Probabilistic Databases: Models and PQE

Antoine Amarilli

Relational model by example

Guest

		email
id	name	John Smith
1	john.smith@gmail.com	
2	Alice Black	alice@black.name
3	John Smith	john.smith@ens.fr

Reservation

id	guest	room	arrival	nights
1	1	504	$2022-01-01$	5
2	2	107	$2022-01-10$	3
3	3	302	$2022-01-15$	6
4	2	504	$2022-01-15$	2
5	2	107	$2022-01-30$	1

Relations and databases

Formally:

- A database schema \mathcal{D} maps each relation name to an arity (we add attribute names in our examples)

Relations and databases

Formally:

- A database schema \mathcal{D} maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

Relations and databases

Formally:

- A database schema \mathcal{D} maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

Guest

		email
id	name	John Smith
john.smith@gmail.com		
2	Alice Black	alice@black.name
3	John Smith	john.smith@ens.fr

Guest(1, John Smith, john.smith@gmail.com), Guest(2, Alice Black, alice@black.name),
Guest(3, John Smith, john.smith@ens.fr)

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false
- Example of query languages:
- Conjunctive queries (CQ)
- $\exists \wedge \cdots$ existentially quantified conjunctions of atoms
- Q : $\exists x y z x^{\prime} y^{\prime}$ Guest $(x, y, z) \wedge G u e s t\left(x^{\prime}, y^{\prime}, z\right)$

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false
- Example of query languages:
- Conjunctive queries (CQ)
- $\exists \wedge \cdots$ existentially quantified conjunctions of atoms
- Q : $\exists x y z x^{\prime} y^{\prime}$ Guest $(x, y, z) \wedge G u e s t\left(x^{\prime}, y^{\prime}, z\right)$
- Unions of conjunctive queries (UCQ)
- $\cup \exists \bigwedge \cdots$ unions of CQs

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false
- Example of query languages:
- Conjunctive queries (CQ)
- $\exists \wedge \cdots$: existentially quantified conjunctions of atoms
- Q : $\exists x y z x^{\prime} y^{\prime}$ Guest $(x, y, z) \wedge G u e s t\left(x^{\prime}, y^{\prime}, z\right)$
- Unions of conjunctive queries (UCQ)
- $\cup \exists \wedge \cdots$: unions of CQs
- First-Order logic (FO)
- Monadic-Second Order logic (MSO)

TID

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher
08	Diego
09	Paolo
09	Floris

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

\rightarrow Assume independence between facts

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date teacher

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher				
	date	teacher			
08	Diego	90%		08	Diego
09	Paolo	80%			
09	Floris	70%			

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher					
	date	teacher				
08	Diego	90%		08	Diego	
09	Paolo	80%		09	Paolo	
09	Floris	70%		09	Floris	

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?
90\%

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

$$
90 \% \times
$$

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

$$
90 \% \times(100 \%-80 \%)
$$

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

$$
90 \% \times(100 \%-80 \%) \times 70 \%
$$

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I
\rightarrow always keeping facts with probability 1

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I
\rightarrow always keeping facts with probability 1
Formally, for a TID I, the probability of $J \subseteq I$ is:

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I
\rightarrow always keeping facts with probability 1
Formally, for a TID I, the probability of $J \subseteq I$ is:

- product of $\operatorname{Pr}(F)$ for each fact F kept in J
- product of $1-\operatorname{Pr}(F)$ for each fact F not kept in J

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds
- The probability of a possible world is a product which involves a factor $\operatorname{Pr}\left(F_{i}\right)$ or $1-\operatorname{Pr}\left(F_{i}\right)$ for each fact F_{1}, \ldots, F_{N}

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds
- The probability of a possible world is a product which involves a factor $\operatorname{Pr}\left(F_{i}\right)$ or $1-\operatorname{Pr}\left(F_{i}\right)$ for each fact F_{1}, \ldots, F_{N}
\rightarrow The sum of these probabilities is the result of expanding the expression:

$$
\left(\operatorname{Pr}\left(\mathrm{F}_{1}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{1}\right)\right)\right) \times \cdots \times\left(\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)\right)\right)
$$

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds
- The probability of a possible world is a product which involves a factor $\operatorname{Pr}\left(F_{i}\right)$ or $1-\operatorname{Pr}\left(F_{i}\right)$ for each fact F_{1}, \ldots, F_{N}
\rightarrow The sum of these probabilities is the result of expanding the expression:

$$
\left(\operatorname{Pr}\left(\mathrm{F}_{1}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{1}\right)\right)\right) \times \cdots \times\left(\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)\right)\right)
$$

- All factors are equal to 1 , so the probabilities sum to 1

Expressiveness of TID

Can we represent all probabilistic instances with TID?

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$$
\begin{aligned}
& \frac{U_{1}}{\text { teacher }} \\
& \hline \text { Jane } \\
& \hline \pi\left(U_{1}\right)=80 \%
\end{aligned}
$$

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$\frac{U_{1}}{\text { teacher }}$		U_{2}
		teacher
		Joe
$\pi\left(U_{1}\right)=80 \%$		$\pi\left(U_{2}\right)=10 \%$

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$\frac{U_{1}}{\text { teacher }}$
Jane
$\pi\left(U_{1}\right)=80 \%$

$\frac{U_{2}}{\text { teacher }}$
Joe
$\pi\left(U_{2}\right)=10 \%$

$\frac{U_{3}}{\text { teacher }}$
$\pi\left(U_{3}\right)=10 \%$

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Jane	Joe	
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$
		teacher
		Jane
		Joe

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Jane	Joe	
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$
		teacher
		Jane 10\%
		Joe

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

U_{1}	U_{2}	U_{3}	
teacher	teacher	teacher	
Jane	Joe		
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$	
		teacher	
		Jane	10\%
		Joe	80\%

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$\frac{U_{1}}{\text { teacher }}$
Jane
$\pi\left(U_{1}\right)=80 \%$

$\frac{U_{2}}{\text { teacher }}$		$\frac{U_{3}}{\text { teacher }}$
Joe $\pi\left(U_{2}\right)=10 \%$ teacher Jane 10% Joe $\quad 80 \%$		

\rightarrow We cannot forbid that both teach the class!

BID

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U
day	time	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U
day	time	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

- The blocks are the sets of tuples with the same key

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U
$\underline{\text { day }}$	time	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

- The blocks are the sets of tuples with the same key
- Each tuple has a probability

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

	U		
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The blocks are the sets of tuples with the same key
- Each tuple has a probability

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

	U		
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The blocks are the sets of tuples with the same key
- Each tuple has a probability
- Probabilities must sum up to ≤ 1 in each block

BID semantics

	U		
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

BID semantics

	U		
day	time	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:

BID semantics

	U		
day	time	teacher	
O9	AM	Paolo	80%
O9	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:
- Pick one fact according to probabilities

BID semantics

U			
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1

BID semantics

	U		
day	time	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID semantics

u				u
day	time	teacher		day time teacher
09	AM	Paolo	80\%	
09	AM	Floris	10\%	
09	PM	Floris	70\%	
09	PM	Paolo	1\%	

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID semantics

u				U		
day	time	teacher		day	time	teacher
09	AM	Paolo	80\%	09	AM	Paolo
09	AM	Floris	10\%	09	AM	Floris
09	PM	Floris	70\%			
09	PM	Paolo	1\%			

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID semantics

U				U		
day	time	teache		day	time	teacher
09	AM	Paolo	80\%	09	AM	Paolo
09	AM	Floris	10\%	09	AM	Floris
09	PM	Floris	70\%	09	PM	Floris
09	PM	Paolo	1\%	09	PM	Paolo

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID captures TID

- Each TID can be expressed as a BID...

BID captures TID

- Each TID can be expressed as a BID...
\rightarrow Take all attributes as key
\rightarrow Each block contains a single fact

BID captures TID

- Each TID can be expressed as a BID...
\rightarrow Take all attributes as key
\rightarrow Each block contains a single fact

U		
date	teacher	
09	Diego	90%
09	Paolo	80%
09	Floris	70%

Expressiveness of BID

Can we represent all probabilistic instances with BID?

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}
teacher
Diego
Paolo
$\pi\left(U_{1}\right)=80 \%$

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

$\frac{U_{1}}{\text { teacher }}$		U_{2}
		teacher Diego Paolo
$\pi\left(U_{1}\right)=80 \%$ Floris $\pi\left(U_{2}\right)=10 \%$		

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

\rightarrow If teacher is a key teacher, then TID

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

\rightarrow If teacher is a key teacher, then TID
\rightarrow If teacher is not a key, then only one fact

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

\rightarrow If teacher is a key teacher, then TID
\rightarrow If teacher is not a key, then only one fact
\rightarrow We cannot represent this probabilistic instance as a BID
pc-tables

Boolean c-tables

- Set of Boolean variables x_{1}, x_{2}, \ldots
- Each fact has a condition: Variables, Boolean operators

Boolean c-tables

- Set of Boolean variables x_{1}, x_{2}, \ldots
- Each fact has a condition: Variables, Boolean operators

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

x_{1} Jane is sick
x_{2} Amphi B is available

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence)

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$
- Product of the $1-p_{i}$ for the x_{i} with $\nu\left(x_{i}\right)=0$

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence)

Formally:

- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$
- Product of the $1-p_{i}$ for the x_{i} with $\nu\left(x_{i}\right)=0$
\rightarrow This is like TIDs

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence)

Formally:

- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$
- Product of the $1-p_{i}$ for the x_{i} with $\nu\left(x_{i}\right)=0$
\rightarrow This is like TIDs
- The probability of a possible world $J \subseteq I$ is the total probability of the valuations ν such that $I_{\nu}=J$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

x_{1} Jane is sick
x_{2} Amphi B is available

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

x_{1} Jane is sick
\rightarrow Probability 10%
x_{2} Amphi B is available
\rightarrow Probability 20\%

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν :

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

date	teacher	room
04	Jane	Amphi A
04	Joe	Amphi A
$\mathbf{1 1}$	Jane	Amphi B
$\mathbf{1 1}$	Joe	Amphi B
$\mathbf{1 1}$	Jane	Amphi C
$\mathbf{1 1}$	Joe	Amphi C

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

date	teacher	room
04	Jane	Amphi A
04	Joe	Amphi A
$\mathbf{1 1}$	Jane	Amphi B
11	Joe	Amphi B
11	Jane	Amphi C
11	Joe	Amphi C

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions
\rightarrow Probability of possible world: sum over the valuations

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

date	teacher	room
04	Jane	Amphi A
04	Joe	Amphi A
$\mathbf{1 1}$	Jane	Amphi B
$\mathbf{1 1}$	Joe	Amphi B
$\mathbf{1 1}$	Jane	Amphi C
$\mathbf{1 1}$	Joe	Amphi C

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions
\rightarrow Probability of possible world: sum over the valuations
\rightarrow Here: only this valuation, 18\%

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a strong representation system: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a strong representation system: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

Yet, in the rest of the class, we focus on TIDs \rightarrow easier to characterize tractable queries

PQE

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D ?

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D ?

- Probability that Q holds over D:

$$
\operatorname{Pr}(D \models Q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \models Q}} \operatorname{Pr}\left(D^{\prime}\right)
$$

- Intuitively: the probability that Q holds is the probability of drawing a possible world $D^{\prime} \subseteq D$ which satisfies Q

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D ?

- Probability that Q holds over D :

$$
\operatorname{Pr}(D \models Q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \models Q}} \operatorname{Pr}\left(D^{\prime}\right)
$$

- Intuitively: the probability that Q holds is the probability of drawing a possible world $D^{\prime} \subseteq D$ which satisfies Q

Probabilistic query evaluation (PQE) problem for a query Q over TIDs: given a TID, compute the probability that Q holds

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is one minus the probability of not having such a tuple

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is one minus the probability of not having such a tuple
- Not having such a tuple is the independent AND of not having each tuple

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is one minus the probability of not having such a tuple
- Not having such a tuple is the independent AND of not having each tuple
- So the result is $1-(1-0.5) \times(1-0.7)=0.85$

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$
- We are given a tuple-independent database D, i.e., a relational database where facts are independent and have probabilities

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$
- We are given a tuple-independent database D, i.e., a relational database where facts are independent and have probabilities
- Can we compute the total probability of the possible worlds of D that satisfy Q ?

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$
- We are given a tuple-independent database D, i.e., a relational database where facts are independent and have probabilities
- Can we compute the total probability of the possible worlds of D that satisfy Q ?
- Note that we study data complexity, i.e., Q is fixed and the input is D

Naive probabilistic query evaluation

- Consider all possible worlds of the input

Naive probabilistic query evaluation

- Consider all possible worlds of the input
- Run the query over each possible world

Naive probabilistic query evaluation

- Consider all possible worlds of the input
- Run the query over each possible world
- Sum the probabilities of all worlds that satisfy the query

Naive probabilistic query evaluation example

TID D			Query Q$R(x, y) \wedge R(y, z)$
in	Ou		
A	B	0.8	
B	C	0.2	

Naive probabilistic query evaluation example

	TID D		Query Q in
out			
A	B	0.8	
B	C	0.2	

Possible worlds and probabilities:

Naive probabilistic query evaluation example

	TID		
in out Query Q A B 0.8 B C 0.2			

Possible worlds and probabilities:

Total probability that Q holds: $0.8 \times 0.2=0.16$.

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)
- In fact, naive evaluation is in \#P
\rightarrow Can be expressed (up to normalization) as the number of accepting paths of a nondeterministic PTIME Turing machine
\rightarrow To see why: guess a possible world (with the right probabilities) and check the query

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)
- In fact, naive evaluation is in \#P
\rightarrow Can be expressed (up to normalization) as the number of accepting paths of a nondeterministic PTIME Turing machine
\rightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is computationally intractable so it is unlikely that we can beat naive evaluation in general

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)
- In fact, naive evaluation is in \#P
\rightarrow Can be expressed (up to normalization) as the number of accepting paths of a nondeterministic PTIME Turing machine
\rightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is computationally intractable so it is unlikely that we can beat naive evaluation in general
\rightarrow But some queries admit an efficient algorithm!

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is:

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: 1 -

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}$

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get:

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: 1 -

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: 1 - \prod_{a}

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: 1 - \prod_{a} (1-

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}(1-\operatorname{Pr}(R(a)) \times$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}(1-\operatorname{Pr}(R(a)) \times(1-$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}\right.\right.$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\right.\right.$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!
-What is the probability of the query: $\exists x y R(x), S(x, y), T(y)$?

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!
-What is the probability of the query: $\exists x y R(x), S(x, y), T(y)$?
- This one is \#P-hard!

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!
-What is the probability of the query: $\exists x y R(x), S(x, y), T(y)$?
- This one is \#P-hard!

