Probabilistic Databases: The Dichotomy of PQE

Antoine Amarilli

What is the complexity of PQE(Q) depending on the query Q?

What is the complexity of PQE(Q) depending on the query Q?

 \rightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

What is the complexity of PQE(Q) depending on the query Q?

 \rightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

What is the complexity of PQE(Q) depending on the query Q?

ightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

What is the complexity of PQE(Q) depending on the query Q?

ightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

What is the complexity of PQE(Q) depending on the query Q?

 $\rightarrow\,$ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

What is the complexity of PQE(Q) depending on the query Q?

 $\rightarrow\,$ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

• Conjunctive query (CQ): existentially quantified conjunction of atoms

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
 - We represent the queries as graphs: R(x,y), S(y,z) is $x \longrightarrow y \longrightarrow z$

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
 - We represent the queries as graphs: R(x, y), S(y, z) is $x \longrightarrow y \longrightarrow z$
- Self-join-free CQ: only one edge of each color (no repeated color)

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
 - We represent the queries as graphs: R(x,y), S(y,z) is $x \longrightarrow y \longrightarrow z$
- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])

Let **Q** be an arity-two self-join-free CQ:

- If **Q** is a conjunction of stars, then PQE(**Q**) is in **PTIME**
- Otherwise, PQE(**Q**) is **#P-hard**

- A star is a CQ with a separator variable that occurs in all edges
- A conjunction of stars is a conjunction of one or several stars

$$x \xrightarrow{\sim} y \xrightarrow{w}_{z} u \longrightarrow v$$

The following is **not a star**: $x \longrightarrow y \longrightarrow z \longrightarrow w$

 $x \xrightarrow{\sim} y \xrightarrow{w}_{z} u \longrightarrow v$ How to solve PQE(Q) for Q a conjunction of stars?

- We consider each connected component separately
- $\rightarrow~$ Independent conjunction over the connected components

- We consider each connected component separately
- $\rightarrow~$ Independent conjunction over the connected components

x __ y <_ _

- We can test all possible values of the **separator variable**
- ightarrow Independent disjunction over the values of the separator

х 🔁 а

- For every match, we consider every **other variable** separately
- \rightarrow Independent conjunction over the variables

x 🔁 a

- For every match, we consider every **other variable** separately
- \rightarrow Independent conjunction over the variables

 $b_3 \supset a$

- We consider every value for the other variable
- \rightarrow Independent disjunction over the possible assignments

х 🔁 а

For every match, we consider every other variable separately
→ Independent conjunction over the variables

 $b_3 \supset a$

 $\rightarrow~$ Independent disjunction over the possible assignments

- $\rightarrow~$ Independent conjunction over the facts
- \rightarrow Just read the probability of the ground fact R(b, a).

Every arity-two self-join-free CQ which is **not a conjunction of stars** contains a pattern essentially like:

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

Every arity-two self-join-free CQ which is **not a conjunction of stars** contains a pattern essentially like:

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

We can **add facts with probability 1** to instances so the other facts are always satisfied, and focus on **only these three facts**

ightarrow Let us show #P-hardness of this query

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Build an **instance** I_{ϕ} from ϕ :

Idea:

• Valuations of ϕ correspond to possible worlds of I_{ϕ}

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Build an **instance** I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Build an **instance** I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q
- → The probability of Q on I_{ϕ} is the number of accepting valuations of ϕ , divided by the number of valuations $(2^{-|Vars|})$

How can we extend beyond arity-two queries?

Theorem ([Dalvi and Suciu, 2007])

Let **Q** be a arity-two self-join-free CQ:

- If **Q** is a conjunction of stars hierarchical, then PQE(**Q**) is in **PTIME**
- Otherwise, PQE(Q) is #P-hard

• A query with **no variables** is hierarchical

- A query with **no variables** is hierarchical
- A conjunction of hierarchical connected components is hierarchical

- A query with **no variables** is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
 - It must have a **separator variable** occurring in all atoms
 - If we remove this separator variable, the query must be hierarchical

- A query with **no variables** is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
 - It must have a **separator variable** occurring in all atoms
 - · If we remove this separator variable, the query must be hierarchical

 $\exists x (\exists y (\exists z R_1(x, y, z)) \land (\exists z' R_2(x, y, z'))) \land (\exists y' \exists z'' R_3(x, y', z'')) \land (\exists u (\exists v R_4(u, v)) \land (\exists w R_5(u, v, w)))$

How does the proof change?

How does the proof change?

- Upper bound: we can generalize the algorithm
 - Independent AND of connected components
 - Independent OR of possible choices for the separator variable
 - Both cases use self-join-freeness!

How does the proof change?

- Upper bound: we can generalize the algorithm
 - Independent AND of connected components
 - Independent OR of possible choices for the separator variable
 - Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

How does the proof change?

- Upper bound: we can generalize the algorithm
 - Independent AND of connected components
 - Independent OR of possible choices for the separator variable
 - Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

Via **equivalent characterization**: a non-hierarchical query has two variables **x** and **y** and:

- One atom containing **x** and **y**
- One atom containing **x but not y**
- One atom containing **y** but not **x**

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let **Q** be a UCQ:

- If \boldsymbol{Q} is handled by a complicated algorithm then $\mathrm{PQE}(\boldsymbol{Q})$ is in **PTIME**
- Otherwise, PQE(Q) is #P-hard

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let **Q** be a UCQ:

- If Q is handled by a complicated algorithm then PQE(Q) is in PTIME
- Otherwise, PQE(Q) is #P-hard

This result is **far more challenging**:

- Upper bound:
 - \cdot an algorithm generalizing the previous case with inclusion-exclusion
 - many unpleasant details (e.g., a ranking transformation)

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let **Q** be a UCQ:

- If Q is handled by a complicated algorithm then PQE(Q) is in PTIME
- Otherwise, PQE(Q) is #P-hard

This result is **far more challenging**:

- Upper bound:
 - $\cdot\,$ an algorithm generalizing the previous case with <code>inclusion-exclusion</code>
 - many unpleasant details (e.g., a ranking transformation)
- Lower bound: hardness proof on minimal cases where the algorithm does not work (very challenging)

Dalvi, N. and Suciu, D. (2007). The dichotomy of conjunctive queries on probabilistic structures. In *Proc. PODS*. Dalvi, N. and Suciu, D. (2012). The dichotomy of probabilistic inference for unions of conjunctive queries. *J. ACM*, 59(6).