Semantic Web

MPRI 2.26.2: Web Data Management

Antoine Amarilli

• Information on the Web is not structured

List of joint winners of the **Hugo and Nebula** awards - Wikipedia, the ... en.wikipedia.org/.../List_of_joint_winners_of_the_**Hugo_and_Nebul**... This is a list of the works that have won both the **Hugo Award** and the **Nebula Award**, **awarded** annually to works of science fiction literature. The **Hugo** Awards ... • Information on the Web is not structured

List of joint winners of the **Hugo and Nebula** awards - Wikipedia, the ... en.wikipedia.org/.../List_of_joint_winners_of_the_**Hugo_and_Nebul**... This is a list of the works that have won both the **Hugo Award** and the **Nebula Award**, **awarded** annually to works of science fiction literature. The **Hugo** Awards ...

- This makes it difficult to:
 - Combine information from multiple sources
 - Integrate different services
 - Reason with Web data

What if we could write:

Google select ?book where ?book author ?x sex Female, ?book award Nebula, Hugo

Q

Google

What if we could write:

select ?book where ?book author ?x sex Female, ?book award Nebula, Hugo

Q

```
SELECT DISTINCT ?book ?bookLabel WHERE {
  ?book wdt:P166/(wdt:P361*[]wdt:P31)
    wd:Q194285, wd:Q188914 .
  ?book wdt:P50/wdt:P21 wd:Q6581072 .
  SERVICE wikibase:label { bd:serviceParam
    wikibase:language "[AUTO_LANGUAGE],en". }
}
```

- Most visible application today: rich search results
 - Bing https://www.bing.com/webmaster/help/ marking-up-your-site-with-structured-data-3a93e731
 - Google Search https://developers.google.com/search/docs/ guides/search-gallery
 - Yandex Search https://yandex.ru/support/webmaster/ site-content/data-transmit.html?ncrnd=4299&lang=en
- Also: SPARQL endpoints, e.g., https://query.wikidata.org/
- Indirectly: Graph databases

- Semantic Web: put structured data on the Web
- Entities: the things about which we want to express data
- Ontology: a vocabulary to talk about entities, specifying relations, classes, etc.
- **Knowledge base:** a set of assertions about entities expressed following an ontology
- Linked data: use URIs to create links between datasets
- Information extraction: creating structured information out of existing Web Data (later)

Resources (or entities)

- A resource is anything that can be referred to by a URI
 - a web page, identified by a URL
 - a **fragment of an XML document**, identified by an element node of the document,
 - · a web service,
 - an identifier, e.g., an ISBN,
 - a thing, an object, a concept, a property, etc.
- The URI does not need to be dereferenceable
- A **cool URI** is one that can be dereferenced to obtain information about the entity
 - https://www.wikidata.org/wiki/Q42

Give examples of **entities**? (be creative ;))

- Formal descriptions providing **human** users a shared understanding of a given domain
 - A controlled vocabulary
- Formally defined so that it can also be processed by machines
- Logical semantics that can be useful for reasoning
 - to answer queries (over possibly distributed data)
 - to relate objects in different data sources and integrate them
 - to detect inconsistencies or redundancies
 - \cdot to refine queries with too many answers
 - to relax queries with no answer

Where do ontologies come from?

- Manually crafted to represent the knowledge of a specific domain (e.g., life sciences)
- Exported from classical Web databases
- Automatically extracted from unstructured content
- Created collaboratively (e.g., Wikidata)
- Private to a company or public
- Value of the Semantic Web: bits of ontologies can be re-used in another, and ontologies can be mapped with owl:sameAs, owl:equivalentClass, owl:equivalentProperty, etc.

- A class denotes a set of entities; e.g., Professor, Country, Person
- An entity can be an instance of one or several classes
- Ex: MPRI instanceOf MasterProgram
- Ex: AcademicStaff **subClassOf** Staff (interpreted as set inclusion)

Give examples of **classes**? (be creative, again ;))

- A relation denotes a binary relation between objects; e.g., locatedIn, father
- Often convenient to express with a **signature** (classes for the subject and object)
- TeachesIn(AcademicStaff, Course)
 - if one states that "X TeachesIn Y", then X belongs to AcademicStaff and Y to Course
- TeachesTo(AcademicStaff, Student)
- Leads(Staff, Department)

Give examples of **relations**?

- Using full URLs for URIs is often cumbersome
 - https://www.wikidata.org/entity/Q42
- Idea: declare a namespace like wd to stand for https://www.wikidata.org/entity/
- Then you can write a **Compact URI** (aka CURIE) wd:Q42 to mean https://www.wikidata.org/entity/Q42
- This is like a simplification of XML namespaces
- Also a **default namespace**, to write :Q42
- In the slides I will just write entities like "MPRI" and ignore the issue

To summarize:

- Ontology puts the focus on the schema, or TBox
 - The set of class and relation names (= the vocabulary)
 - The signatures of relations and also constraints
 - The constraints can be used to:
 - check data consistency (like dependencies in databases)
 - infer new facts
- Knowledge base puts the focus on the instance, or ABox
 - Entities (instances of a class), and facts about them (see next)
- Many **knowledge bases** provide their own **ontology** (but may also use terms from other ontologies)

Ontology Languages for the Web

- RDF: not really an ontology language (only ABox facts)
- **RDFS:** schema for RDF, but very basic
- OWL: a much richer ontology language

RDF: Resource Description Framework

- RDF facts are **triplets**
- Each triplet is of the form: \langle **Subject Predicate Object** \rangle
- The subject is a URI, referencing an **entity** (from the same KB or a different one)
- The predicate is a URI, referencing a **relation** (from some ontology)
- The object is either a URI, referencing an **entity**, or a **literal**

(:Dupond :Leads :CSDept)
(:Dupond :HasName "Paul Dupond")
(:Dupond :TeachesIn :UE111)
(:Dupond :TeachesTo :Pierre)
(:Pierre :EnrolledIn :CSDept)
(:Pierre :RegisteredTo :UE111)
(:UE111 :OfferedBy :CSDept)

• The linked data cloud contains dozens of billions of RDF triples

- A set of RDF facts defines
 - a set of relations between objects
 - an **RDF graph** where the nodes are objects:

- A triplet (s P o) is interpreted in first-order logic (FOL) as a fact P(s, o)
- Example:

Leads(Dupond, CSDept) TeachesIn(Dupond, UE111) TeachesTo(Dupond,Pierre) EnrolledIn(Pierre, CSDept) RegisteredTo(Pierre, UE111) OfferedBy(UE111, CSDept)

- Sometimes the **object** of a statement is a literal value, e.g., a name, number, date
- Literals can come with a **language**, i.e., an ISO language name "France"@en
- They can have a data type, which is just a URI
 "28753"^^<http://www.w3.org/2001/XMLSchema#nonNegativeInteger>
 "6.96E10"^^<http://dbpedia.org/datatype/euro>
- The data type also indicates how the value is **interpreted**, how **comparisons** work, etc.

Several serialization formats for RDF data, see alternate formats of http://live.dbpedia.org/page/%C3%89lectricit%C3%A9_de_France:

- RDF/XML, structured XML representation, allowing for nesting
- N-Triples, Turtle, N3, text-based formats
- RDFa and JSON-LD to integrate RDF annotations into HTML

Simplest text-based format

- Each **fact** is a triple of a subject, predicate, object, followed by a full stop.
 - <http://live.dbpedia.org/resource/\u00C9lectricit\u00E9_de_France> <http://live.dbpedia.org/property/netIncome> "3.2E9"^^<http://dbpedia.org/datatype/euro> .
- Possibility of comments
- Support for literals with language and datatype
- All usual questions of quoting, escaping, character encodings...

Turtle is a superset of N-Triples

- Adds prefixes (for CURIEs) and default prefix
 Oprefix foaf: http://xmlns.com/foaf/0.1/ .
- Adds factoring of common subjects, common predicates
 - :s1 :p1 :o1, :o2, :o3 ; :p2 :o4 . :s2 :p3 :o5 .
- Adds a alias for the type relation

• Adds **square brackets** for blank nodes (see later)

```
ex:coursenotes ex:author [
  foaf:name "Amarilli" ; foaf:givenname "Antoine"
] .
# stands for
ex:coursenotes ex:author [:b1 .
[:b1 foaf:name "Amarilli" ;
  foaf:givenname "Antoine" .
```

• Adds brackets for linked lists

Notation3 (N3) is a superset of Turtle with additional features for semantic assertions (not just RDF data).

- Some entities may be blank nodes, i.e., nodes with no URI.
- They are written _:xyz with xyz being a local identifier
- Common usage: n-ary relations
 ex:speaker ex:gaveSeminar _:seminar .
 :seminar ex:date "2022-01-15"^*xsd:date .
 :seminar ex:room ex:Room101 .
 :seminar ex:title "Example seminar title"@en .

Another common usage of blank nodes is reification:

```
dbp:Earth dbprop:creationDate "-4003-10-23"^^xsd:date .
# can be written as
_:stmt rdf:type rdf:Statement ;
    rdf:subject dbp:Earth ;
    rdf:predicate dbprop:creationDate ;
    rdf:object "-4003-10-23"^^xsd:date .
# allowing us to say, e.g.,
_:stmt dbp:author dbp:James_Ussher .
```

- Some **classes**, i.e., literals, properties, statements, etc.
- Some datatypes, i.e., unordered lists, ordered lists, bags
- rdf:type to say that something is an instance of a class
- ightarrow To say more about the schema, we need RDF Schema

- **RDF Schema** is a language to describe the schema of RDF documents
- Do not get confused: RDFS can use RDF as syntax, i.e., RDFS statements are themselves expressed as RDF triplets with some specific **properties** and objects
- Declaration of classes and subclass relationships
 - 〈 Staff rdf:type rdfs:Class 〉
 - { JavaCourse rdfs:subClassOf CSCourse }
- Declaration of instances
 - · \langle Dupond rdf:type AcademicStaff \rangle

- Declaration of relations (properties in RDFS terminology)
 - { RegisteredTo rdf:type rdfs:Property }
- Declaration of subproperty relationships
 - · $\langle \mbox{ LateRegisteredTo rdfs:subPropertyOf RegisteredTo } \rangle$
- Declaration of domain and range for predicates (used for inference)
 - { TeachesIn rdfs:domain AcademicStaff }
 - · \langle TeachesIn rdfs:range Course \rangle
 - TeachesIn(AcademicStaff, Course)

RDF and RDFS statements	FOL translation	DL notation
<pre>(i rdf:type C) (i P j)</pre>	C(i) P(i,j)	i : C or C(i) i Pj or P(i,j)
\langle C rdfs:subClassOf D \rangle	$\forall X \left(C(X) \Rightarrow D(X) \right)$	$C \sqsubseteq D$
\langle P rdfs:subPropertyOf R \rangle	$\forall X \forall Y (P(X,Y) \Rightarrow R(X,Y))$	$P \sqsubseteq R$
\langle P rdfs:domain C \rangle	$\forall X \forall Y (P(X,Y) \Rightarrow C(X))$	$\exists P \sqsubseteq C$
\langle P rdfs:range D \rangle	$\forall X \forall Y (P(X,Y) \Rightarrow D(Y))$	$\exists P^- \sqsubseteq D$

DL: Description logics, a specialized logical formalism

OWL: Web Ontology Language

- OWL extends RDFS to express richer constraints
- Main OWL constructs
 - Disjointness between classes
 - Constraints of functionality and symmetry on predicates
 - Class union and intersection
- Inspired by description logics
- Several **profiles**: OWL Full, OWL DL, OWL Lite, OWL 2 EL, OWL 2 QL, OWL 2 RL.
- Different profiles include different **features**, and have different **(in)tractability**

 Material reused from Pierre Senellart's class http://pierre.senellart.com/talks/romatre-20130923.pdf itself adapted from Web data management, S. Abiteboul,
 I. Manolescu, P. Rigaux, M.-C. Rousset, P. Senellart, Cambridge University Press, 2012. Also available at http://webdam.inria.fr/Jorge/