
Probabilistic Databases: Width-Based Approaches

Antoine Amarilli

1/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/17

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/17

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/17

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/17

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/17

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node”

4/17

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node”

4/17

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node”

4/17

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node” 4/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥

P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥

P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P

P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P

⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤

⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤
Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤
Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤
Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

6/17

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

6/17

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

6/17

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet:
⊤

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Tree automata

Tree alphabet:
⊤

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/17

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/17

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/17

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/17

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/17

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns YES

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns NO

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns YES

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Q: “Is there both a pink and a blue node?”

→ This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

10/17

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

10/17

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) iff ν(T) satisfies Q

11/17

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) iff ν(T) satisfies Q

11/17

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) iff ν(T) satisfies Q

11/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧

∧¬

12/17

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧
∧∧¬

12/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)

• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)

• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satisfies these conditions

13/17

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′

P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′
1 g′

2

P(g) := P(g′
1) + P(g′

2)

• ∧ gates are all on
independent inputs

∧ g

g′
1 g′

2

P(g) := P(g′
1)× P(g′

2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

14/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant
15/17

Courcelle’s theorem and extension to PQE

MSO query

Treelike data

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automatonMSO query

Treelike data

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data

linear

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem ([Courcelle, 1990])
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

MSO query

treelike data
Probabilistic

50%20%

10%

80%
50%

30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automatonMSO query

treelike data
Probabilistic

50%20%

10%

80%
50%

30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data

linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

50% 30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Probability
95%

linear

50% 30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Probability
95%

linear

50% 30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can solve the PQE problem in linear time (assuming constant-time arithmetics)

16/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

References i

Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
Chekuri, C. and Chuzhoy, J. (2014).
Polynomial bounds for the grid-minor theorem.
In STOC.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/

References ii

Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1).

Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of
second-order logic.
Mathematical systems theory, 2(1).

	Width-Based Approaches
	Appendix

