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Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard
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The “small” Dalvi and Suciu dichotomy

• Conjunctive query (CQ): existentially quantified conjunction of atoms

• Arity-two: all relations are binary
• We represent the queries as graphs: R(x, y), S(y, z) is x y z

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])
Let Q be an arity-two self-join-free CQ:

• If Q is a conjunction of stars, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard
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Conjunction of stars

• A star is a CQ with a separator variable that occurs in all edges

• A conjunction of stars is a conjunction of one or several stars

x y
z

w
u v

The following is not a star: x y z w
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Proving the small dichotomy (upper bound, 1)

x y
z

w
u v How to solve PQE(Q) for Q a conjunction of stars?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a1
z

w

x a2
z

w

x a3
z

w

...

• We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator
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Proving the small dichotomy (upper bound, 2)

x a
z

w

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b1 a
b2 a
b3 a

...

• We consider every value for the other variable
→ Independent disjunction over the possible assignments

b a
• We consider every fact
→ Independent conjunction over the facts
→ Just read the probability of the ground fact R(b,a).
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Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern
essentially like:

x y z w

We can add facts with probability 1 to instances so the other facts are always satisfied,
and focus on only these three facts

→ Let us show #P-hardness of this query
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Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)
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Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)
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Extending beyond arity-two (1)

How can we extend beyond arity-two queries?

Theorem ([Dalvi and Suciu, 2007])
Let Q be a arity-two self-join-free CQ:

• If Q is a conjunction of stars hierarchical, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard
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Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

• A query with no variables is hierarchical

• A conjunction of hierarchical connected components is hierarchical

• Induction case: for a connected CQ:
• It must have a separator variable occurring in all atoms
• If we remove this separator variable, the query must be hierarchical

∃x
(
∃y (∃z R1(x, y, z)) ∧

(
∃z′ R2(x, y, z′)

))
∧
(
∃y′∃z′′ R3(x, y′, z′′)

)
∧ (∃u (∃v R4(u, v)) ∧ (∃w R5(u, v,w)))

x
y

z z'
y'
z''

u
v
w
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Extending beyond arity-two (3)

How does the proof change?

• Upper bound: we can generalize the algorithm
• Independent AND of connected components
• Independent OR of possible choices for the separator variable
• Both cases use self-join-freeness!

• Lower bound: a non-hierarchical expression contains a pattern like
x y z w

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

• One atom containing x and y

• One atom containing x but not y

• One atom containing y but not x

12/13
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• One atom containing x and y

• One atom containing x but not y

• One atom containing y but not x
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The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):
Theorem ([Dalvi and Suciu, 2012])
Let Q be a UCQ:

• If Q is handled by a complicated algorithm then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more challenging:

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
(very challenging)
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