
Ioana Manolescu 3 hours November 14, 2019
Université Paris Saclay Track: D&K Architectures for Big Data
You are allowed to use : paper copies of all course and lab material

1. (1p) Give an example one application and a CAP feature such that the application can run
well on top of a system which does not (or not fully) support that feature.

2. (10p) We consider a social network database organized in relations named User, Friend,
and Post:

User(uID, name, age, city, country)
Friend(uID1, uID2)

Post(postID, uID, date, title, content, repliesTo)

where: uID denotes an user identifier, postID identifies each message (or post), repliesTo is
the identifier of a message to which this message replies, or null if this message is the first in a
conversation. A few sample tuples appear below:

User
uID name age city country
u1 Anne 25 Orsay France
u2 Ben 26 Gif France

Friend
uID1 uID2
u1 u2

Post
postID uID date title content repliesTo

p1 u1 1/6/14 "Programming" http://mashable.com/2014/04/
30/programming-is-hard.html

null

p2 u2 2/6/14 "Re: Programming" I liked that! p1

The three relations are evenly distributed over the nodes in a Hadoop cluster. Give the
Map-Reduce programs which compute:

1. (1p) For each post, the number of posts which replied to it. (We count the posts directly
in reply to the first, not replies to replies).

2. (2p) For each French user ID, the number of her friends.

3. (3p) The IDs of the 10 users having posted the largest numbers of posts.

4. (4p) We say user a is in the audience of user b if (i) a has replied to a post of b, and (ii) no
one has authored more posts to which a replied, than b. We need to compute all the (a, b)
pair such that a is in the audience of b.

Map-Reduce programs should be supplied as diagrams where each task is represented by
a rectangle and dependencies between tasks as arrows, together with a short natural-language
explanation of each task’s role and output. For instance:

M1 −→ R1

"M1 groups users by their cities, it outputs (city, user) pairs;
R1 counts the users in each city, it outputs (city, number of users) pairs”



3. (9p) An interval is a range [ts, te] where ts, te are two values (for instance, moments in time)
such that ts ≤ te; they are called the start, respectively, the end of the interval.

The so-called Allen predicates are defined on intervals; they are illustrated in the figure below,
where r1, r2 denote intervals.

Figure 1: Allen predicates and sample r1, r2 interval pairs for which they hold.

For instance, Before(r1, r2) is true if and only if After(r2, r2) is true, which holds if and only
if r1.te < r2.ts. The semantics of the other predicates is similarly defined.

Let R1, R2 be two relations, each with exactly one attribute, which is of type interval. The
interval join of R1, R2 on an Allen predicate p, noted R1 ./p R2, is defined as the set of pairs
(r1, r2) where r ∈ R1, r2 ∈ R2) such that p(r1, r2) is true.

The goal of the exercise is to study join algorithms for interval data on Map-Reduce. To help
you do that, we introduce the following helper concepts and operations:

• Let [t0, tn) be the complete (maximum) time range in which an interval can occur.

• A partitioning P of [t0, tn) is a sequence of contiguous intervals ([ti0, ti1), [ti1, ti2), . . . , [ti(l−1), til))
such that ti0 = t0 and til = tn. We may also represent a partitioning such as P by
P = (p1, p2, . . . , pl) where the partition-interval pj represents the interval [ti(j−1), tij).

• For an interval u, and partitioning P, we define:

– Project(u,P) = {(pi, u)|u.ts ∈ pi}, in other words: Project(u,P) returns a (key,
value) pair where the key is the interval pi of the partition such that the start of u is
in pi, and the value is u.

– Split(u,P) = {(pi, u)|u ∩ pi 6= ∅}, in other words: Split(u,P) returns all the (key,
value) pairs where the key is a partition interval that overlaps with u, and the value
is u.

– Replicate(u,P) = {(pi, u)|u∩ pi 6= ∅∨u.ts < pi.ts}, in other words: Replicate(u,P)
returns the set of all (key, value) pairs such that: the key is a partition interval having
at least one point which is greater than or equal to the start point of u, and the value
is u.

2



• We extend Project, Split and Replicate to sets of intervals (or, equivalently, to relations
having only one attribute of type interval), in the natural way: applying Project, Split
or Replicate on a set of intervals yields the union of the results obtained by applying the
same operator on each interval of the set. Figure 2 illustrates this.

Figure 2: Illustration of Project, Split and Replicate. R = {u, v} is a relation containing two
intervals, and P is a partition consisting of four intervals.

We consider two relations (sets of intervals) R1, R2, a Map-Reduce cluster of k machines,
and a partitioning P of k successive time intervals.

Using Project, Split, Replicate, describe a Map-Reduce implementation for the following
joins:

1. (2p) R1 ./Before R2;

2. (3p) R1 ./Overlaps R2;

3. (2p) R1 ./Contains R2;

4. (2p) R1 ./Meets R2.

Explain how the data must be partitioned in the cluster, and describe the Map-Reduce
program implementing each join.

3


