
Exam
Web Data Management

Master Parisien de Recherche en Informatique

March 4th, 2020

This is the final exam for the Web Data Management class, which will determine 50% of your grade for this
class (the other 50% being given by the project). The exam consists of two independent exercises. You must
write your answer to each exercise on a separate sheet of paper. You can choose to answer the questions
in English or in French, as you prefer.

Write your name clearly on the top right of every sheet used for your exam answers, and number every page.
You are provided with an SPARQL “cheat sheet” which gives you a summary about the syntax of SPARQL.

You are additionally allowed one A4 sheet (i.e., two pages, one on each side) with the content of your choice.
You may not use any other written material.

The exam is strictly personal: any communication or influence between students, or use of outside help, is
prohibited. No electronic devices such as calculators, computers, or mobile phones, are permitted. Any violation
of the rules may result in a grade of 0 and/or disciplinary action.

Exercise 1: Provenance for SPARQL queries (10 points)

We assume that we have a namespace m, and we consider the following RDF document D0 in N-Triples notation,
seen as a set of RDF facts (ignore for now the comments preceded by #):

<m:joe> <m:likes> <m:sparql> . #l1

<m:jane> <m:likes> <m:sparql> . #l2

<m:jane> <m:likes> <m:xpath> . #l3

<m:joe> <m:follows> <m:jane> . #f1

<m:jane> <m:follows> <m:joe> . #f2

<m:jack> <m:follows> <m:joe> . #f3

<m:jack> <m:follows> <m:jane> . #f4

We consider the SPARQL query Q0 with two free variables ?x and ?y and returning all answer pairs (?x, ?y) such
that ?x follows someone who likes ?y.

Question 0. Write Q0 in SPARQL and write the output Q0(D0) of Q0 on D0, i.e., the answers returned by Q0

on D0.

Answer.

SELECT ?x ?y WHERE {

?x <m:follows> ?z

?z <m:likes> ?y

}

1



?x ?y

joe sparql
joe xpath
jane sparql
jack sparql
jack xpath

In the rest of the exercise, we will study the Boolean provenance of queries. Remember that a valuation of X0

is a function ν : X0 → {0, 1}, and a Boolean function φ on X0 is a mapping from valuations of X0 to {0, 1}: given
a valuation ν and a Boolean function φ, we say that φ evaluates to true on ν if φ(ν) = 1, and otherwise that
it evaluates to false on ν. We will write Boolean functions as Boolean formulas. For instance, l1 ∧ (l2 ∨ f2) is a
Boolean function. It evaluates to true under the valuation ν0 mapping l1, l2, f1, f4 to 1 and l3, f2, f3 to 0.

We annotate each fact of the RDF document D0 above with a Boolean variable in X0 = {l1, l2, l3, f1, f2, f3, f4}
in the order indicated. Given a valuation ν of X0, we write ν(D0) to be the RDF document consisting of precisely
the facts of D0 that ν maps to 1, formally ν(D0) := {f ∈ D0 | ν(f) = 1}.

Question 1. Write ν0(D0) for the example valuation ν0 above, and write the output of Q0 on ν0(D0).

Answer.

<m:joe> <m:likes> <m:sparql> . #l1

<m:jane> <m:likes> <m:sparql> . #l2

<m:joe> <m:follows> <m:jane> . #f1

<m:jack> <m:follows> <m:jane> . #f4

?x ?y

joe sparql
jack sparql

Given a SPARQL query Q and a answer a for Q on D0, the provenance of a for Q on D0 is the Boolean
function φ on the variables X0 such that, for any valuation ν of X0, we have that φ evaluates to true under ν if
and only if a is an answer to Q on ν(D0). For instance, the provenance of the answer (jane) for the following
SPARQL query on D0:

SELECT ?x WHERE {

?x <m:likes> ?y

}

is l2 ∨ l3.

Question 2. Write again the output of Q0 and D0 like in Question 0, and write next to each answer of the output
its provenance for Q0 on D0.

Answer.

?x ?y provenance

joe sparql f1 ∧ l2
joe xpath f1 ∧ l3
jane sparql f2 ∧ l1
jack sparql f3 ∧ l1 ∨ f4 ∧ l2
jack xpath f4 ∧ l3

2



Question 3. We say that two SPARQL queries Q and Q′ are equivalent if, for every RDF document D, we have
Q(D) = Q′(D), i.e., Q and Q′ have the same output on D.

Give an example of two SPARQL queries Q and Q′ that are not equivalent but have the same output on D0

and for which every tuple a of their common output has the same provenance for Q and Q′.

Answer. Simply write two non-equivalent queries with no output on D0, e.g.:

SELECT ?x ?y WHERE {

?x <m:likes> ?z .

?z <m:likes> ?y .

}

and

SELECT ?x ?y WHERE {

?x <m:likes> ?z .

?z <m:likes> ?t .

?t <m:likes> ?y .

}

These two queries are clearly not equivalent, but they all return the same empty set of results on D0,
where vacuously all tuples have the same provenance.

Question 4. A SPARQL query Q is monotone if, given two RDF documents D and D′, if D ⊆ D′ (meaning that
every fact of D is in D′), then Q(D) ⊆ Q(D′) (meaning that every tuple in the output of Q on D is also in the
output of Q on D′). Is the query Q0 monotone? Give a short proof or a counterexample.

Answer. The query Q0 is monotone. Indeed, consider RDF documents D ⊆ D′, and consider a tuple
(a, b) in the output of Q0 on D. There must exist c such that the following facts are in D:

a <m:follows> c .

c <m:likes> b .

As D ⊆ D′, these facts are then also in D′, so that (a, b) is in the output of Q0 on D′.

Question 5. Given two valuations ν and ν ′ on X0, we write ν ⊆ ν ′ if for all x ∈ X0 such that ν(x) = 1, we have
ν ′(x) = 1. A Boolean function φ on X0 is monotone if, for every valuations ν ⊆ ν ′, if φ evaluates to true on ν,
then φ evaluates to true on ν ′.

Show that, for any monotone SPARQL query Q, for any answer tuple a of Q, the provenance of a for Q on D0

is a monotone Boolean function.

Answer. Assume by contradiction that Q has an answer tuple a whose provenance φ is not a monotone
Boolean function. This means that there are two valuations ν ⊆ ν ′ such that φ evaluates to true under ν
but to false under ν ′. Now, by definition of the provenance we know that a is an answer to Q on ν(D0),
but that it is not an answer to Q on ν ′(D0). This witnesses that Q(ν(D0)) is not a subset of Q(ν ′(D0)),
and as ν(D0) ⊆ ν ′(D0) by definition, this contradicts the monotonicity of Q.

3



Question 6. Give an example of a SPARQL query Q6 having an answer a6 such that the provenance φ for Q6

on D0 is a Boolean function φ which evaluates to true under exactly one valuation.

Answer. We simply write a query Q6 that follows the structure of the database:

SELECT ?joe ?jane ?jack ?sparql ?xpath WHERE {

?joe <m:likes> ?sparql .

?jane <m:likes> ?sparql .

?jane <m:likes> ?xpath .

?joe <m:follows> ?jane .

?jane <m:follows> ?joe .

?jack <m:follows> ?joe .

?jack <m:follows> ?jane .

}

The answer tuple a6 := (joe, jane, jack , sparql , xpath) is an answer on D0 but on none of its strict
subsets, so its provenance (i.e., l1 ∧ l2 ∧ l3 ∧ f1 ∧ f2 ∧ f3 ∧ f4) only has one satisfying valuation, namely
the one mapping every variable of X0 to 1.

Another solution is to write some (non-monotone) Boolean SPARQL query that tests that there are
no facts at all, so that the empty tuple has as provenance the Boolean function which is only satisfied
by the Boolean function mapping each variable to 0.

Question 7. We say that a Boolean function φ on X0 implies a Boolean function ψ on X0 if, for every valuation
ν of X0, if φ evaluates to true under ν then ψ also does.

Can there be a SPARQL query Q7 having two answer tuples a and b whose respective provenances φ and ψ
are different Boolean functions such that φ implies ψ? Give an example, or prove that this is impossible.

Answer. Consider the query:

SELECT ?w ?z WHERE {

?w <m:follows> ?x .

?x <m:follows> ?y .

?y <m:follows> ?z .

}

Consider the answer tuples a = (jane, joe) and b = (jack , joe). The provenance φ of a is:

f2 ∧ f1 ∧ f2

and the provenance ψ of b is:
f3 ∧ f1 ∧ f2

And indeed φ and ψ are different but φ implies ψ as required.

4



Question 8. We consider the problem of computing the provenance of a SPARQL query, defined as follows.
We fix a SPARQL query Q of the form SELECT ?x1 ... ?xn WHERE { ... } where the variables of the SELECT

clause do not use any operator, and where the body of the WHERE clause only consists of RDF facts where the
predicate of each fact is a constant and where the subject and object of the facts can be constant or variables
(without any operator or other feature of the SPARQL syntax). We want, given an RDF document D with facts
annotated by variables, to compute all answers of Q on D and their provenance. We study the data complexity
of this problem, with the input being the annotated RDF document D.

Design an algorithm to solve this problem with polynomial data complexity, and argue that it is correct.

Answer. There are constantly many variables used in Q, so we can enumerate all possible ways to
map them to entities of D: there are polynomially many ways. For each way, we check if the resulting
set of facts is a subset of D. If it is, then we see the answer tuple that this gives us (from the variables
exported in the SELECT statement), and we add a disjunction to the provenance of this tuple with
the conjunction of the annotations of all the facts used in D for this mapping. This process is in
polynomial time overall.

What is more, the result is indeed the provenance of each tuple, as it claims that we have one of the
sets of facts that allows the query to match.

Question 9. Open question: Some informations usually tracked by semiring provenance are not tracked in the
definition of provenance proposed above, in particular the number of uses of a given fact and the number of ways
to use a set of facts.

Explain these shortcomings by showing examples of queries and documents where some answer tuples has the
same provenance in the sense above, but should have a different provenance if we accounted for these additional
informations.

Propose ways in which we could define an extended notion of provenance for SPARQL (or some fragment
thereof) to capture these additional informations, and explain how they could be computed.

Which SPARQL features would be problematic for this extended provenance notion?

Answer. For the number of uses of a given fact, consider the query Q:

SELECT ?x WHERE {

?x <m:follows> ?z .

?z <m:follows> ?y .

}

and the query Q′:

SELECT ?x WHERE {

?x <m:follows> ?y .

}

and the singleton set D of RDF facts:

<m:a> <m:follows> <m:a> . # x1

5



For the answer (a), both queries have x1 as provenance, but the first query is using the fact twice, and
the second one only once. Intuitively, the first query should have the provenance x21, and the second
query should have provenance x1.

For the number of ways to use a set of facts, we can consider:

SELECT ?x WHERE {

?x <m:follows> ?y .

?x <m:follows> ?z .

?y <m:follows> ?z .

?z <m:follows> ?y .

}

and the same query with ?y replaced by the constant <m:b>, on the set of RDF facts:

<m:a> <m:follows> <m:b> . # x1

<m:a> <m:follows> <m:c> . # x2

<m:b> <m:follows> <m:c> . # y1

<m:c> <m:follows> <m:b> . # y2

For both queries, the Boolean provenance of <m:a> is x1 ∧ x2 ∧ y1 ∧ y2 as we need all facts to get an
answer. However, the first query has two ways to use this set of facts (mapping ?y and ?z to <m:b>

and <m:c> or vice-versa), whereas the second query has only one way to do so. Intuitively, the second
query should have as provenance x1x2y1y2, and the first one 2x1x2y1x2.

These notions can be formalized, and generalized (for SPARQL queries whose body only contains RDF
facts) to a notion of provenance polynomial where, for any monomial on the set of variables X, the
coefficient of this monomial in the polynomial is the number of ways to map the existential variables
of the query such that we can obtain the indicated output by mapping the facts of the query body
precisely to this multiset of facts in the RDF document. For a fixed query, this notion of provenance
can still be computed in PTIME as in the previous question, by considering all possible matches of all
query variables.

RDF features that make the query use an unbounded number of facts in the matches (in an unbounded
number of ways), in particular property paths, do not work under this definition: for the document D
above, for the query:

SELECT ?x WHERE {

?x <m:follows>* ?y .

}

the provenance should intuitively be 1 + x1 + x21 + . . .. Solutions to this problem could be proposed
using formal power series.

Please write your answer to the second exercise on a separate sheet of paper.

6



Exercise 2: Web search and Big Data management (10 points)

Question 1. Explain the difference between coverage and freshness, as alternative objectives in a crawler strategy,
and how they may impact that strategy.

Question 2. Explain binary freshness in the context of a crawler, and name one drawback of this freshness
indicator.

Question 3. Explain link pollution and how a search engine could avoid it.

Question 4. Explain why Web graphs must be compressed, and name two specificities of adjacency lists (of the
Web graph) that can help in this regard.

Question 5. Explain why inverted indexes must be compressed, and explain one technique that can help in this
regard.

Question 6. Boolean queries are particularly helpful/frequent for text retrieval in law research services. In a
simple version of an inverted index designed to answer Boolean queries, we would keep, for each word (in the
dictionary), the list of documents in which it appears (its posting list). Let us assume only document Ids are kept
in posting lists, as in the following example:

1. Posting lists may be very large. Which condition is necessary in order to be able to process queries such as
Judge AND Saul efficiently (say, in linear time in the size of the posting lists)?

2. What would be a good logic to process a query such as Judge AND Saul AND Lawyer?

3. Assuming that we only keep the dictionary in main memory, but not the posting lists, which additional
information do we need to keep in the dictionary for the previous logic to work?

4. How could that logic be extended to handle OR queries, such as Judge OR Lawyer?

Question 7. Open question: We want to build a search engine for sports only. How would you do that (lay down
the main changes with respect to a general search engine design)?

Question 8. To build a search engine for sports, how could we compute a topic-specific PageRank? Is the sports
PageRank score of a page always smaller than the general PageRank score of that page?

Question 9. Explain the fault tolerance and crash recovery logic of a Big Data Management System.

Question 10. Name one reason why Spark can be considered as “Hadoop compatible”, so that it can be appealing
as an alternative data processing engine for Hadoop users.

7


