Probabilistic Databases: The Dichotomy of PQE

Antoine Amarilli

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:
if Q has a certain form then $\operatorname{PQE}(Q)$ is in PTIME, otherwise it is \#P-hard

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
- We represent the queries as graphs: $R(x, y), S(y, z)$ is x $\longrightarrow y$ Z

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
- We represent the queries as graphs: $R(x, y), S(y, z)$ is x
 Z
- Self-join-free CQ: only one edge of each color (no repeated color)

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
- We represent the queries as graphs: $R(x, y), S(y, z)$ is x
 y Z
- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])

Let Q be an arity-two self-join-free CQ:

- If Q is a conjunction of stars, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Conjunction of stars

- A star is a CQ with a separator variable that occurs in all edges
- A conjunction of stars is a conjunction of one or several stars

The following is not a star: $x \longrightarrow y \longrightarrow z \longrightarrow w$

Proving the small dichotomy (upper bound, 1)

$x \rightleftarrows y \longleftrightarrow_{z}^{w} \quad u \longrightarrow v \quad$ How to solve $\operatorname{PQE}(Q)$ for Q a conjunction of stars?

Proving the small dichotomy (upper bound, 1)

$$
\begin{aligned}
& x \rightleftarrows y \longleftrightarrow w \text { w } \quad u \longrightarrow v \quad \text { How to solve PQE }(Q) \text { for } Q \text { a conjunction of stars? } \\
& x \longleftrightarrow y \longleftrightarrow w \\
& z
\end{aligned}
$$

Proving the small dichotomy (upper bound, 1)

$$
x \rightleftarrows y \longleftrightarrow \rightleftarrows_{z}^{w} \quad u \longrightarrow v
$$

$$
x \rightleftarrows y \longleftrightarrow z
$$

- We consider each connected component separately
\rightarrow Independent conjunction over the connected components
How to solve $\operatorname{PQE}(Q)$ for Q a conjunction of stars?
- We can test all possible values of the separator variable
\rightarrow Independent disjunction over the values of the separator

$$
\begin{aligned}
& x \longleftrightarrow a_{1} \longrightarrow{ }_{z} \\
& x \longrightarrow a_{2} \longrightarrow Z \\
& x \longleftrightarrow a_{3} \longrightarrow{ }_{z}^{w}
\end{aligned}
$$

Proving the small dichotomy (upper bound, 2)

$$
x \longleftrightarrow \boldsymbol{a} \longrightarrow_{z}^{w}
$$

Proving the small dichotomy (upper bound, 2)

$x \rightleftarrows a ゝ{ }_{z}^{w}$
$x \rightleftarrows a$

- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables

Proving the small dichotomy (upper bound, 2)

$x \rightleftarrows a$

- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables
$b_{1} \rightleftarrows a$
$b_{2} \rightleftarrows a$
- We consider every value for the other variable
$b_{3} \rightleftarrows a$
\rightarrow Independent disjunction over the possible assignments

Proving the small dichotomy (upper bound, 2)

$x \rightleftarrows a$

- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables
$b_{1} \rightleftarrows a$
$b_{2} \rightleftarrows a$
- We consider every value for the other variable
$b_{3} \rightleftarrows a$
\rightarrow Independent disjunction over the possible assignments
- We consider every fact
$b \longrightarrow a$
\rightarrow Independent conjunction over the facts
\rightarrow Just read the probability of the ground fact $R(b, a)$.

Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

We can add facts with probability 1 to instances so the other facts are always satisfied, and focus on only these three facts
\rightarrow Let us show \#P-hardness of this query

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE(Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$ Build an instance I_{ϕ} from ϕ :

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3}
\end{aligned}
$$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

$$
\begin{array}{ll}
a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} & b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} & \\
a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} & b_{2} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{array}
$$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q
\rightarrow The probability of Q on I_{ϕ} is the number of accepting valuations of ϕ, divided by the number of valuations ($2^{-\mid \text {Vars } \mid}$)

Extending beyond arity-two (1)

How can we extend beyond arity-two queries?
Theorem ([Dalvi and Suciu, 2007])
Let Q be a arity-two self-join-free CQ:

- If Q is a conjunction of stars hierarchical, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical
- A conjunction of hierarchical connected components is hierarchical

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
- It must have a separator variable occurring in all atoms
- If we remove this separator variable, the query must be hierarchical

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
- It must have a separator variable occurring in all atoms
- If we remove this separator variable, the query must be hierarchical
$\exists x\left(\exists y\left(\exists z R_{1}(x, y, z)\right) \wedge\left(\exists z^{\prime} R_{2}\left(x, y, z^{\prime}\right)\right)\right) \wedge\left(\exists y^{\prime} \exists z^{\prime \prime} R_{3}\left(x, y^{\prime}, z^{\prime \prime}\right)\right)$

$$
\wedge\left(\exists u\left(\exists v R_{4}(u, v)\right) \wedge\left(\exists w R_{5}(u, v, w)\right)\right)
$$

Extending beyond arity-two (3)

How does the proof change?

Extending beyond arity-two (3)

How does the proof change?

- Upper bound: we can generalize the algorithm
- Independent AND of connected components
- Independent OR of possible choices for the separator variable
- Both cases use self-join-freeness!

Extending beyond arity-two (3)

How does the proof change?

- Upper bound: we can generalize the algorithm
- Independent AND of connected components
- Independent OR of possible choices for the separator variable
- Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like $x \longrightarrow y \longrightarrow z \longrightarrow w$

Extending beyond arity-two (3)

How does the proof change?

- Upper bound: we can generalize the algorithm
- Independent AND of connected components
- Independent OR of possible choices for the separator variable
- Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

- One atom containing x and y
- One atom containing x but not y
- One atom containing y but not x

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):
Theorem ([Dalvi and Suciu, 2012])
Let Q be a UCQ:

- If Q is handled by a complicated algorithm then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let Q be a UCQ:

- If Q is handled by a complicated algorithm then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

This result is far more challenging:

- Upper bound:
- an algorithm generalizing the previous case with inclusion-exclusion
- many unpleasant details (e.g., a ranking transformation)

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let Q be a UCQ:

- If Q is handled by a complicated algorithm then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

This result is far more challenging:

- Upper bound:
- an algorithm generalizing the previous case with inclusion-exclusion
- many unpleasant details (e.g., a ranking transformation)
- Lower bound: hardness proof on minimal cases where the algorithm does not work (very challenging)

References i

(in Dalvi, N. and Suciu, D. (2007).
The dichotomy of conjunctive queries on probabilistic structures.
In Proc. PODS.
图 Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries. J. $A C M, 59(6)$.

