Probabilistic Databases: Models and PQE

Antoine Amarilli

Relational model by example

Guest				
id	name	email		
1	John Smith	john.smith@gmail.com		
2	Alice Black	alice@black.name		
3	John Smith	john.smith@ens.fr		

Reservation					
id	guest	room	arrival	nights	
1	1	504	2022-01-01	5	
2	2	107	2022-01-10	3	
3	3	302	2022-01-15	6	
4	2	504	2022-01-15	2	
5	2	107	2022-01-30	1	

Formally:

 A database schema D maps each relation name to an arity (we add attribute names in our examples) Formally:

- A database schema D maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

Formally:

- A database schema D maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

Guest					
id	name	email			
1	John Smith	john.smith@gmail.com			
2	Alice Black	alice@black.name			
3	John Smith	john.smith@ens.fr			

Guest(1, John Smith, john.smith@gmail.com), Guest(2, Alice Black, alice@black.name), Guest(3, John Smith, john.smith@ens.fr)

- \cdot A **query** is an arbitrary **function** over database instances over a fixed schema $\mathcal D$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**

- \cdot A query is an arbitrary function over database instances over a fixed schema ${\cal D}$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**
- Example of query languages:
 - Conjunctive queries (CQ)
 - $\cdot ~ \exists \bigwedge \cdots$: existentially quantified conjunctions of atoms
 - $\cdot \ \ Q: \exists x \, y \, z \, x' \, y' \, \, Guest(x,y,z) \land \, Guest(x',y',z)$

- \cdot A query is an arbitrary function over database instances over a fixed schema ${\cal D}$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**
- Example of query languages:
 - Conjunctive queries (CQ)
 - $\cdot ~ \exists \bigwedge \cdots$: existentially quantified conjunctions of atoms
 - $Q : \exists x \, y \, z \, x' \, y' \, Guest(x, y, z) \land Guest(x', y', z)$
 - \cdot Unions of conjunctive queries (UCQ)
 - $\cdot \bigcup \exists \bigwedge \cdots$: unions of CQs

- \cdot A query is an arbitrary function over database instances over a fixed schema ${\cal D}$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**
- Example of query languages:
 - Conjunctive queries (CQ)
 - $\cdot ~ \exists \bigwedge \cdots$: existentially quantified conjunctions of atoms
 - $\cdot \ \ Q: \ \exists x \, y \, z \, x' \, y' \ \ Guest(x,y,z) \land \ Guest(x',y',z)$
 - \cdot Unions of conjunctive queries (UCQ)
 - $\cdot \bigcup \exists \bigwedge \cdots$: unions of CQs
 - First-Order logic (FO)
 - Monadic-Second Order logic (MSO)

TID

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher
08	Diego
09	Paolo
09	Floris

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

 \rightarrow Assume **independence** between facts

- Each fact is **kept** or **discarded** with the indicated probability
- Probabilistic choices are **independent** across facts

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%		
09	Paolo	80%		
09	Floris	70%		

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%		
09	Floris	70%		

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%		

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

90% × (100% – 80%)

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the probability of this possible world?

90% imes (100% - 80%) imes 70%

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow always keeping facts with **probability 1**

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow always keeping facts with **probability 1**

Formally, for a TID I, the **probability** of $J \subseteq I$ is:

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow always keeping facts with **probability 1**

Formally, for a TID I, the **probability** of $J \subseteq I$ is:

- product of $\Pr(F)$ for each fact F kept in J
- product of 1 Pr(F) for each fact F not kept in J

- Let *N* be the number of facts
- There are 2^N possible worlds

- Let *N* be the number of facts
- There are 2^N possible worlds
- The probability of a possible world is a product which involves a factor $\Pr(F_i)$ or $1 \Pr(F_i)$ for each fact F_1, \ldots, F_N

- Let *N* be the number of facts
- There are 2^N possible worlds
- The probability of a possible world is a product which involves a factor $\Pr(F_i)$ or $1 \Pr(F_i)$ for each fact F_1, \ldots, F_N
- → The sum of these probabilities is the result of **expanding** the expression: $(\Pr(F_1) + (1 - \Pr(F_1))) \times \cdots \times (\Pr(F_N) + (1 - \Pr(F_N)))$

- Let *N* be the number of facts
- There are 2^N possible worlds
- The probability of a possible world is a product which involves a factor $\Pr(F_i)$ or $1 \Pr(F_i)$ for each fact F_1, \ldots, F_N
- → The sum of these probabilities is the result of **expanding** the expression: $(\Pr(F_1) + (1 - \Pr(F_1))) \times \cdots \times (\Pr(F_N) + (1 - \Pr(F_N)))$
 - All factors are **equal to 1**, so the probabilities **sum to 1**

Can we represent **all** probabilistic instances with TID?

Can we represent **all** probabilistic instances with TID?

"The class is taught by Jane or Joe or no one but not both"
"The class is taught by Jane or Joe or no one but not both"

<i>U</i> ₁
teacher
Jane
$\pi(U_1) = 80\%$

9/25

<i>U</i> ₁	U ₂
teacher	teacher
Jane	Joe
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%

<i>U</i> ₁	U ₂	U_3	
teacher	teacher	teacher	
Jane	Joe		
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	

<i>U</i> ₁	U ₂	U_3
teacher	teacher	teacher
Jane	Joe	
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%
		teacher
		Jane
		Joe

<i>U</i> ₁	U ₂	<i>U</i> ₃	
teacher	teacher	teacher	
Jane	Joe		
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	
		teacher	
		Jane 10% Joe	

<i>U</i> ₁	U ₂	U	3
teacher	teacher	teache	r
Jane	Joe		
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	
		teacher	
		Jane	10%
		Joe	80%

"The class is taught by Jane or Joe or no one but **not both**"

<i>U</i> ₁	U ₂	U	3
teacher	teacher	teache	r
Jane	Joe		
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	
		teacher	
		Jane	10%
		Joe	80%

 \rightarrow We **cannot** forbid that both teach the class!

BID

- A more expressive framework than TID
- Call some attributes the **key** (<u>underlined</u>)

- A more expressive framework than TID
- Call some attributes the **key** (<u>underlined</u>)

		U
day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris
09	PM	Floris
09	PM	Paolo

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U
day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris
09	PM	Floris
09	PM	Paolo

• The **blocks** are the sets of tuples with the same key

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U
day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris
09	PM	Floris
09	PM	Paolo

- The **blocks** are the sets of tuples with the same key
- Each **tuple** has a probability

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U	
day	<u>time</u>	teacher	
09 09	AM AM	Paolo Floris	80% 10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The **blocks** are the sets of tuples with the same key
- Each **tuple** has a probability

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U	
day	<u>time</u>	teacher	
09 09	AM AM	Paolo Floris	80% 10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The **blocks** are the sets of tuples with the same key
- Each tuple has a probability
- + Probabilities must $sum \, up$ to ≤ 1 in each block

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	РМ	Paolo	1%

		U	
day	<u>time</u>	teacher	
09 09	AM AM	Paolo Floris	80% 10%
09	PM	Floris	70%
09	PM	Paolo	1%

• For each **block**:

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
-09		Floris	10%
09	PM PM	Floris Paolo	70% 1%
09	1 1 1 1	1 4010	170

- For each **block**:
 - Pick **one** fact according to probabilities

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	РМ	Paolo	1%

- For each **block**:
 - Pick **one** fact according to probabilities
 - + Possibly **no** fact if probabilities sum up to < 1

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	РМ	Paolo	1%

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- \rightarrow Do choices **independently** in each block

		U			U	
day	<u>time</u>	teacher		day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris	80% 10%			
09 09	PM PM	Floris Paolo	70% 1%			

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- $\rightarrow\,$ Do choices independently in each block

U			U			
day	<u>time</u>	teacher		day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris	80% 10%	09 09	AM AM	Paolo Floris
09 09	PM PM	Floris Paolo	70% 1%			

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- \rightarrow Do choices **independently** in each block

U				U		
day	<u>time</u>	teacher		day	<u>time</u>	teacher
09	AM	Paolo	80%	09	AM	Paolo
09	AM	Floris	10%	09	AM	Floris
09	PM	Floris	70%	09	PM	Floris
09	PM	Paolo	1%	09	PM	Paolo

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- \rightarrow Do choices **independently** in each block

• Each **TID** can be expressed as a BID...

BID captures TID

- Each **TID** can be expressed as a BID...
 - \rightarrow Take <u>all</u> <u>attributes</u> as **key**
 - \rightarrow Each block contains a single fact

BID captures TID

- $\cdot\,$ Each TID can be expressed as a BID...
 - \rightarrow Take <u>all</u> <u>attributes</u> as **key**
 - $\rightarrow~$ Each block contains a single fact

	U	
date	<u>teacher</u>	
09	Diego	90%
09	Paolo	80%
09	Floris	70%

"The class is taught by exactly two among Diego, Paolo, Floris."

"The class is taught by exactly two among Diego, Paolo, Floris."

 U_1 teacher
Diego
Paolo $\pi(U_1) = 80\%$

"The class is taught by exactly two among Diego, Paolo, Floris."

U ₁	U ₂
teacher	teacher
Diego	Diego
Paolo	Floris
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%

"The class is taught by exactly two among Diego, Paolo, Floris."

U ₁	U ₂	U ₃
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

"The class is taught by exactly two among Diego, Paolo, Floris."

U ₁	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

 \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**

"The class is taught by exactly two among Diego, Paolo, Floris."

<i>U</i> ₁	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

- \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**
- \rightarrow If **teacher** is not a key, then **only one fact**

"The class is taught by exactly two among Diego, Paolo, Floris."

<i>U</i> ₁	U ₂	U ₃
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1)=$ 80%	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

- \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**
- \rightarrow If **teacher** is not a key, then **only one fact**
- ightarrow We **cannot represent** this probabilistic instance as a BID

pc-tables

Boolean c-tables

- Set of Boolean variables x_1, x_2, \ldots
- Each fact has a condition: Variables, Boolean operators

- Set of Boolean variables x_1, x_2, \ldots
- Each fact has a condition: Variables, Boolean operators

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	X ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \wedge x_1$

- **x**₁ Jane is sick
- **x**₂ Amphi B is available
A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable x_i to o or 1

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to **true** under ν
- The **probability** of a valuation ν is:

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$
 - $\rightarrow~$ This is like TIDs

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to **true** under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$
 - $\rightarrow\,$ This is like TIDs
- The **probability** of a possible world $J \subseteq I$ is the total probability of the valuations ν such that $I_{\nu} = J$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \wedge \neg X_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

x₁ Jane is sick

x₂ Amphi B is available

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \wedge \neg X_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

x₁ Jane is sick

ightarrow Probability 10%

x₂ Amphi B is available

ightarrow Probability 20%

date	teacher	room	<i>x</i> ₁ : 10%, <i>x</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \land x_1$

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

• Take ν mapping x_1 to 0 and x_2 to 1

date	teacher	room	X_1 : 10%, X_2 : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν :

date	teacher	room	X_1 : 10%, X_2 : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%

date	teacher	room	X_1 : 10%, X_2 : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%
- Evaluate the **conditions**

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%	date	teacher	room
04	Jane	Amphi A	$\neg X_1$	04	Jane	Amphi A
04	Joe	Amphi A	<i>X</i> ₁	04	Joe	Amphi A
11	Jane	Amphi B	$X_2 \land \neg X_1$	11	Jane	Amphi B
11	Joe	Amphi B	$X_2 \wedge X_1$	11	Joe	Amphi B
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$	11	Jane	Amphi C
11	Joe	Amphi C	$ eg x_2 \wedge x_1$	11	Joe	Amphi C

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : (100% 10%) × 20% = 18%
- Evaluate the **conditions**

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%	date	teacher	room
04	Jane	Amphi A	$\neg X_1$	04	Jane	Amphi A
04	Joe	Amphi A	<i>X</i> ₁	04	Joe	Amphi A
11	Jane	Amphi B	$X_2 \land \neg X_1$	11	Jane	Amphi B
11	Joe	Amphi B	$X_2 \wedge X_1$	11	Joe	Amphi B
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$	11	Jane	Amphi C
11	Joe	Amphi C	$ eg x_2 \wedge x_1$	11	Joe	Amphi C

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%
- Evaluate the **conditions**
- $\rightarrow\,$ Probability of possible world: sum over the valuations

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%	date	teacher	room
04	Jane	Amphi A	$\neg X_1$	04	Jane	Amphi A
04	Joe	Amphi A	<i>X</i> ₁	04	Joe	Amphi A
11	Jane	Amphi B	$X_2 \land \neg X_1$	11	Jane	Amphi B
11	Joe	Amphi B	$X_2 \wedge X_1$	11	Joe	Amphi B
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$	11	Jane	Amphi C
11	Joe	Amphi C	$ eg x_2 \wedge x_1$	11	Joe	Amphi C

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%
- $\cdot\,$ Evaluate the conditions
- ightarrow Probability of possible world: sum over the valuations
 - ightarrow Here: **only** this valuation, **18%**

- pc-tables capture **TIDs**:
 - $\rightarrow~$ Simply give each fact its own **probability value**

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow\,$ Make a $decision\,tree$ for every block

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow\,$ Make a $decision\,tree$ for every block
- In fact pc-tables can express arbitrary probability distributions

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow\,$ Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a **strong representation system**: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow~$ Make a decision~tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a **strong representation system**: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

Yet, in the rest of the class, we focus on $\mathsf{TIDs} \to \mathsf{easier}$ to characterize tractable queries

PQE

How can we evaluate a query Q over a probabilistic database D?

How can we evaluate a query Q over a probabilistic database D?

• Probability that **Q** holds over **D**:

$$\Pr(D \models Q) = \sum_{\substack{D' \subseteq D \\ D' \models Q}} \Pr(D')$$

• Intuitively: the probability that Q holds is the probability of drawing a possible world $D' \subseteq D$ which satisfies Q

How can we evaluate a query Q over a probabilistic database D?

• Probability that **Q** holds over **D**:

$$\Pr(D \models Q) = \sum_{\substack{D' \subseteq D \\ D' \models Q}} \Pr(D')$$

• Intuitively: the probability that Q holds is the probability of drawing a possible world $D' \subseteq D$ which satisfies Q

Probabilistic query evaluation (PQE) problem for a query **Q** over TIDs: given a TID, compute the probability that **Q** holds

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

• It is **one minus** the probability of not having such a tuple

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is **one minus** the probability of not having such a tuple
- Not having such a tuple is the **independent AND** of not having each tuple

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is **one minus** the probability of not having such a tuple
- Not having such a tuple is the independent AND of not having each tuple
- $\cdot\,$ So the result is $1-(1-0.5)\times(1-0.7)=0.85$

• We fix a Boolean query, e.g., $\exists xy \ R(x), S(x, y), T(y)$

- We fix a Boolean query, e.g., $\exists xy \ R(x), S(x,y), T(y)$
- We are given a **tuple-independent database** *D*, i.e., a relational database where facts are independent and have probabilities

- We fix a Boolean query, e.g., $\exists xy \ R(x), S(x,y), T(y)$
- We are given a **tuple-independent database** *D*, i.e., a relational database where facts are independent and have probabilities
- Can we **compute** the total probability of the possible worlds of **D** that satisfy **Q**?

- We fix a Boolean query, e.g., $\exists xy \ R(x), S(x,y), T(y)$
- We are given a **tuple-independent database** *D*, i.e., a relational database where facts are independent and have probabilities
- Can we **compute** the total probability of the possible worlds of **D** that satisfy **Q**?
- Note that we study **data complexity**, i.e., *Q* is **fixed** and the input is *D*
• Consider all **possible worlds** of the input

- Consider all **possible worlds** of the input
- Run the query over **each possible world**

- Consider all **possible worlds** of the input
- Run the query over **each possible world**
- Sum the **probabilities** of all worlds that satisfy the query

Naive probabilistic query evaluation example

	TID	D	Query Q			
in	out		$R(x,y) \wedge R(y,z)$			
А	В	0.8				
В	С	0.2				

Naive probabilistic query evaluation example

TID D			Query Q			
in out			$R(x,y) \wedge R(y,z)$			
А	В	0.8				
В	С	0.2				

Possible worlds and probabilities:

in	out	in	out	in	out		in	out
Α	В	A	В	A	В		A	В
В	С	В	С	В	С		В	С
0.8	× 0.2	(1-0	.8) × 0.2	0.8 ×	(1 – 0.2)	(1 –	0.8)	\times (1 – 0.2)

Naive probabilistic query evaluation example

	TID	D	Query Q			
in out			$R(x,y) \wedge R(y,z)$			
А	В	0.8				
В	С	0.2				

Possible worlds and probabilities:

the suit		•			•		•		
In	out	In	out	In	out	I	n	out	
А	В	A	В	A	В	A	À	В	
В	С	В	С	В	С	E	3	С	
0.8	imes 0.2	(1 — C	0.8) × 0.2	0.8 ×	(1 – 0.2)	(1 - 0.8)	8) >	< (1 – 0.2	

Total probability that Q holds: $0.8 \times 0.2 = 0.16$.

• Naive evaluation is always possible

- Naive evaluation is **always possible**
- However, it takes **exponential time** in general
 - \rightarrow Even if the query output has **few possible worlds**!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)

- Naive evaluation is always possible
- However, it takes **exponential time** in general
 - \rightarrow Even if the query output has **few possible worlds**!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- $\cdot\,$ In fact, naive evaluation is in **#P**
 - → Can be expressed (up to normalization) as the **number of accepting paths** of a **nondeterministic PTIME Turing machine**
 - \rightarrow To see why: guess a possible world (with the right probabilities) and check the query

- Naive evaluation is **always possible**
- However, it takes **exponential time** in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- $\cdot\,$ In fact, naive evaluation is in **#P**
 - → Can be expressed (up to normalization) as the **number of accepting paths** of a **nondeterministic PTIME Turing machine**
 - ightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is **computationally intractable** so it is unlikely that we can beat naive evaluation **in general**

- Naive evaluation is **always possible**
- However, it takes **exponential time** in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- $\cdot\,$ In fact, naive evaluation is in **#P**
 - → Can be expressed (up to normalization) as the **number of accepting paths** of a **nondeterministic PTIME Turing machine**
 - ightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is **computationally intractable** so it is unlikely that we can beat naive evaluation **in general**
 - $\rightarrow~$ But some queries admit an efficient algorithm!

• What is the probability of the query: $\exists x \ R(x)$?

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - $\rightarrow\,$ It is:

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - $\rightarrow\,$ It is: 1 -

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)}$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get:

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - \cdot We get: 1 –

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: 1 \prod_a

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - \cdot We get: 1 \prod_a (1 -

- What is the probability of the query: $\exists x R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: 1 $\prod_a \left(1 \Pr(\textit{R}(a)) \times \right)$

- What is the probability of the query: $\exists x R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: $1 \prod_a \left(1 \Pr(R(a)) \times \right) (1 \Pr(R(a)))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b n))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: 1 $\prod_a \left(1 \Pr(R(a)) \times \left(1 \prod_b \left(1 \prod_b \right)\right)\right)$

- What is the probability of the query: $\exists x R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b))))))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!
- What is the probability of the query: $\exists xy \ R(x), S(x, y), T(y)$?

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!
- What is the probability of the query: $\exists xy \ R(x), S(x, y), T(y)$?
 - This one is **#P-hard**!

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!
- What is the probability of the query: $\exists xy \ R(x), S(x,y), T(y)$?
 - This one is **#P-hard**!

Research question: can we characterize the easy cases and prove hardness otherwise?