Internet

MPRI 2.26.2: Web Data Management

Antoine Amarilli

General idea

- Several scales (local vs global)
- Stack of protocols
- Embedded messages

To:	12.34.56.78	
	Page: 1 of 3	
	<html></html>	
	<head></head>	
	<body></body>	

#	Layer	Examples	Features
7	Application	HTTP, FTP, SMTP	high level task
4	Transport	TCP, UDP, ICMP	sessions, reliable data, fragmentation
3	Network	IPv4, IPv6	routing, addressing
2	Link	Ethernet, 802.11	local addresses
1	Physical	Ethernet, 802.11	physical exchange, unreliable

$\rightarrow\,$ The outermost envelopes are for the lowest layers

OSI model

Low layers

Higher layers

IP (Internet Protocol), layer 3

- Gives addresses to computers
- Routes packets between these addresses
- Can get approximate **geographic location** for an IP

	Year	Example	Addresses
IPv4	1981	208.80.152.201	\leq 2 ³²
IPv6	1998	2620:0:860:ed1a::1	\leq 2 ¹²⁸

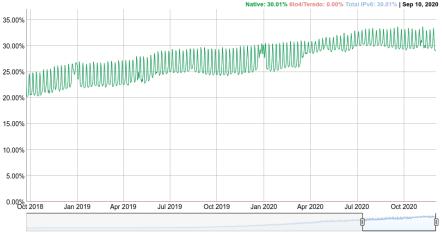
- Network Address Translation to get more IPv4 addresses
- $\rightarrow\,$ We can send messages to an address

Which proportion of traffic uses IPv6?

- \cdot **A**: less than 25%
- **B**: 25%–50%
- **C**: 50%–75%
- **D**: over 75%

Which proportion of traffic uses IPv6?

- \cdot **A**: less than 25%
- B: 25%-50%
- **C**: 50%–75%
- **D**: over 75%



Trafic IPv6 vs IPv4

https://www.google.com/intl/en/ipv6/statistics.html

Adoption de l'IPv6

Nous mesurons en permanence la disponibilité des connexions IPv6 chez les utilisateurs Google. Le graphique indique le pourcentage d'utilisateurs qui accèdent à Google via l'IPv6.

DNS (Domain Name System) – side note

- Convert names (www.wikipedia.org) to addresses (208.80.152.201)
- Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
- gTLDs, registrars, costs, effective TLDs

DNS (Domain Name System) – side note

- Convert names (www.wikipedia.org) to addresses (208.80.152.201)
- Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
- **gTLDs**, registrars, costs, effective TLDs
- Caching at several layers, security
- Special characters (IDN, Punycode...) and problems
- Useful indirection layer:
 - Several addresses per domain name (multiple services, load balancing)
 - Multiple domain names per address (virtual host)

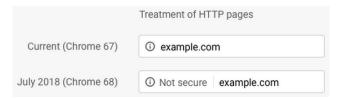
DNS (Domain Name System) – side note

- Convert names (www.wikipedia.org) to addresses (208.80.152.201)
- Hierarchy: org, wikipedia.org, en.wikipedia.org, etc.
- **gTLDs**, registrars, costs, effective TLDs
- Caching at several layers, security
- Special characters (IDN, Punycode...) and problems
- Useful indirection layer:
 - Several addresses per domain name (multiple services, load balancing)
 - Multiple domain names per address (virtual host)
- \rightarrow **Political** implications
- \rightarrow Public DNSes, alternative roots, decentralized alternatives

 $\rightarrow\,$ We can send messages to a named machine.

- IP is not **reliable**
 - \rightarrow TCP provides **delivery receipts**
- IP limits the **packet size**
 - \rightarrow TCP can **fragment** large data
- IP can **mix packets**
 - \rightarrow TCP ensures **in-order delivery**
- IP is not **multiplexed**
 - \rightarrow TCP has **sessions** and **ports** (e.g. 80 for the Web)

 $\rightarrow\,$ We can have a two-way communication channel with a machine.


OSI model

Low layers

Higher layers

TLS (Transport Layer Security), layer 5-6

- Communicating in plaintext is **risky**! (passwords, credit cards...)
- Guarantees: integrity, authenticity, confidentiality
- HTTP + TLS = HTTPS. https://.
- · Uses asymmetric cryptography
- Does not protect all **metadata**, possible **side channels** (size, etc.)
- Ongoing **push** towards HTTPS (+HSTS), marking HTTP as **insecure**

https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/

Which proportion of Web pages loaded by Chrome users is encrypted with HTTPS?^a

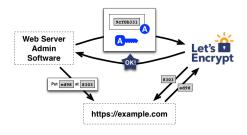
- **A**: less than 25%
- **B**: 25%–50%
- **C**: 50%–75%
- **D**: over 75%

^aSource:

https://transparencyreport.google.com/https/overview

Which proportion of Web pages loaded by Chrome users is encrypted with HTTPS?^a

- **A**: less than 25%
- **B**: 25%–50%
- **C**: 50%–75%
- D: over 75%


^aSource:

https://transparencyreport.google.com/https/overview


Let's Encrypt vs extended validation

• Let's Encrypt: automated check (ACME protocol) and signature of an HTTPS certificate

Let's Encrypt vs extended validation

 Let's Encrypt: automated check (ACME protocol) and signature of an HTTPS certificate • Extended Validation certificates: manual identify check by trusted parties

Let's Encrypt vs extended validation

 Let's Encrypt: automated check (ACME protocol) and signature of an HTTPS certificate • Extended Validation certificates: manual identify check by trusted parties

\rightarrow We have an encrypted channel between two machines

https://letsencrypt.org/how-it-works/

Wikimedia_donation_page_with_extended_validation_certificate_in_firefox.png on Wikimedia commons

- Matériel de cours inspiré de notes par Pierre Senellart et Georges Gouriten
- Merci à Pierre Senellart pour sa relecture