
Architectures for Big Data
Structured data management on top

of massively parallel platforms

Ioana Manolescu
Inria Saclay & Ecole Polytechnique

ioana.manolescu@inria.fr
http://pages.saclay.inria.fr/ioana.manolescu/

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 1

mailto:Ioana.manolescu@inria.Fr
http://pages.saclay.inria.fr/ioana.manolescu/

From databases to Big Data

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 2

Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed

main-memory
databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures

Outline
• MapReduce and other massively parallel platforms are

becoming the norm for large-scale computing
• How to build Big Data management architectures based

on such architectures ?
• We will see:
– Improving data access performance
– Implementing algebraic operations on MapReduce
– Query optimization revisited for MapReduce (also multi-

query optimization)
– A few visible Big Data platforms implemented on top of

MapReduce clusters
– Some open problems in this area

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 3

4

Recall: Map/Reduce outline

map

map

map

map vk

reduce

reduce

k

mapper

mapper

mapper

mapper

reducer

reducer

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

MergeInput Map
function

Sort Shuffle Reduce
function Output

vkvk

vk vk

vk vk vk vk

vk vk vk vk

vk

vk

vk

vk

k v v v v

vk

vk
vk v

vk
vk
vk
vk

vk v v v

vk
vk
vk

vk v v

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Data management based on
MapReduce

How can a DBMS architecture
be established on top of a
distributed computing
platform?
• Store (distribute) the data

in a distributed file system
– How to split it?
– How to store it?

• Process queries in a parallel
fashion based on
MapReduce
– How to evaluate operators?
– How to optimize queries

5

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)

Recall:
classical

query
processing

pipeline
in a

database

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

IMPROVING DATA ACCESS
PERFORMANCE IN A DISTRIBUTED FILE
SYSTEM

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 6

Data access in Hadoop

7

• Basic model: read all the data
– If the tasks are selective, we don't really

need to!

• Database indexes? But:
– Map/Reduce works on top of a file

system (e.g. Hadoop file system, HDFS)
– Data is stored only once
– Hard to foresee all future processing
• "Exploratory nature" of Hadoop

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Accelerating data access in Hadoop

• Idea 1: Hadop++ [JQD2011]
– Add header information to each

data split, summarizing split
attribute values

– Modify the RecordReader of HDFS,
used by the Map().
Make it prune irrelevant splits

8

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Accelerating data access in Hadoop

• Idea 2: HAIL [DQRSJS12]
– Each storage node builds an

in-memory, clustered index of the
data in its split

– There are three copies of each
split for reliability à
Build three different indexes!

– Customize RecordReader

9

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Accelerating data access in a Hadoop-
like distributed file system

10

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

STRUCTURED BIG DATA MANAGEMENT

THROUGH THE MAPREDUCE
FRAMEWORK

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 11

First idea: write a MapReduce program for each
query

1212

Data storage: HDFS

MapReduce program

Parallel execution engine
• 1 master
• N slaves

Query (e.g. SQL)

12

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)
Database

management
system

MapReduce
cluster

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

First idea: write a MapReduce program
for every query

Examples:
• SELECT MONTH(c.start_date), COUNT(*)
FROM customer c
GROUP BY MONTH(c.start_date)

• SELECT c.name, o.total
FROM customer c, order o
WHERE c.id=o.cid

• SELECT c.name, SUM(o.total)
FROM customer c, order o
WHERE c.id=o.cid
GROUP BY c.name

13Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Chosen logical plan

Users did less work when using a DBMS!
How to regain this for Big Data?

SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Chosen physical plan

Chosen physical planExecution engine

Ioana Manolescu 14TPT-DATAIA921 Architectures for Big Data

Second idea: new architecture for
structured DM on top of MapReduce

Language parser

TPT-DATAIA921 Architectures for Big Data 15

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management
task specified in

dedicated language

Ioana Manolescu

Use a MapReduce program for every
physical operator

1616

Data storage: HDFS

1st logical query plan

Query optimizer for MR

Chosen MR-based physical plan

Parallel execution engine
• 1 master
• N slaves

Query (e.g. SQL)

16

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)
Database

management
system

MapReduce
setting

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing physical operators on
MapReduce

• To avoid writing code for each query!

• If each operator is a (small) MapReduce program, we
can evaluate queries by composing such small
programs

• The optimizer can then chose the best MR physical
operators and their orders (just like in the traditional
setting)

• Translate:
– Unary operators (s and p)
– Binary operators (mostly: on equality, i.e. equijoin)
– N-ary operators (complex join expressions)

17Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing unary operators on
MapReduce

• Selection (σpred (R)):
– Split the R input tuples over all the nodes
– Map:

foreach t which satisfies pred in the input
partition
• Output (hn(t.toString()), t); // hn fonction de hash

– Reduce:
• Concatenate all the inputs

What values should hn take?

18Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing unary operators on
MapReduce

• Projection (π cols(R)):
– Split R tuples across all nodes
– Map:

foreach t
output (hn(t), πcols(t))

– Reduce:
• Concatenate all the inputs

• Better idea?

19Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Recall: physical operators for binary
joins (classical DBMS scenario)

Nested loops join:
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS;

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { t ß R.next; put(hash(t.a), t); }
While (!endOf(S)) { t ß S.next;

matchingR = get(hash(S.b));
output(matchingR x t);

}

O(|R|x|S|)
O(|R|+|S|)

O(|R|+|S|)

Example: equi-join (R.a=S.b)

Also:
Block nested loops join
Index nested loops join
Hybrid hash join
Hash groups / teams
…

Ioana Manolescu 20TPT-DATAIA921 Architectures for Big Data

Implementing equi-joins on MapReduce (1)

Repartition join [Blanas 2010] (~symetric hash)

Mapper:
• Output (t.a, («R», t)) for each t in R
• Output (t.b, («S», t)) for each t in S
Reducer:
• Foreach input key k
– Resk = set of all R tuples on k ×

set of all S tuples on k
• Output Resk

R S
R.a=S.b

Ioana Manolescu 21TPT-DATAIA921 Architectures for Big Data

Implementing equi-joins on MapReduce (1)
Repartition join

• R(rID, rVal) join(rID = SID) S(sID, sVal)

22

2

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing equi-joins on MapReduce (2)

• Semijoin-based MapReduce join
• Recall: semijoin optimization technique:
– R join S = (R semijoin S) join S

– Useful in distributed settings to reduce transfers: if the
distinct S.b values are smaller than the non-matching R
tuples

– Symetrical alternative: R join S = R join (S semijoin R)

23

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or more
exactly:

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing equi-joins on MapReduce (2)

• Semijoin-based MapReduce join

24Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join [Blanas2010]
If |R| << |S|, broadcast R to all nodes!
• Example: S is a log data collection (e.g. log table)
• R is a reference table e.g. with user names,

countries, age, …
• Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.
Reduce: nothing (« map-only join »)

25

R S
R.a=S.b

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing equi-joins on
MapReduce (4)

• Trojan Join [Dittrich 2010]
• A Map task is sufficient for the join if relations are already co-

partitioned by the join key
– The slice of R with a given join key is already next to the slice of S with the

same join key
– This can be achieved by a MapReduce job similar to repartition join but

which builds co-partitions at the end

– Useful when the joins can be known in advance (e.g. keys – foreign keys)

26

Co-partitioned split

Co-group Co-group
HR DR HS DS HR DR HS DS…

Co-partitioned split

Co-group
HR DR HS DS ……

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing binary equi-joins in
MapReduce

Algorithm + -

Repartition Join Most general Not always the most
efficient

Semijoin-based Join Efficient when semijoin is
selective (has small results)

Requires several jobs, one
must first do the semi-join

Broadcast Join Map-only One table must be very
small

Trojan Join Map-only The relations should be co-
partitioned

27Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing n-ary (« multiway »)
join expressions in MapReduce

• R(RID, C) join T(RID, SID, O) join S(SID, L)
• « Mega » operator for the whole join expression?...

• Three relations, two join attributes (RID and SID)
• Split the SIDs into Ns groups and the RIDs in Nr groups.

Assume Nr x Ns reducers available.
• Hash T tuples according to a composite key made of the

two attributes. Each T tuple goes to one reducer.
• Hash R and S tuples on partial keys (RID, null) and (null,

SID)
• Distribute R and S tuples to each reducer where the non-

null component matches (potentially multiple times!)

28Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Implementing multi-way joins in MR: replicated joins

29

RID=1 SID=1

RID=1 SID=2

RID=2 SID=1

RID=2 SID=2

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

Particular case of multi-way joins:
star joins on MapReduce

• Same join attribute in all relations:
R(x, y) join S(x, z) join T(x, u)

• If N reducers are available, it suffices to
partition the space of x values in N

• Then co-partition R, S, T à map-only join

30

R(Y, X) S(X, Z,)

T(
U,

 X
)

Ioana ManolescuTPT-DATAIA921 Architectures for Big Data

QUERY OPTIMIZATION FOR
MAPREDUCE

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 31

Query optimization for MapReduce
• Given a query over relations R1, R2, …, Rn, how

to translate it into a MapReduce program?
– Use one replicated join. Pbm: the space of

composite join keys (Att1|Att2|…|Attk) is limited
by the number of reducers à
may shuffle some tuples to many reducers.

– Use n-1 binary joins
– Use n-ary (multiway) joins only

What is the full space of alternatives?
How to explore it?

32TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

RDF query optimization for
MapReduce

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 33

Language parser

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management
task specified in

dedicated language

How can we
manage large
volumes of Linked
Open Data (RDF)
based on
MapReduce?

RDF query optimization for
MapReduce

• Standard query language for RDF: SPARQL
• Relational vs. RDF data modeling:

– Relational: 2 atoms
Person(id, name, birthdate), Address(pID, street, city, zipcode, country)

– RDF: 7 atoms
triple(pID, hasName, ?name), triple(pID, bornOn, ?birthDate), triple(pID,
hasAddress, ?aID), triple(?aID, hasStreet, ?street), triple(?aID, hasCity,
?city), triple(?aID, hasZip, ?zipCode), triple(?aID, hasCountry, ?country)

– SPARQL query optimization is a stress test for MapReduce platforms

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 34

pid

name

birthdate

aID

street

city

zipcode

country

hasNam
e

hasAddress
hasStreet

hasZip

hasCountry
hasCity

bornOn

Query plans on MapReduce

T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11

Query:

Left deep plans with binary joins:
[Olston08][Rohloff10][Schatzle11]

Height=10

35TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}

Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins:

[Papailiou13]

Height=7

T3T2T1

T5T4

T7

T6

T10T8

T11

T9

T12

36TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins

[Papailiou13]
– Bushy plans with binary joins:

[Neumann10][Tsialiamanis12][Gubichev14] Height=5

T3T2T1 T5T4 T7T6

T11

T8

T9 T10

37TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins

[Papailiou13]
– Bushy plans with binary joins

[Neumann10][Tsialiamanis12][Gubichev14]
– Bushy plans with n-ary joins only at leaves:

[Wu11][Kim11][Huang11][Ravindra11][Lee13]

Height=4

T3T2T1 T5T4 T7T6

T1
1

T8 T9

T10

38TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins

[Papailiou13]
– Bushy plans with binary joins

[Neumann10][Tsialiamanis12][Gubichev14]
– Bushy plans with n-ary joins only at leaves

[Wu11][Kim11][Huang11][Ravindra11][Lee13]
– Bushy plans with n-ary joins:
[Husain11][Goasdoué2015][Wu2017]

Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10
39TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Query plans on MapReduce
• Usually, each join layer is

translated into a set of
parallel MR jobs

• The plan height = the
number of successive jobs

• Impacts execution time!

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 40

Height=10

40

Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10

T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11

Query plans in CliqueSquare
[Goasdoué2015]

• Goal: build flat plans for RDF queries by exploiting
n-ary (star) equality joins.

• Idea: identify cliques = subsets of n >= 2 triples sharing a common
variable, use an n-ary join to combine them
• Then find another clique and similarly join them, etc.
• …
• Until all triples have been joined

41TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

CliqueSquare algorithm:
Variable Graphs

Represent queries and intermediary results

SELECT ?x ?y
WHERE {
T1: ?x takesCourse ?y .
T2: ?x member ?z .
T3: ?w advisor ?x .
T4: ?w name ?u .}

T1 T2

T3

?x

?x

?x

T4

?w

Query Variable graph

Nodes are connected with an edge if they share a variable

42TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

States

T3T2T1 T5T4 T7T6 T9T8 T10T11

Each node of a graph corresponds to a clique of
nodes of the previous graph.

A join operator corresponds to the "collapsing"
of one clique (triples that all join on the same

variables) into a single node

43

CliqueSquare: optimization with n-ary joins

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

σ σ σ σ σ σ

π

Ø Reading the triples from HDFS requires a Map Scan (MS) operator

44TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

Ø Logical selections (σ) are translated to physical selections (F)

45TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

Ø First level joins are translated to Map side joins (MJ) taking advantage of the
data partitioning (triples stored three times, hashed by subject, property, object)

46TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

RJ RJ

Ø All subsequent joins are translated to Reduce side joins (RJ)

47TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Group the physical operators into Map/Reduce tasks and jobs

48TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Selections (F) and projections (π) belong to the same task as their child operator

49TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Map joins (MJ) along with all their descendants are executed in the same task

50TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Any other operator (RJ or MS) is executed in a separate task

51TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

JOB 1

Ø Tasks are grouped into jobs in a bottom-up traversal

52

JOB 2

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Structured DM on top of MapReduce

• We have seen:
– Techniques for improving data access selectivity in a

distributed file system (headers; multiple indexes)
– Algorithms for implementing operators: select,

project, join
– Query optimization for massively parallel, n-ary joins

• Next:
– A few highly visible systems
– Some of their mechanisms for consistency in a

distributed setting

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 53

Apache projects around Hadoop

• Hive: relational-like interface on top of
Hadoop

• HiveQL language:
CREATE table pokes (foo INT, bar STRING);
SELECT a.foo FROM invites a WHERE a.ds='2008-08-15’;
FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar)
INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo,
t2.foo;
+ possibility to plug own Map or Reduce function when
needed…

54TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Apache projects around Hadoop

• HBASE: very large tables on top of HDFS («goal: billions of
rows x millions of columns »), based on « sharding »

• Apache version of Google’s BigTable [CDG+06] (used for
Google Earth, Web indexing etc.)

• Main strong points:
– Fast access to individual rows
– read/write consistency
– Selection push-down (~ Hadoop++)

• Does not have: column types, query language, …

55TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

Apache projects around Hadoop
• PIG: rich dataflow (« SQL + PL/SQL » style) language on

top of Hadoop
• Suited for many-step data transformations (« extract-

transform-load »)

• Flexible data model (~ nested relations)
• Some nesting in the language (< 2 FOREACH J)

A = LOAD 'student' USING PigStorage()
AS (name:chararray, age:int, gpa:float);

B = FOREACH A GENERATE name;
DUMP B;

π name

student

A

B

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 56

Apache projects around Hadoop
• PIG: rich dataflow (« SQL + PL/SQL » style) language

on top of Hadoop

57

A = LOAD 'data' AS (f1:int,f2:int,f3:int);
DUMP A;
(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
B = GROUP A BY f1;
DUMP B;
(1,{(1,2,3)}) (4,{(4,2,1),(4,3,3)}) (7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})
X = FOREACH B GENERATE COUNT(A);
DUMP X;
(1L) (2L) (1L) (2L)

Γ f1

data

A

B
count(*)

X

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

PigLatin: repeated execution of some
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

s1

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www,
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

s2

TPT-DATAIA921 Architectures for Big Data 58Ioana Manolescu

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin: repeated execution of some
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

s1

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www,
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

s2

r

45% of the original s1 + s2 execution time

TPT-DATAIA921 Architectures for Big Data 59Ioana Manolescu

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin: repeated execution of some
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www,
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

Join

45% of the original s1 + s2 execution time

TPT-DATAIA921 Architectures for Big Data 60

s1 s2

r

Ioana Manolescu

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin: repeated execution of some
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www,
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

Join

Left outer join

45% of the original s1 + s2 execution time

TPT-DATAIA921 Architectures for Big Data 61

s1 s2

r

Ioana Manolescu

Reuse-based optimizer within Pig [CCH+16]

Reuse-based optimizer

Hadoop
MapReduce

Pig Latin parser

Results

Pig Latin logical optimizer

MapReduce compiler and optimizer

Script
2

Script
n...

Script
1 Optimizer:

• Translates PigLatin
programs into
nested relational
algebra for bags

• Applies equivalence
laws to identify
repeated
subexpressions

• Replaces all but one
of the
subexpressions,
reuses the result of
the last

• Reduced execution
time by x4

TPT-DATAIA921 Architectures for Big Data Ioana Manolescu 62

References
• [BPERST10] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita and Y. Tian, “A

Comparison of Join Algorithms for Log Processing in MapReduce,” in SIGMOD
2010.

• [LMDMcGS11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and
Prashant Shenoy. "A Platform for Scalable One-Pass Analytics using
MapReduce", ACM SIGMOD 2011

• [DQRSJS] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, Jorg Schad. "Only Aggressive Elephants are Fast Elephants", VLDB
2012

• [Goasdoué2015] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz and S.
Zampetakis. "CliqueSquare: Flat plans for massively parallel RDF Queries", ICDE
2015

• [JQD11] A.Jindal, J.-A.Quiané-Ruiz and J.Dittrich. "Trojan Data Layouts: Right
Shoes for a Running Elephant" SOCC, 2011

• [MW19] N. Makrynioti and V. Vassalos. "Declarative Data Analytics: A Survey",
2019

• [Wu2017] Buwen Wu ; Yongluan Zhou ; Hai Jin ; Amol Deshpande. "Parallel
SPARQL Query Optimization", ICDE 2017

63TPT-DATAIA921 Architectures for Big Data Ioana Manolescu

