Probabilistic Databases: Introduction

Antoine Amarilli

Numerous sources of **uncertain data**:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automated processes (information extraction, NLP, etc.)
- Imperfect human judgment
- $\cdot\,$ Lies, opinions, rumors

Recently-Learned Facts witter

Refresh

instance	iteration	date learned	confidence
oliguric_phase is a non-disease physiological condition	1111	06-jul-2018	97.5 🏠 ኛ
<u>alaska_airlines</u> is an organization	1114	25-aug-2018	100.0 🏠 🖏
heating_insurance_policies is a physical action	1111	06-jul-2018	90.4 🗳 🖏
<u>n98_12</u> is a term used by physicists	1111	06-jul-2018	94.2 🖓 🖏
dragonball_zsuper_butoden_2 is software	1111	06-jul-2018	100.0 🏠 ኛ
<u>general_motors_corp_</u> is a company <u>headquartered in</u> the city <u>detroit</u>	1116	12-sep-2018	100.0 🖾 ኛ
the companies <u>herald</u> and <u>la compete with</u> eachother	1111	06-jul-2018	99.6 🖾 🕏
stanford hired montgomery	1111	06-jul-2018	98.4 🗳 ኛ
<u>kimn</u> is a radio station <u>in the city</u> <u>denver</u>	1116	12-sep-2018	100.0 🏠 🖏
radisson_sas_portman_hotel is a park in the city central_london	1116	12-sep-2018	100.0 🏠 ኛ

Never-ending Language Learning (NELL, CMU), http://rtw.ml.cmu.edu/rtw/kbbrowser/

Subject	Predicate	Object	Confidence
Elvis Presley	diedOnDate	1977-08-16	97.91%
Elvis Presley	isMarriedTo	Priscilla Presley	97.29%
Elvis Presley	influences	Carlo Wolff	96.25%

YAGO, https://www.yago-knowledge.org/

Other use case: Information extraction from scientific articles

From GeoDeepDive / xDD

Other use case: Crowdsourcing

All HITs

1-10 of 2751 Results

Sort by: HITs	Available (mo	st first) 🔹 😡	Show all details	Hide all details	1 2 3 4 5 >	<u>Next</u> ^{>>} <u>Last</u>
Transcribe data	<u>a</u>				View a HIT	in this group
Requester:	p9r HI	T Expiration Date:	Nov 18, 2015	(23 hours 59 minutes)	Reward:	\$0.03
	Ti	me Allotted:	45 minutes			
Description: Please transcribe the data from the following images						
Keywords: transcribe, handwriting, data entry						
Qualification	Qualifications Required:					
HIT approval	rate (%) is g	reater than 90				
Classify Receip	<u>t</u>				<u>View a HIT</u>	in this group
Requester:	Jon Brelig	HIT Expiration Dat	te: Nov 24, 20	15 (6 days 23 hours)	Reward:	\$0.02
		Time Allotted:	20 minutes	5		
Description:	Description: Looking at a receipt image, identify the business of the receipt					
Keywords: <u>image, receipt, categorize, transcribe, extract, data, entry, transcription, text, easy,</u> <u>gualification, jon, brelig, prod</u>						

Other use case: Speech recognition and OCR

Different types of uncertainty

- The uncertainty can be **qualitative** (e.g., NULL)...
- ... or quantitative (e.g., 95%)

Further, there are different types:

- Unknown value: NULL in an RDBMS
- Alternative between several possibilities: either A or B or C
- Imprecision on a numeric value: a sensor gives a value that is an approximation of the actual value
- · Confidence in a fact as a whole: cf. information extraction
- Structural uncertainty: the schema of the data itself is uncertain
- Missing data: we know that some data is missing (open-world semantics)

Naive solution

Forget about uncertainty, or apply a threshold after each computation step

Naive solution

Forget about uncertainty, or apply a threshold after each computation step

Ideal solution

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

Naive solution

Forget about uncertainty, or apply a threshold after each computation step

Ideal solution

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

Also: it leads to interesting theoretical questions! :)

Possible world: A regular (deterministic) relational database

Possible world: A **regular** (deterministic) relational database **Uncertain database:** (Compact) representation of a **set of possible worlds**

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over possible worlds,

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability **continuous:** more complicated

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability **continuous:** more complicated

dat	e tea	teacher		
08	Die	ego 0.9		
09	Pa	olo 0.8		
09	Flo	ris 0.7		

- Present the most common models of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)

- Present the most common models of probabilistic data
 - ightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - $\rightarrow\,$ Central task: evaluating queries over probabilistic databases

- Present the most common **models** of probabilistic data
 - ightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - ightarrow Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - ightarrow Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs
- Present treewidth-based approaches to efficient PQE

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - ightarrow Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs
- Present treewidth-based approaches to efficient PQE
- Give an overview of **other topics** on probabilistic databases

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - ightarrow Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs
- Present treewidth-based approaches to efficient PQE
- Give an overview of **other topics** on probabilistic databases
- Next class (Jan 9): Liat will talk about incomplete information