Probabilistic Databases: Width-Based Approaches

Antoine Amarilli

OK, PQE is *intractable* for essentially all queries. What now?

OK, PQE is **intractable** for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - probabilistic words
 - probabilistic trees
 - probabilistic graphs with bounded treewidth

OK, PQE is **intractable** for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - probabilistic words
 - probabilistic trees
 - probabilistic graphs with **bounded treewidth**
- In the non-probabilistic case, this ensures tractability for complex queries
- \rightarrow Could the same be true in the **probabilistic case**?

OK, PQE is *intractable* for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - probabilistic words
 - probabilistic trees
 - probabilistic graphs with **bounded treewidth**
- In the non-probabilistic case, this ensures tractability for complex queries
- \rightarrow Could the same be true in the **probabilistic case**?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

OK, PQE is *intractable* for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - probabilistic words
 - probabilistic trees
 - probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
- \rightarrow Could the same be true in the **probabilistic case**?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

Conversely, there is a query **Q** for which PQE(**Q**) is intractable on **any** input instance family of unbounded treewidth (under some technical assumptions)

"Is there both a pink and a blue node?"

"Is there both a pink and a blue node?"

I Result: TRUE/FALSE indicating if the word w satisfies the query Q

"Is there both a pink and a blue node?"

Result: TRUE/FALSE indicating if the word **w** satisfies the query **Q**

Computational complexity as a function of **w** (the query **Q** is **fixed**)

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\odot}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"

0-0-0-0-0

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\odot}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"
- Propositional logic: formulas with AND $\wedge,$ OR $\vee,$ NOT \neg
 - $P_{\bigcirc}(x) \land P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

$\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc$

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\odot}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"
- Propositional logic: formulas with AND $\wedge,$ OR $\vee,$ NOT \neg
 - $P_{\odot}(x) \wedge P_{\odot}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier ∃ and universal quantifier ∀
 - $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

$\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc$

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\bigcirc}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"
- Propositional logic: formulas with AND $\wedge,$ OR $\vee,$ NOT \neg
 - $P_{\odot}(x) \wedge P_{\odot}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier ∃ and universal quantifier ∀
 - $\cdot \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
 - $\exists S \forall x S(x)$ means "there is a set S containing every element x"
 - Can express transitive closure $x \rightarrow^* y$, i.e., "x is before y"
 - $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \land x \rightarrow^{*} y$ means "There is a blue node after every pink node"

Translate the query Q to a deterministic word automatonAlphabet: \bigcirc w: \bigcirc \bigcirc Q: $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

• States: $\{\perp, B, P, \top\}$

Translate the query Q to a deterministic word automatonAlphabet: \bigcirc w: \bigcirc \bigcirc Q: $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$

Translate the query Q to a deterministic word automatonAlphabet: \bigcirc w: \bigcirc \bigcirc Q: $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

1

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

w: <u>○</u>_____

Q: $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$N: \bigcirc_{\perp} P \bigcirc_{-} O_{-} \bigcirc_{-} O_{-} O_{-}$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$N: \bigcirc_{\perp} P P$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: OOO

$$N: \bigcirc_{\perp} P P \top$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: OOO

$$w: \bigcirc_{\perp} P P \overset{\frown}{} - \overset{\bullet}{} - \overset{\bullet}{}$$

$$\mathsf{Q:} \exists x \ y \ \mathsf{P}_{\mathsf{O}}(x) \land \mathsf{P}_{\mathsf{O}}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$w: \bigcirc_{\perp} P P \overset{\frown}{} - \overset{\bullet}{} - \overset{\bullet}{}$$

Q:
$$\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

(

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$w: \bigcirc_{\perp} P P \overset{\frown}{} - \overset{\bullet}{} - \overset{\bullet}{}$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

(

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Corollary

Query evaluation of MSO on words is in linear time (in data complexity)

Database: a tree *T* where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Database: a **tree** *T* where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x
 ightarrow y$ means "x is the parent of y"

"Is there both a pink and a blue node?" ∃x y P_⊙(x) ∧ P_⊙(y)

Database: a **tree** *T* where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

- **Query Q**: in monadic second-order logic (MSO)
- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x
 ightarrow y$ means "x is the parent of y"

"Is there both a pink and a blue node?" ∃x y P_⊙(x) ∧ P_⊙(y)

Result: YES/NO indicating if the tree **T** satisfies the query **Q**

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

$$\begin{array}{c} \bigwedge^{P} & \bigwedge^{\top} & \bigwedge^{\perp} \\ P & \bot & P & B & \bot & \bot \end{array}$$
Tree automata

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Tree automata

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Tree automata

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

$$\begin{array}{c} P \\ P \\ \bot \end{array} \begin{array}{c} P \\ P \end{array} \begin{array}{c} P \\ B \end{array} \begin{array}{c} T \\ T \\ T \end{array} \end{array}{\begin{array}{c} T \\ T \end{array} \end{array}{c} T \end{array} \begin{array}{c} T \\ T \\ T \end{array} \end{array}{\begin{array}{c} T \\ T \end{array} \end{array}{c} T \end{array} \begin{array}{c} T \\ T \\ T \end{array} \end{array}{c} T \end{array} \begin{array}{c} T \\ T \\ T \end{array} \end{array}{c} T \end{array} \begin{array}{c} T \\ T \\ T \end{array} \end{array}{c} T \end{array} \end{array}{c} T \\{c} T \end{array}{c} T \\{c} T \end{array}{c} T \\{c} T \end{array}{c} T \end{array}{c} T \end{array}{c} T \end{array}{$$

Theorem ([Thatcher and Wright, 1968])

MSO and tree automata have the same expressive power on trees

Let's now define the **PQE problem** for MSO queries on trees:

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** ()

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** \bigcirc)

Query Q: in monadic second-order logic (MSO)

 $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** \bigcirc)

Query Q: in monadic second-order logic (MSO)

 $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Result: **probability** that the probabilistic tree **T** satisfies the query **Q**

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** \bigcirc)

Query Q: in monadic second-order logic (MSO)

 $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Result: **probability** that the probabilistic tree T satisfies the query Q

Theorem

For any fixed **MSO query Q**, the problem PQE(**Q**) on trees is in **linear time** assuming constant-time arithmetics

A valuation of a tree decides whether to keep (1) or discard (0) node labels

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2, 3, 7 \mapsto 1, \ast \mapsto 0\}$

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2, 7 \mapsto 1, * \mapsto 0\}$

Valuation: $\{2, 7 \mapsto 1, * \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

Valuation: $\{2, 3, 7 \mapsto 1, \ast \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

The query **Q** returns **YES**

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

The query **Q** returns **NO**

Valuation: $\{2, 7 \mapsto 1, * \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

The query **Q** returns **YES**

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Q: "Is there both a pink and a blue node?"

 \rightarrow This is a so-called **Boolean provenance circuit** on the "color facts" of the tree nodes!

• Directed acyclic graph of **gates**

- Directed acyclic graph of **gates**
- Output gate:

- Directed acyclic graph of gates
- Output gate:
- Variable gates: X

• Directed acyclic graph of gates

(x)

(¬)

- Output gate:
- Variable gates:
- Internal gates:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

´ ¬ `

(x)

(V)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

´ ¬ `

(x)

(V)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

(x)

(V)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

(x

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Formal definition of provenance circuits:

- Boolean query Q, uncertain tree T, circuit C
- Variable gates of C: nodes of T
- Condition: Let ν be a valuation of T, then $\nu(C)$ iff $\nu(T)$ satisfies Q

Theorem

Theorem

For any bottom-up **tree automaton A** and input **tree T**, we can build a **provenance circuit** of **A** on **T** in $O(|A| \times |T|)$

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

- States:
 - $\{\perp, B, P, \top\}$
- Final: $\{\top\}$

• Transitions: $\bigcirc \top$

Theorem

For any bottom-up **tree automaton A** and input **tree T**, we can build a **provenance circuit** of **A** on **T** in $O(|A| \times |T|)$

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

• States:

$$\{\perp, B, P, \top\}$$

• Final:
$$\{\top\}$$

- Transitions: $\Box \top \Box$
 - P ⊥ P ⊥

Theorem

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

- States:
 - $\{\perp, B, P, \top\}$
- Final: $\{\top\}$

- Transitions:
 - $P \perp P \perp$

Theorem

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

- States:
 - $\{\perp, \textit{B}, \textit{P}, \top\}$
- Final: $\{\top\}$

- Transitions: $\Box \top \Box$
 - $P \perp P \perp$

Theorem

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

- States:
 - $\{\perp, \textit{B}, \textit{P}, \top\}$
- Final: $\{\top\}$

- Transitions:
 - $P \perp P \perp$

Theorem

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

- States:
 - $\{\perp, \textit{B}, \textit{P}, \top\}$
- Final: $\{\top\}$

- Transitions:
 - $P \perp P \perp$

Building provenance circuits on trees

Theorem

For any bottom-up **tree automaton A** and input **tree T**, we can build a **provenance circuit** of **A** on **T** in $O(|A| \times |T|)$

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

- States:
 - $\{\perp, \textit{B}, \textit{P}, \top\}$
- Final: $\{\top\}$

• Transitions:

• We are given a circuit and a probability P for each variable

• We are given a **circuit** and a **probability P** for each variable

- P(x) = 40%
 P(y) = 50%

- We are given a circuit and a probability P for each variable
- Each variable x is true **independently** with probability P(x)

- P(x) = 40%
- P(y) = 50%

- We are given a **circuit** and a **probability P** for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

- P(x) = 40%
- P(y) = 50%

- We are given a **circuit** and a **probability P** for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

• In general, **#P-hard** (harder than SAT)

- *P*(*x*) = 40%
- *P*(*y*) = 50%

- We are given a **circuit** and a **probability P** for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

• Here it's **easy**:

• In general, **#P-hard** (harder than SAT)

- P(x) = 40%
- P(y) = 50%

- We are given a **circuit** and a **probability P** for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - $\cdot\,$ The inputs to the $\wedge\text{-gate}$ are independent

- We are given a **circuit** and a **probability P** for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - $\cdot\,$ The inputs to the $\wedge\text{-gate}$ are independent

- We are given a circuit and a probability P for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge \text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)

- We are given a circuit and a probability P for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

- P(x) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge \text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)

- We are given a circuit and a probability P for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge \text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)
 - The ∨-gate has mutually exclusive inputs

- We are given a circuit and a probability P for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?
- √ 80%
 7 60%
 ∧ 20%
 x y
 - *P*(*x*) = 40%
 - P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge \text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)
 - The ∨-gate has mutually exclusive inputs

20%

V

- We are given a **circuit** and a **probability P** for each variable
- Each variable x is true **independently** with probability P(x)
- What is the probability that the circuit evaluates to true?
 - In general, **#P-hard** (harder than SAT)
 - Here it's **easy**:
 - The inputs to the $\wedge\text{-}\mathsf{gate}$ are $\mathsf{independent}$
 - The \neg -gate has probability 1 P(input)
 - The ∨-gate has mutually exclusive inputs
 - Let's focus on a **restricted class** of circuits that satisfies these conditions

60%

Х

80%

The circuit is a **d-DNNF**...

The circuit is a **d-DNNF**...

• O gates only have variables as

The circuit is a **d-DNNF**...

• O gates only have variables as inputs

The circuit is a **d-DNNF**...

- O gates only have variables as inputs
- V gates always have **mutually** exclusive inputs

The circuit is a **d-DNNF**...

... so probability computation is **easy**!

The circuit is a **d-DNNF**...

... so probability computation is **easy**!

g

g

• Ogenerates gates only have variables as

The circuit is a **d-DNNF**...

... so probability computation is **easy**!

g

q

• Ogeneration gates only have variables as

P(q) := 1 - P(q')

The circuit is a **d-DNNF**...

... so probability computation is **easy**!

- Ogenerate gates only have variables as
- V gates always have **mutually** exclusive inputs

gates are all on

independent inputs

$$P(g) := 1 - P(g')$$

The circuit is a **d-DNNF**...

• V gates always have **mutually** exclusive inputs

 $\begin{array}{c} & & \\ & &$

... so probability computation is **easy**!

$$P(g) \mathrel{\mathop:}= \operatorname{\mathsf{1}} - P(g')$$

 $P(g) := P(g'_1) + P(g'_2)$

The circuit is a **d-DNNF**...

- O gates only have variables as
- Ø gates always have mutually exclusive inputs

• (A) gates are all on independent inputs

g g g g_2' g'_1 g g_2' g'_1

...

$$P(g) := 1 - P(g')$$

 $P(g) := P(g'_1) + P(g'_2)$

The circuit is a **d-DNNF**...

- O gates only have variables as
- Ø gates always have mutually exclusive inputs

• (A) gates are all on independent inputs

... so probability computation is **easy**!

g

g

g

 g_2'

 g_2'

ď

 g'_1

 g'_1

$$P(g) := 1 - P(g')$$

 $P(g) := P(g_1') + P(g_2')$

$$\mathsf{P}(g) \mathrel{\mathop:}= \mathsf{P}(g_1') imes \mathsf{P}(g_2')$$

14/17

The circuit is a **d-DNNF**...

- O gates only have variables as
- Ø gates always have mutually exclusive inputs

g а g q_1' g_2' q g_2' q'_1

... so probability computation is **easy**!

$$\mathsf{P}(g) \mathrel{\mathop:}= \mathsf{1} - \mathsf{P}(g')$$

 $P(g) := P(g'_1) + P(g'_2)$

$$P(g) := P(g'_1) \times P(g'_2)$$

Lemma

The provenance circuit computed in our construction is a d-DNNF

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and (k 1)-grids have treewidth k 1

We have shown tractability of PQE on trees; let us extend to bounded treewidth

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and (k 1)-grids have treewidth k 1
- $\rightarrow~\mbox{Treelike}:$ the $\mbox{treewidth}$ is bounded by a $\mbox{constant}$

Treelike data

MSO query

 $\exists x \ y \\ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Treelike data

Theorem ([Courcelle, 1990])

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can compute in linear time in D whether D satisfies Q

Probabilistic treelike **data**

MSO query

 $\exists x \ y \\ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Theorem (A., Bourhis, Senellart, 2015, 2016)

For any fixed Boolean MSO query **Q** and $\mathbf{k} \in \mathbb{N}$, given a database **D** of treewidth $\leq \mathbf{k}$, we can solve the PQE problem in linear time (assuming constant-time arithmetics)

Theorem (A., Bourhis, Senellart, 2016)

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a **first-order** query **Q** such that for any constructible **unbounded-treewidth** family *I* of probabilistic graphs, the PQE problem for **Q** and *I* is **#P-hard** under RP reductions

• **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME
- Under RP reductions: reduce in PTIME with high probability

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME
- Under RP reductions: reduce in PTIME with high probability
- \rightarrow This result does **not** generalize to higher-arity!

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME
- Under RP reductions: reduce in PTIME with high probability
- \rightarrow This result does **not** generalize to higher-arity!
- \rightarrow Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014]) and use them for a lower bound

Amarilli, A., Bourhis, P., and Senellart, P. (2015). Provenance circuits for trees and treelike instances. In ICALP.

Amarilli, A., Bourhis, P., and Senellart, P. (2016).

Tractable lineages on treelike instances: Limits and extensions. In *PODS*.

Chekuri, C. and Chuzhoy, J. (2014).

Polynomial bounds for the grid-minor theorem.

In STOC.

Courcelle, B. (1990).

The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. *Inf. Comput.*, 85(1).

Thatcher, J. W. and Wright, J. B. (1968).

Generalized finite automata theory with an application to a decision problem of second-order logic.

Mathematical systems theory, 2(1).