DM, QL): none, some, a lot
• Hardware:

– Hardware type: from disk to memory
– Scale of distribution: small (~10-20 sites) or large (~10.000 sites)

• ACID properties
• Interoperability and control:

– Who decides: data structure, data publication, data placement
– What is the logical relation between datasets, how do they relate?
– Who does what when processing queries or updates

Ioana Manolescu 4Architectures for Big Data (TPTDATAIA921)

DISTRIBUTED RELATIONAL
DATABASES

Ioana Manolescu 5Architectures for Big Data (TPTDATAIA921)

Distributed relational databases
• Oldest distributed architecture ('70s): IBM System R*
• Illustrate/introduce the main priciples
• Data is relational (tables).
• Data is distributed among many nodes (sites, peers...)

– Data catalog: information on which data is stored where
• Catalog stored at a master/central server.
• E.g., « Paris sales are stored in Paris », « Lyon sales are

stored in Paris », « Client data is stored in London », etc.
• Queries are distributed (may come from any site)

– First analyzed through catalog
• Query processing is distributed

– Operators may run on different sites à network transfer

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 6

Traditional distributed relational
databases (since 1970)

Servers DB1@site1: R1(a,b), S1(a,c)
Server DB2@site2: R2(a,b), S2(a,c),
Server DB3@site3: R3(a,b), S3(a,c) defined as:

select * from DB1.S1 union all
select * from DB2.S2 union all
select R1.a as a, R2.b as c
from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a

DB3@site3 decides what to import from site1, site2 (« hard links »)
Site1, site2 are independent servers
Also: replication policies, distribution etc. (usually with one or a few
masters)
Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 7

Query evaluation in distributed
relational database: query unfolding

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 8

DB1: R1(a,b), S1(a,c)
DB2: R2(a,b), S2(a,c),
DB3: R3(a,b), S3(a,c) defined as:

select * from S1 union all
select * from S2 union all
select r1.a as a, r2.b as c
from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a

Query on DB3:

select a
from S3
where a = 3;

The query is formulated on S3,
but there is no actual data there!
• The query is reformulated (or

unfolded) based on the
definition of S3

In classical DBMSs, a query over a view is also unfolded (demo)

How is a query unfolded?

• Based on logical algebra

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 9

Distributed query optimization
Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4} 16 plans!

R@s1 S@s2 T@s3 U@s4

q@s5

?

? ?

Plan pruning criteria if all the sites and network
connections have equal performance:
• Ship the smaller collection

R@s1 T@s3

S@s2

q@s4
One choice:

@s1

@s1

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 10

Distributed query optimization
Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4

16 plans!
One choice:

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network
connections have equal performance:

• Ship the smaller collection
• Transfer to join partner or the query site

@s1

@s2

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 11

Distributed query optimization
Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4

16 plans!
One choice:

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network
connections have equal performance:

• Ship the smaller collection.
• Transfer to join partner or the query site

This plan illustrates total effort != response time

@s1

@s2

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 12

Distributed query optimization
technique: semijoin reducers

• R join S = (R semijoin S) join S

– Useful in distributed settings to reduce transfers: if the
distinct S.b values are smaller than the non-joining R tuples

– Example: 1.000.000 tuples in R, 1.000.000 tuples in S,
900.000 distinct values of R.a, 10 distinct values of S.b

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 13

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more
exactly:

Distributed query optimization
technique: semijoin reducers

• R join S = (R semijoin S) join S

– Useful in distributed settings to reduce transfers: if the distinct S.b
values are smaller than the non-matching R tuples

– Symetrical alternative: R join S = R join (S semijoin R)
– This gives one more alternative in every join à search space

explosion
– Heuristics [Stocker, Kossmann et al., ICDE 2001]

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 14

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more
exactly:

Modern distributed databases:
H-Store (à VoltDB)

• From the team of Michael Stonebraker
(Turing Award, author of the Postgres system)
– H-Store: research prototype
– VoltDB: commercial product issued from H-Store

• Main goal: quick OLTP (online transaction processing),
e.g., sales, likes, posts...

• Built to run on cluster for horizontal scalability

• Share-nothing architecture: each node stores tables
shards (+ k replication for durability)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 15

Frequent concept in Big Data
architectures: shards

• Shard = small fragment of a data collection (e.g., a table)
• The assignment of data items (e.g., tuples)

into shards is often done by hashing on
tuple key
– The table must have at least one key
– Assume R.a is key of R. Then, for each tuple r from R:

• Compute h(r.a) = k
• Tuple r will be part of shard number k

– Hashing ensures (with high probability) uniform
distribution

• Key-based hashing is a very frequent data distribution
mechanism!

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 16

Transactions in H-Store

• Applications call stored procedures = code which also
contains SQL queries
– Each contained SQL query is partially unknown (depends

on parameters specified at runtime);
H-Store "pre-optimizes" it

– E.g., purchaseProduct(productID, clientID, cardNo)
• 1 transaction = 1 call of a stored procedure

– E.g., purchaseProduct(prod101, cl10, 12345678)

• Can be submitted to any node, together with parameters
• The node can run the procedure up to the query(ies) à

updated, completely known plan à transaction manager

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 17

Modern distributed database:
MemSQL (à SingleStore)

MemSQL runs with
– a master aggregator, responsible of the metadata

(catalog)
– possibly more

aggregators
– at least one leaf,

each of which
stores part(s) of
some table(s)

– In each leaf, there
are partitions
(by default: 1 per CPU core)

Availability group: a set of machines + a set of replica
machines (one-to-one)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 18

Query processing in MemSQL
• Indexes managed within each partition
• In general, every query runs with a level of parallelism equal to the

number of partitions

• Select queries are executed by the leaves which hold some
partition(s) with data matching the query

• Aggregation queries run at the leaves involved and at the
aggregator(s)

• Join queries
– Easy if one input is a reference (small) table: one that is

replicated fully to every machine in the cluster
– Otherwise, they recommend sharing the shard key across

tables to be joined
• Also called co-partitioning, we will be seeing this again

– Otherwise, joins will incur data transfer within the cluster.

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 19

MEDIATOR SYSTEMS:
HETEROGENEOUS DATA INTEGRATION

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 20

Common data model
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language,

and schema (also called source schemas).
– DM and QL may or may not differ across sources

• A mediator with its own DM, QL and mediator schema
– Queries are asked against the mediator schema

• Wrappers interface the sources to the mediator’s model

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 21

Source 1
schema

Source n
schema

…

Mediator
schema

Query
Q

Mediator data model

Source 1
schema

Source n
schema…

Mediator
schema

Source n
data model

Query
Q

Source 1
data model

Wrapper Wrapper

Common data model
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language,

and schema (also called source schemas).
– DM and QL may differ across sources

• A mediator with its own DM, QL and mediator schema

• ACID: mostly read-only; size: small
• Control: Independent publishing; mediator-driven integration

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 22

Source 1
schema

Source n
schema

…

Mediator
schema

Query
Q

Mediator data model

Source 1
schema

Source n
schema…

Mediator
schema

Source n
data model

Query
Q

Source 1
data model

Wrapper Wrapper

Many-mediator systems
• Each mediator interacts with a subset of

the sources
• Mediators interact w/ each other

– A mediator can play the role of a
source for processing a given query

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 23

Mediator DM

Source 1
schema

Source 3
schema…

Mediator
schema

Source 3
data model

Query
Q

Source 1
data model

Wrapper 1 Wrapper 3

Source 4
schema

Source 6
schema…

Mediator
schema

Source 6
data model

Source 4
data model

Wrapper 4 Wrapper 6

Source 7
schema

Source 9
schema…

Mediator
schema

Source 9
data model

Source 7
data model

Wrapper 7 Wrapper 9

Mediator DM

Mediator DM

Q1.1 Q1.3

Q2

Q2.4 Q2.6

Many-mediator systems
• Each mediator interacts with a

subset of the sources
• Mediators interact w/ each other

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 24

Mediator DM

Source 1
schema

Source 3
schema…

Mediator
schema

Source 3
data model

Q result

Source 1
data model

Wrapper 1 Wrapper 3

Source 4
schema

Source 6
schema…

Mediator
schema

Source 6
data model

Source 4
data model

Wrapper 4 Wrapper 6

Source 7
schema

Source 9
schema…

Mediator
schema

Source 9
data model

Source 7
data model

Wrapper 7 Wrapper 9

Mediator DM

Mediator DM

Q1.1 res. Q1.3 res.

Q2
result

Q2.4 res. Q2.6 res.

• Size: Small
• Data mapping/query translation

have complex logics

Connecting the source schemas
to the global schema

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 25

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Wrapper 1 Wrapper 3

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

Wrapper 2

• Sample scenario:

Connecting the source schemas
to the global schema

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 26

• Data only exists in the sources.
• Applications only have access to, and only query,

the mediator schema.

• How to express the relation between
– the mediator schema acccessible to applications, and
– the source schemas reflecting the real data
– so that a query over the mediator schema can be

automatically translated into a query over the source
schemas ?

• Three approaches exist (see next)

Connecting the source schemas to the
global schema: Global-as-view (GAV)

s1:ParisHotels(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price),

Restaurant(city, street, name, rating)

Defining Hotel as a view over the source schemas:
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel
Defining Restaurant as a view over the source schemas:
define view Restaurant as select * from s3:Restaurant

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 27

Connecting the source schemas to the
global schema: Global-as-View

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 28

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Query processing in global-as-view (GAV)
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel

Query:

select * from Hotel where city='Paris' and price<200 becomes:

select * from (select 'Paris' as city... union... select 'Lyon' as city...)
where city='Paris' and price < 200 which becomes:

select * from (select 'Paris' as city...)
where city='Paris' and price < 200 which becomes:

select * from s1:ParisHotels where price < 200

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 29

Query processing in global-as-view (GAV)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 30

define view Hotel as
select 'Paris' as city, street, name, null as roomDesc, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, descr as roomDesc, price from s2:LyonHotel
define view Restaurant as select * from s3:Restaurant

Query:
select h.street, r.rating from Hotels h, Restaurant r where h.city=r.city and
r.city='Lyon' and and h.street=r.street and h.price<200 becomes:
select h.street, r.rating from (select 'Paris' as city... from s1:ParisHotels
union all select 'Lyon' as city... from s2:LyonHotel) h, (select * from s3:Restaurant) r
where h.city=r.city and r.city='Lyon' and h.street=r.street and h.price<200

which becomes:
select h.street,r.rating from (select ... from s2:LyonHotel) h, s3:Restaurant r where
r.city='Lyon' and h.street=r.street and h.price<200 which becomes:
select h.street, r.rating from s2:LyonHotel h, s3.Restaurant r where r.city='Lyon' and
h.price<200 and h.street=r.street

Concluding remarks on global-as-view
(GAV)

• Query processing = view unfolding: replacing the
view name with its definition
– Just like queries over views in a centralized database
– Heuristic: push as many operators (select, project, join;

navigate…) on the sources as possible

• Weakness: changes in the data sources require
changes of the global schema
– In the worst case, all applications written based on this

global schema need to be updated
– Hard to maintain

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 31

Global-as-View: Adding a new source

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 32

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 4 schema
GrenobleHotel(street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Global-as-View: Removing a source (1)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 33

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Global-as-View: Removing a source (2)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 34

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
ParisPackage(hotelName, hotelAddress,
restaurantName, restaurantRating)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

If Source3.Restaurant withdraws, the ParisPackage relation in the
global schema becomes empty; applications cannot even access
Source1.ParisHotels, even though they are still available.

Connecting the source schemas to the
global schema: Local-as-view (LAV)

s1:ParisHotel(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price), Restaurant(city, street, name, rating)

Defining s1:ParisHotels as a view over the global schema:
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
Defining s2:LyonHotel as a view over the global schema:
define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice
from Hotel where city='Lyon'
Defining s3:Restaurant as a view over the global schema:
define view s3:Restaurant as
select * from Restaurant

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 35

Connecting the source schemas to the
global schema: Local-as-View

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 36

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

GAV and LAV have different expressive
power

• Some GAV scenarios cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress,

r.name as restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The view only contains (hotel, restaurant) pairs that are
on the same street in Paris

• Not possible to express this with LAV mappings
– LAV describes each source individually w.r.t. the global schema
– Not in correlation with data available in other sources !

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 37

GAV and LAV have different expressive
power

• There exist LAV scenarios that cannot be
expressed in GAV

• Example: s3:MHotels(city, street, name, price) only has
data about Marseille hotels, s4:WHotels(city, street,
name price) has only data about Wien hotels
– Assume Hotels is defined as:

select * from Mhotels union all select * from WHotels
– A query about hotels in Rome will also be sent to s3 and s4,

although it will bring no results
– LAV query processing avoids this (see next)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 38

GAV and LAV have different expressive
power

• There exist GAV scenarios that cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress, r.name as
restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The closest we can do is define s1.ParisHotel and s3.Restaurants each as a
projection over ParisPackage

• But this changes the semantics of ParisPackage:
– It does not express that only Paris restaurants are in ParisPackage
– Not possible to express that only (hotel, restaurants) on the same street are

available through the integration system
– ParisPackage becomes the cartesian product of ParisHotel with all

restaurants...

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 39

Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice from Hotel
where city='Lyon’

define view s3:Restaurant as
select * from Restaurant

Query:
select h.street, h.price, r.rating
from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 40

Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
define view s2:LyonHotel as
select street, name, descr as roomDesc, price as
roomPrice from Hotel where city='Lyon'
define view s3:Restaurant as
select * from Restaurant
Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 41

Step 1: identify
potentially useful
views

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that may
be used to answer the query (one view for each
query table):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and each
view, check:

– If the view returns the attributes we
need:
• Those returned by the query, and
• Those on which possible query

joins are based
– If the view selections (if any) are

compatible with those of the query
If one condition is not met, discard the
view combination.

define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
The query needs:
– street, price, rating (returned): the view

provides them
– city and street for the join: street is

provided, city is not (but it is a constant, thus
known)

The view has a selection on the city which the
query does not have à The view provides part
of the data needed by the query. The view
selection is compatible with the query.
The view s1:ParisHotels is OK.

define view s3:Restaurant as select * from
Restaurant
The view s3:Restaurants is OK.
The view combination s1:ParisHotels,
s3:Restaurants is OK provided that
Restaurant.city is set to Paris.

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 42

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one
view for each table in the query):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views,
possibly selections and projections à
rewriting

Query rewriting using s1:ParisHotels and
s3:Restaurant:
select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street

This is a partial rewriting, and so is:

Query rewriting using s2:LyonHotel and
s3:Restaurant:
select h.street, h.price, r.rating
from s2:LyonHotels h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 43

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one
view for each table in the query):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views,
possibly selections and projections à
rewriting
Step 5: return the union of the rewritings
thus obtained

Full query rewriting:

select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street
union all
select h.street, h.price, r.rating
from s2:LyonHotel h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 44

Query processing in Local-as-View (LAV)
define view s1:ParisHotels as... from Hotel where city='Paris'
define view s2:LyonHotel as... from Hotel where city='Lyon'
define view s3:Restaurant as select * from Restaurant
Query:
select h.street, h.price, r.rating
from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Rewriting of the query using the views:

select h1.street, h1.price, r3.rating
from s1:ParisHotels h1, s3:Restaurant r3
where h1.city=r3.city and h1.street=r3.street

union all

select h2.street, h2.price, r3.rating
from s2:LyonHotels h2, s3:Restaurant r3
where h2.city=r3.city and h2.street=r3.street

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 45

Concluding remarks on
Local-as-View (LAV)

Query processing
• The problem of finding all rewritings given the source and

global schemas and the view definitions = view-based
query rewriting, NP-hard in the size of the (schema+view
definitions).
– These are often much smaller than the data

The schema definition is more robust:
• One can independently add/remove sources from the

system without the global schema being affected at all
(see next)

• Thus, no application needs to be aware of the changes in
the schema

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 46

Local-as-View: adding a new source

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 47

Source 1 schema
ParisHotels(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Source 4 schema
GrenobleHotel(street,
name, rating)

We add a new mapping
relating the new source
to the global schema.
Invisible to the applications!

Local-as-View: Removing a source

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 48

Source 1 schema
ParisHotels(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

We remove the mapping
of the removed source.
ParisHotels still available.
Invisible to the applications!

Connecting the source schemas to the global
schema: Global-Local-as-View (GLAV)

Generalizes both GAV and LAV
1 mapping = 1 pair (query over 1 or several sources schemas,

query over the mediator schema)

Semantics: there is a tuple in QiMediator(...) for each result of QiSources(...)
• A GAV mapping is a particular case of GLAV mapping where QMediator is exactly

one mediator relation
• A LAV mapping is a particular case of GLAV mapping where QSources is exactly

one source relation

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 49

Q1Mediator(m:r1, m:r2, m:r3, ...) ßà Q1Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q2Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q3Sources(s1:t1, s2:t1, ...)

Connecting the source schemas to the global
schema: Global-Local-as-View (GLAV)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 50

Source 1 schema
Source 3 schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Q1Mediator

Q1Sources

Connecting the source schemas to the global
schema: Global-Local-as-View (GLAV)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 51

Source 1 schema
Source 3 schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Q2Mediator

Q2Sources

Global-Local-as-View: example

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 52

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Previous LAV mapping of Source 1:
Q1Mediator: select street, name, price as roomPrice from Hotel where city='Paris'
Q1Sources: select * from ParisHotel

Source 3 schema
Restaurants(city, street,
name, rating)

Global-Local-as-View: example

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 53

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Previous GAV mapping of Hotel:
Q2Mediator: select * from Hotel
Q2Sources: select 'Paris' as city, street, name, null as descr, roomPrice as price from ParisHotel

union
select 'Lyon' as city, street, name, roomDesc as descr, roomPrice as price from LyonHotel

Source 3 schema
Restaurants(city, street,
name, rating)

Global-Local-as-View: example

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 54

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
SuperOffer(Hotel, Restaurant, hCity,
hPrice, rRating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

New GLAV mapping:
Q3Mediator: select * from SuperOffer where hCity='Lyon'
Q3Sources: select lh.name, r.name, h.roomPrice * 0.5 as hPrice, r.rating as rRating

from LyonHotel lh, Restaurants r
where r.city='Lyon' and name='Lion d'Or' and r.street=lh.street

Source 3 schema
Restaurants(city, street,
name, rating)

This cannot be expressed
either in LAV or GAV.

This mapping says: "each result of Q3Sources leads to a SuperOffer in Lyon".
Other mappings could define more SuperOffers in Lyon, or in other cities, or with rRating=3...

Query Processing in GLAV

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 55

Source 1
schema

Mediator schema

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

R1(...) R2(...) R3(...) R4(...) ...

Source 1
schema

Source 1
schema

User queries asked on the
mediator schema.
Q1Mediator, Q2Mediator, ... are
queries over this schema
1. Apply LAV-style rewriting

considering each QiMediator
as a view over the mediator
schema.
– This leads to rewritings

of Q over QiMediator
relations (Q1Mediator,
Q2Mediator, ...)

2. For each such rewriting, in
GAV style, replace the symbol
QiMediator by the query
QiSources.
– Then unfold à query

over the sources
themselves.

Examples: find all super offers in
Paris? in Lyon?

Concluding remarks on GLAV

• The most flexible approach
– Can express LAV, GAV, and more

• If a source changes or sources are added, as long as
Q1Sources can be rewritten, applications will not be
impacted
– Only the "invisible" part of the system (the mappings) may

have to be adapted

• Query rewriting remains expensive because it
includes view-based query rewriting (NP-hard) as
well as query unfolding (simple)

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 56

Modern mediators:
GLAV with RDF global schema

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 57

Source 1
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1
schema

Source 1
schema

Idea 1: RDF global schema
• Flexible!
• We can use ontologies to add

semantics
Idea 2: write GLAV mappings, e.g.:
1. Q1Sources: an SQL query

returning (x, y, z) tuples
Q1Mediator:
(x, 'friend', y), (y, 'worksfor' z)
Q1Mediator "creates RDF out of
relational data"

2. Q2Sources: a JSON query
returning (z) nodes
Q2Mediator:
(z, 'type', Company)

If common z value, the graphs built
by Q1,2Mediator connect!

Modern mediators:
GLAV with RDF global schema

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 58

Source 1
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1
schema

Source 1
schema

PhD Maxime BURON (2017-2020)

BDA PhD Award 2020, now a
post-doc at Oxford

Obi-Wan system:

https://pages.saclay.inria.fr/maxi
me.buron/projects/obi-wan/

Also: OntoP @ U. Bolzano, Oxford

https://pages.saclay.inria.fr/maxime.buron/projects/obi-wan/

Concluding remarks on mediators

• Data integration: treat several data sources as a single one
– Old problem that is not going away (quite the contrary)!

• Needs:
1. Understand the sources and how they relate to the global schema we

want
2. Then, either:

1. Extract the data from the sources,
transform it into the global schema, and
load it into a data warehouse (ETL), or

2. Devise a mediator which interacts with the sources and provides the illusion
of a single database.
We have seen GAV, LAV and GLAV mediation.

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 59

DATA SPACES, DATA LAKES

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 60

Data spaces

• "Data spaces" (Franklin, Halevy, Maier, 2005):
– Many heterogeneous data sources...
– On a single or on multiple machines
– But, unlike data integration systems, the sources

• May not be structured: text, email, Web pages, directories...
– Therefore, different data models, or unstructured (text)

• May not reside in databases
– Therefore, limited query language

• Too many sources, too heterogeneous à
integrated schema hard or impossible to defineà
no integrated schema!

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 61

Data spaces
• How to query the data space?

Use keywords!
• User query: kw1, kw2, …, kwm
• Answers:

– From a text file: minimal text
fragments that contain all kwds

– From a database:
• One tuple it if contains all the

kwds, or
• A few tuples if they join and they contain all the kwds, or
• A minimal JSON tree that contains all the kwds, etc.

– Score to decide which answers to return first

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 62

Data lakes
• Popular term, started around 2010 (cca)
• Mostly in companies
• Many data sources: hundreds, thousands
– Most of the time relational. Also: text, JSON
– Developed more or less independently of each other,

with no knowledge of each other
• Different schemas; different names for same things;

slightly different semantics (e.g., "customer" vs. "customer
who bought something in the last year")

– Some relationships probably exist between the
schemas of the different databases

– ... but finding and expressing them has become
beyond current human capacity

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 63

Data lake: usage
• Positive vendor vision:

• The hard part is BLEND because this requires understanding data which...
– Has been designed 10 years ago by someone who has since left the company...
– Was meant for (or was gathered by) an application the company no longer uses..
– Lacks documentation (or the documentation obsolete)...
– Overlaps partially with a few other sources and (it is feared) with many others...

• No point in learning from data we don't understand!
Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 64

Data lakes: problems and products
• Problems:

– Automatically summarizing a data source: data profiling
– Identifying relationships between different data sources: data

matching, data profiling, data cleaning
• So that the data lake is not a "data swamp"
• Build an understanding/relationships between the data sources

over time
– Query processing over data sources whose relationships are well

understood follow the mediator or the warehouse (ETL) path

Data lake products:
• https://www.ibm.com/analytics/data-management/data-lake
• https://blogs.oracle.com/emeapartnerbiepm/oracle-analytics-

cloud-data-lake-edition-available

Architectures for Big Data (TPTDATAIA921) Ioana Manolescu 65

https://www.ibm.com/analytics/data-management/data-lake
https://blogs.oracle.com/emeapartnerbiepm/oracle-analytics-cloud-data-lake-edition-available

