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From databases to Big Data
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Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed
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databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures



Outline
• MapReduce and other massively parallel platforms are 

becoming the norm for large-scale computing
• How to build Big Data management architectures based

on such architectures ?
• We will see:
– Improving data access performance
– Implementing algebraic operations on MapReduce
– Query optimization revisited for MapReduce (also multi-

query optimization)
– A few visible Big Data platforms implemented on top of 

MapReduce clusters
– Some open problems in this area 
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Recall: Map/Reduce outline

map

map

map

map vk

reduce

reduce

k

mapper

mapper

mapper

mapper

reducer

reducer

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

MergeInput Map
function

Sort Shuffle Reduce
function Output

vkvk

vk vk

vk vk vk vk

vk vk vk vk

vk

vk

vk

vk

k v v v v

vk

vk
vk v

vk
vk
vk
vk

vk v v v

vk
vk
vk

vk v v

Ioana ManolescuTPT-DATAIA921        Architectures for Big Data     



Data management based on 
MapReduce

How can a DBMS architecture 
be established on top of a 
distributed computing
platform? 
• Store (distribute) the data

in a distributed file system
– How to split it?
– How to store it?

• Process queries in a parallel
fashion based on 
MapReduce
– How to evaluate operators?
– How to optimize queries

5

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)

Recall: 
classical

query
processing

pipeline
in a 

database
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IMPROVING DATA ACCESS
PERFORMANCE IN A DISTRIBUTED FILE 
SYSTEM
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Data access in Hadoop

7

• Basic model: read all the data
– If the tasks are selective, we don't really 

need to!

• Database indexes? But:
– Map/Reduce works on top of a file 

system (e.g. Hadoop file system, HDFS)
– Data is stored only once
– Hard to foresee all future processing
• "Exploratory nature" of Hadoop

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
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Accelerating data access in Hadoop

• Idea 1: Hadop++ [JQD2011]
– Add header information to each 

data split, summarizing split 
attribute values

– Modify the RecordReader of HDFS, 
used by the Map(). 
Make it prune irrelevant splits

8

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
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Accelerating data access in Hadoop

• Idea 2: HAIL [DQRSJS12] 
– Each storage node builds an 

in-memory, clustered index of the 
data in its split

– There are three copies of each 
split for reliability à
Build three different indexes! 

– Customize RecordReader

9

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
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Accelerating data access in a Hadoop-
like distributed file system

10

Data Load

Map()

Local sort

Map write

Merge

Reduce

Final write
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STRUCTURED BIG DATA MANAGEMENT 

THROUGH THE MAPREDUCE
FRAMEWORK
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First idea: write a MapReduce program for each
query

1212

Data storage: HDFS

MapReduce program

Parallel execution engine
• 1 master
• N slaves

Query (e.g. SQL)
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Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)
Database

management
system

MapReduce 
cluster
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First idea: write a MapReduce program 
for every query

Examples: 
• SELECT MONTH(c.start_date), COUNT(*) 
FROM customer c
GROUP BY MONTH(c.start_date) 

• SELECT c.name, o.total
FROM customer c, order o 
WHERE c.id=o.cid

• SELECT c.name, SUM(o.total) 
FROM customer c, order o 
WHERE c.id=o.cid
GROUP BY c.name
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Chosen logical plan

Users did less work when using a DBMS! 
How to regain this for Big Data?

SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and 
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Chosen physical plan

Chosen physical planExecution engine
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Second idea: new architecture for 
structured DM on top of MapReduce

Language parser
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Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management 
task specified in 

dedicated language
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Use a MapReduce program for every
physical operator

1616

Data storage: HDFS

1st logical query plan

Query optimizer for MR

Chosen MR-based physical plan

Parallel execution engine
• 1 master
• N slaves

Query (e.g. SQL)

16

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)
Database

management 
system

MapReduce
setting
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Implementing physical operators on 
MapReduce

• To avoid writing code for each query!

• If each operator is a (small) MapReduce program, we
can evaluate queries by composing such small
programs

• The optimizer can then chose the best MR physical
operators and their orders (just like in the traditional
setting)

• Translate:
– Unary operators ( s and p )
– Binary operators (mostly:        on equality, i.e. equijoin)
– N-ary operators (complex join expressions)
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Implementing unary operators on 
MapReduce

• Selection (σpred ( R )):
– Split the R input tuples over all the nodes
– Map: 

foreach t which satisfies pred in the input 
partition
• Output (hn(t.toString()), t); // hn fonction de hash

– Reduce:
• Concatenate all the inputs

What values should hn take?
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Implementing unary operators on 
MapReduce

• Projection (π cols( R )):
– Split R tuples across all nodes
– Map: 

foreach t
output (hn(t), πcols(t))

– Reduce: 
• Concatenate all the inputs

• Better idea? 

19Ioana ManolescuTPT-DATAIA921        Architectures for Big Data     



Recall: physical operators for binary
joins (classical DBMS scenario)

Nested loops join: 
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)  

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS; 

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { t ß R.next; put(hash(t.a), t); }
While (!endOf(S)) { t ß S.next; 

matchingR = get(hash(S.b));
output(matchingR x t);

}

O(|R|x|S|)
O(|R|+|S|)

O(|R|+|S|)

Example: equi-join (R.a=S.b)

Also: 
Block nested loops join
Index nested loops join
Hybrid hash join
Hash groups / teams
…  
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Implementing equi-joins on MapReduce (1)

Repartition join [Blanas 2010] (~symetric hash)

Mapper:
• Output (t.a, («R», t)) for each t in R
• Output (t.b, («S», t)) for each t in S
Reducer:
• Foreach input key k
– Resk = set of all R tuples on k ×

set of all S tuples on k
• Output Resk

R S
R.a=S.b
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Implementing equi-joins on MapReduce (1) 
Repartition join

• R(rID, rVal) join(rID = SID) S(sID, sVal)

22

2
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Implementing equi-joins on MapReduce (2) 

• Semijoin-based MapReduce join
• Recall: semijoin optimization technique:
– R join S = (R semijoin S) join S

– Useful in distributed settings to reduce transfers: if the 
distinct S.b values are smaller than the non-matching R 
tuples

– Symetrical alternative: R join S = R join (S semijoin R)

23

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or more 
exactly:
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Implementing equi-joins on MapReduce (2) 

• Semijoin-based MapReduce join
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Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join [Blanas2010] 
If |R| << |S|, broadcast R to all nodes!
• Example: S is a log data collection (e.g. log table)
• R is a reference table e.g. with user names, 

countries, age, …
• Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.
Reduce: nothing (« map-only join »)

25

R S
R.a=S.b
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Implementing equi-joins on 
MapReduce (4)

• Trojan Join [Dittrich 2010]
• A Map task is sufficient for the join if relations are already co-

partitioned by the join key
– The slice of R with a given join key is already next to the slice of S with the 

same join key
– This can be achieved by a MapReduce job similar to repartition join but 

which builds co-partitions at the end

– Useful when the joins can be known in advance (e.g. keys – foreign keys)

26

Co-partitioned split

Co-group Co-group
HR DR HS DS HR DR HS DS…

Co-partitioned split

Co-group
HR DR HS DS ……
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Implementing binary equi-joins in 
MapReduce

Algorithm + -

Repartition Join Most general Not always the most
efficient

Semijoin-based Join Efficient when semijoin is
selective (has small results)

Requires several jobs, one 
must first do the semi-join

Broadcast Join Map-only One table must be very
small

Trojan Join Map-only The relations should be co-
partitioned
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Implementing n-ary (« multiway ») 
join expressions in MapReduce

• R(RID, C) join T(RID, SID, O) join S(SID, L)
• « Mega » operator for the whole join expression?...

• Three relations, two join attributes (RID and SID)
• Split the SIDs into Ns groups and the RIDs in Nr groups. 

Assume Nr x Ns reducers available. 
• Hash T tuples according to a composite key made of the 

two attributes. Each T tuple goes to one reducer.
• Hash R and S tuples on partial keys (RID, null) and (null, 

SID) 
• Distribute R and S tuples to each reducer where the non-

null component matches (potentially multiple times!)

28Ioana ManolescuTPT-DATAIA921        Architectures for Big Data     



Implementing multi-way joins in MR: replicated joins

29

RID=1 SID=1

RID=1 SID=2

RID=2 SID=1

RID=2 SID=2
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Particular case of multi-way joins: 
star joins on MapReduce

• Same join attribute in all relations: 
R(x, y) join S(x, z) join T(x, u)

• If N reducers are available, it suffices to 
partition the space of x values in N 

• Then co-partition R, S, T à map-only join

30

R(Y,  X) S(X, Z,)

T(
U,

  X
)
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QUERY OPTIMIZATION FOR 
MAPREDUCE
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Query optimization for MapReduce
• Given a query over relations R1, R2, …, Rn, how 

to translate it into a MapReduce program?
– Use one replicated join. Pbm: the space of 

composite join keys (Att1|Att2|…|Attk) is limited
by the number of reducers à
may shuffle some tuples to many reducers. 

– Use n-1 binary joins
– Use n-ary (multiway) joins only

What is the full space of alternatives? 
How to explore it? 
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RDF query optimization for 
MapReduce
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Language parser

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management 
task specified in 

dedicated language

How can we 
manage large 
volumes of Linked 
Open Data (RDF) 
based on 
MapReduce?



RDF query optimization for 
MapReduce

• Standard query language for RDF: SPARQL
• Relational vs. RDF data modeling: 

– Relational: 2 atoms
Person(id, name, birthdate), Address(pID, street, city, zipcode, country)

– RDF: 7 atoms
triple(pID, hasName, ?name), triple(pID, bornOn, ?birthDate), triple(pID, 
hasAddress, ?aID), triple(?aID, hasStreet, ?street), triple(?aID, hasCity, 
?city), triple(?aID, hasZip, ?zipCode), triple(?aID, hasCountry, ?country)

– SPARQL query optimization is a stress test for MapReduce platforms
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Query plans on MapReduce

T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11

Query:

Left deep plans with binary joins:
[Olston08][Rohloff10][Schatzle11]

Height=10
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SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}



Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins:

[Papailiou13]

Height=7

T3T2T1

T5T4

T7

T6

T10T8

T11

T9

T12
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Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins

[Papailiou13]
– Bushy plans with binary joins:

[Neumann10][Tsialiamanis12][Gubichev14] Height=5

T3T2T1 T5T4 T7T6

T11

T8

T9 T10
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Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins

[Papailiou13]
– Bushy plans with binary joins

[Neumann10][Tsialiamanis12][Gubichev14]
– Bushy plans with n-ary joins only at leaves:

[Wu11][Kim11][Huang11][Ravindra11][Lee13]

Height=4

T3T2T1 T5T4 T7T6

T1
1

T8 T9

T10
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Query plans on MapReduce
– Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
– Left deep plans with n-ary joins

[Papailiou13]
– Bushy plans with binary joins

[Neumann10][Tsialiamanis12][Gubichev14]
– Bushy plans with n-ary joins only at leaves

[Wu11][Kim11][Huang11][Ravindra11][Lee13]
– Bushy plans with n-ary joins:
[Husain11][Goasdoué2015][Wu2017]

Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10
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Query plans on MapReduce
• Usually, each join layer is

translated into a set of 
parallel MR jobs

• The plan height = the 
number of successive jobs 

• Impacts execution time!
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Height=10

40

Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10

T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11



Query plans in CliqueSquare
[Goasdoué2015]

• Goal: build flat plans for RDF queries by exploiting 
n-ary (star) equality joins.

• Idea: identify cliques = subsets of n >= 2 triples sharing a common 
variable, use an n-ary join to combine them
• Then find another clique and similarly join them, etc.
• …
• Until all triples have been joined
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CliqueSquare algorithm: 
Variable Graphs

Represent queries and intermediary results

SELECT ?x ?y
WHERE {
T1: ?x takesCourse ?y .
T2: ?x member ?z .
T3: ?w advisor ?x .
T4: ?w name ?u .}

T1 T2

T3

?x

?x

?x

T4

?w

Query Variable graph

Nodes are connected with an edge if they share a variable
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States

T3T2T1 T5T4 T7T6 T9T8 T10T11

Each node of a graph corresponds to a clique of 
nodes of the previous graph. 

A join operator corresponds to the "collapsing" 
of one clique (triples that all join on the same 

variables) into a single node

43

CliqueSquare: optimization with n-ary joins
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Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

σ σ σ σ σ σ

π

Ø Reading the triples from HDFS requires a Map Scan (MS) operator
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Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

Ø Logical selections (σ) are translated to physical selections (F)
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Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

Ø First level joins are translated to Map side joins (MJ) taking advantage of the 
data partitioning (triples stored three times, hashed by subject, property, object)

46TPT-DATAIA921        Architectures for Big Data     Ioana Manolescu



Logical plan à Physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

RJ RJ

Ø All subsequent joins are translated to Reduce side joins (RJ)
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Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Group the physical operators into Map/Reduce tasks and jobs
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Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Selections (F) and projections (π) belong to the same task as their child operator
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Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Map joins (MJ) along with all their descendants are executed in the same task
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Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Any other operator (RJ or MS) is executed in a separate task
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Physical plan à MapReduce jobs

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

JOB 1

Ø Tasks are grouped into jobs in a bottom-up traversal

52

JOB 2
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Structured DM on top of MapReduce

• We have seen:
– Techniques for improving data access selectivity in a 

distributed file system (headers; multiple indexes) 
– Algorithms for implementing operators: select, 

project, join
– Query optimization for massively parallel, n-ary joins

• Next:
– A few highly visible systems
– Some of their mechanisms for consistency in a 

distributed setting
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Apache projects around Hadoop

• Hive: relational-like interface on top of 
Hadoop

• HiveQL language:
CREATE table pokes (foo INT, bar STRING);
SELECT a.foo FROM invites a WHERE a.ds='2008-08-15’;
FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) 
INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, 
t2.foo;
+ possibility to plug own Map or Reduce function when
needed… 
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Apache projects around Hadoop

• HBASE: very large tables on top of HDFS («goal: billions of 
rows x millions of columns »), based on « sharding »

• Apache version of Google’s BigTable [CDG+06] (used for 
Google Earth, Web indexing etc.)

• Main strong points: 
– Fast access to individual rows
– read/write consistency
– Selection push-down (~ Hadoop++)

• Does not have: column types, query language, …
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Apache projects around Hadoop
• PIG: rich dataflow (« SQL + PL/SQL » style) language on 

top of Hadoop
• Suited for many-step data transformations (« extract-

transform-load »)

• Flexible data model (~ nested relations)
• Some nesting in the language (< 2 FOREACH J )

A = LOAD 'student' USING PigStorage() 
AS (name:chararray, age:int, gpa:float); 

B = FOREACH A GENERATE name; 
DUMP B; 

π name

student

A

B
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Apache projects around Hadoop
• PIG: rich dataflow (« SQL + PL/SQL » style) language

on top of Hadoop

57

A = LOAD 'data' AS (f1:int,f2:int,f3:int); 
DUMP A; 
(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
B = GROUP A BY f1; 
DUMP B; 
(1,{(1,2,3)}) (4,{(4,2,1),(4,3,3)}) (7,{(7,2,5)}) 
(8,{(8,3,4),(8,4,3)}) 
X = FOREACH B GENERATE COUNT(A); 
DUMP X; 
(1L) (2L) (1L) (2L)

Γ f1

data

A

B
count(*)

X
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PigLatin: repeated execution of some 
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

s1

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, 
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

s2
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A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin: repeated execution of some 
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

s1

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, 
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

s2

r

45% of the original s1 + s2 execution time
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A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin: repeated execution of some 
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, 
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

Join

45% of the original s1 + s2 execution time
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A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = COGROUP A BY name, B BY user;
D = FOREACH C GENERATE flatten(A), flatten(B);
E = FOREACH D GENERATE name, address, time;
STORE E INTO 'S1out';
F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
STORE F INTO 'S2out';
STORE F INTO 'S3out';

PigLatin: repeated execution of some 
computations

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, time);
C = JOIN A BY name, B BY user;
D = FOREACH C GENERATE name, address, time;
STORE D INTO 'S1out';
E = JOIN A BY name LEFT, B BY user;
STORE E INTO 'S2out';

A = LOAD 'users' AS (name, address);
B = LOAD 'page_views' AS (user, www, 
time);
C = JOIN A BY name LEFT, B BY user;
STORE C INTO 'S3out';

Join

Left outer join

45% of the original s1 + s2 execution time

TPT-DATAIA921        Architectures for Big Data     61

s1 s2

r

Ioana Manolescu



Reuse-based optimizer within Pig [CCH+16]

Reuse-based optimizer

Hadoop
MapReduce

Pig Latin parser

Results

Pig Latin logical optimizer

MapReduce compiler and optimizer

Script 
2

Script 
n...

Script 
1 Optimizer:

• Translates PigLatin
programs into
nested relational
algebra for bags

• Applies equivalence
laws to identify
repeated
subexpressions

• Replaces all but one 
of the 
subexpressions, 
reuses the result of 
the last

• Reduced execution
time by x4
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