
Architectures for Big Data

Transactional (ACID) properties
in distributed systems

1TPT-DATAIA-921 Architectures for Big Data

Ioana Manolescu
Inria Saclay & Ecole Polytechnique

ioana.manolescu@inria.fr
http://pages.saclay.inria.fr/ioana.manolescu

mailto:Ioana.manolescu@inria.Fr
http://pages.saclay.inria.fr/ioana.manolescu/

From databases to Big Data

TPT-DATAIA-921 Architectures for Big Data Ioana Manolescu 2

Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed

main-memory
databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures

Recall: Fundamental database
properties: ACID
• Atomicity: either all operations involved in a

transactions are done, or none of them is
• E.g. bank payment

• Consistency: application-dependent constraint
E.g. every client has a single birthdate

• Isolation: concurrent operations on the database are
executed as if each ran alone on the system
• E.g. if a debit and a credit operation run concurrently, the

final result is still correct
• Durability: data will not be lost nor corrupted even in

the presence of system failure during operation
execution

Ioana Manolescu 3

Jim Gray, ACM Turing Award 1998 for « fundamental contributions to databases and
transaction management »TPT-DATAIA-921 Architectures for Big Data

Limits of ACIDity in large distributed
systems: the CAP theorem
• Eric Brewer, « Symposium on Principles of Distributed

Computing », 2000 (conjecture)
• Proved in 2002

• No distributed system can simultaneously provide
1. Consistency (all nodes see the same data at the

same time)
2. Availability (node failures do not prevent survivors

from continuing to operate)
3. Partition tolerance (the system continues to

operate despite arbitrary message loss)

Ioana Manolescu 4TPT-DATAIA-921 Architectures for Big Data

CAP theorem by example
• Primary and replica store
• Applications A and B on servers
• Client writes a new d value

through A, which propagates d to
the replica (replacing the old d’)

• Subsequently, client reads from B

Ioana Manolescu 5TPT-DATAIA-921 Architectures for Big Data

What if a failure occurs in the system?
Communication missed between primary and replica
1. If we want Partition tolerance (let the system function) à the

Client reads old data (no Consistency)
2. If we want Consistency, e.g. make the write+replica msg an

atomic transaction (to avoid missed communications) à no
Availability (we may wait for the msg forever if failure)

CAP theorem: what can we do?
• Partition tolerance: we must

have it (cannot block if one
machine fails)

• Then one must trade some
consistency for availability

Ioana Manolescu 6TPT-DATAIA-921 Architectures for Big Data

Eventual consistency model:
• The replication message is asynchronous (non-blocking)
• N1 keeps sending the message until acknowledge by N2 (eventually

the replica and primary store are consistent)
• In the mean time, the client works on inconsistent data (« I had

already removed this from the basket once! »)

NoSQL systems vs. CAP theorem

Ioana Manolescu 7TPT-DATAIA-921 Architectures for Big DataModern systems (e.g. NoSQL) arose exactly because partition tolerance is a must in large-
scale distributed systems

More on CAP theorem

• ACID properties focus on consistency: business
databases (sales, administration...)
• BASE: Basically Available, Soft state, Eventually

consistent
• Modern NoSQL systems are typically BASE

• "Partition" in fact corresponds to a timeout (when do
we decide that we waited enough)
• Different nodes in the system may have different opinion on

whether there is a partition
• Each node can go in "partition mode"

• Different systems provide different ACID/BASE
guarantees. Important to understand them!

TPT-DATAIA-921 Architectures for Big Data Ioana Manolescu 8

Choices in the ACID-BASE
spectrum
• Yahoo! PNUTS: give up strong consistency to avoid

high latency. The master copy is always "nearby"
the user
• Facebook: the master copy is always remote,

however updates go directly to the master copy
and this is also where users' reads go for 20
seconds. After that, the user traffic reverts to the
closer copy.

TPT-DATAIA-921 Architectures for Big Data Ioana Manolescu 9

Choices in the ACID-BASE
spectrum
• Amazon DynamoDB, Cassandra, Ryak:

• In normal functioning, there is a master node for each
data item

• All writes to a data item are sent to its master node,
then synchronously replicated to W other nodes

• All reads requests are synchronously sent to R nodes.
• R+W <= N, thus there may be inconsistent reads.
• Cassandra allows « weak reads » (W=1) and also « quorum

reads » (better consistency, 4x slower)
• In some situations, e.g., failure of a master node, or load

balancing may, updates for 1 data item may end up on
different master nodes
• Potential inconsistencies

TPT-DATAIA-921 Architectures for Big Data Ioana Manolescu 10

What do to in case of
inconsistency?

1. Merge copies: find a commonly agreed upon version
• Concurrent Versioning Systems (CVS, SVN, GIT) do this

pretty well but not always
• Some conflicts remain to be solved by the user

2. Limit the operation set to have fewer conflicts and/or
easier to solve
• E.g., Google Docs solves conflicts by allowing only style

change and add/delete text
• E.g., using only commutative operations: there is always a

way to rearrange a set of operations in a preferred consistent
global order

1. Addition is commutative
2. Addition with a bounds check is not

TPT-DATAIA-921 Architectures for Big Data Ioana Manolescu 11

From CAP to PACELC
CAP states that a network partition causes the system to have to
decided between less availability and less consistency
• No network partition à no problem (we can have ACID!)
However, in a Big Data system, replication (usually across a WAN)
is required to guarantee against eventual component failure.

A more global way to think about performance trade-offs is
PACELC (« passelk »):
• If there is a network Partition, how does the system trade

between Availability and Consistency?
• Else, how does the system trade between Latency and

Consistency?

TPT-DATAIA-921 Architectures for Big Data Ioana Manolescu 12

