Probabilistic Databases: Width-Based Approaches

Antoine Amarilli

TELECOM

Paris

m &

1/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

» We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

» We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

 In the non-probabilistic case, this ensures tractability for complex queries
— Could the same be true in the probabilistic case?

2/17

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

» We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

 In the non-probabilistic case, this ensures tractability for complex queries
— Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound kR € N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth < k

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

» We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

 In the non-probabilistic case, this ensures tractability for complex queries

— Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound kR € N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth < k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

Non-probabilistic query evaluation on words

L) Database: a word w where nodes have a color from an
S’ alphabet OOO O_O_O_O_O

3/17

Non-probabilistic query evaluation on words

L) Database: a word w where nodes have a color from an
S’ alphabet OOO O_O_O_O_O

Query Q: a sentence (yes/no question) “Is there both a pink and
in monadic second-order logic (MSO) a blue node?”

3/17

Non-probabilistic query evaluation on words

() Database: a word w where nodes have a color from an
~—" o—-O0O00
hN—rv alphabet OO O
Query Q: a sentence (yes/no question) “Is there both a pink and
in monadic second-order logic (MSO) a blue node?”

@ Result: TRUE/FALSE indicating if the word w satisfies the query Q

3/17

Non-probabilistic query evaluation on words

() Database: a word w where nodes have a color from an
~—" o—-O0O00
hN—rv alphabet OO O
Query Q: a sentence (yes/no question) “Is there both a pink and
in monadic second-order logic (MSO) a blue node?”

@ Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/17

Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Po(X), Po(x)
o-0-0O00-0

e X — y means “x is the predecessor of y”

417

Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Po(X), Po(x)
o-0-0O00-0

e X — y means “x is the predecessor of y”

 Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

417

Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Po(X), Po(x)
o-0-0O00-0

e X — y means “x is the predecessor of y”

 Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier vV
- 3xy Po(X) A Po(y) means “There is both a pink and a blue node”

417

Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Po(X), Po(x)
o-0-0O00-0

e X — y means “x is the predecessor of y”

 Propositional logic: formulas with AND A, OR v, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier V
- 3xy Po(X) A Po(y) means “There is both a pink and a blue node”

« Monadic second-order logic (MSO): adds quantifiers over sets
- 35 ¥x S(x) means “there is a set S containing every element x”
- Can express transitive closure x —* y, i.e., “x is before y”
- VXPo(X) = JyPo(y) AX =*y

means “There is a blue node after every pink node 7

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: O QO w: O—O—-0O—0-0 Q: 3xy Po(x) A Po(y)

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO Q w: O—O—O—0—-O Q: Ixy Po(x) A Po(y)

o States: {L,B,P, T}

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO Q w: O—O—O—0—-O Q: Ixy Po(x) A Po(y)

o States: {L,B,P, T}
 Final states: {T}

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO Q w: O—O—O—0—-O Q: Ixy Po(x) A Po(y)

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO Q w: O—O—O—0—-O Q: Ixy Po(x) A Po(y)
L

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO Q w: O—O—O—0—-O Q: Ixy Po(x) A Po(y)
L

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB
« Transitions (examples): L —O P—O T —O

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO Q w: O—O—O—0—-O Q: Ixy Po(x) A Po(y)
1 P

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB
« Transitions (examples): L —O P—O T —O

5/17

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: OO O w: O—O—-O—0-O Q: Ixy Po(x) A Po(y)
L P P

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB
« Transitions (examples): L —O P—O T —O

5/17

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: OO O w: O—O0—O—-0-O Q: 3xy Po(x) A Po(Y)
L PP T

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB
« Transitions (examples): L —O P—O T —O

5/17

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: OO O w: O-O-O-0-0 Q: 3xy Po(x) A Po(y)
L P P T T

o States: {L,B,P, T}
 Final states: {T}

e Initial function: O L QP OB
« Transitions (examples): L —O P—O T —O

5/17

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: OO O w: O—O—-0O—0-0 Q: 3xy Po(x) A Po(y)
L P P T T
o States: {L,B,P, T}

 Final states: {T}
e Initial function: O L QP OB
« Transitions (examples): L —O P —O T —O

Theorem (Biichi, 1960)
MSO and word automata have the same expressive power on words

5/17

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: OO O w: O-O-O-0-0 Q: 3xy Po(x) A Po(y)
L P P T T

o States: {L,B,P, T}
 Final states: {T}
e Initial function: O L QP OB

« Transitions (examples): L —O P —O T —O

Theorem (Biichi, 1960)
MSO and word automata have the same expressive power on words

.
.
~

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/17

Non-probabilistic query evaluation on trees

L) Database: a tree T where nodes have a color from an
AN—rv alphabet OO O

6/17

Non-probabilistic query evaluation on trees

L) Database: a tree T where nodes have a color from an
AN—rv alphabet OO O

Query Q: in monadic second-order logic (MSO)
- Po(x) means “x is blue”
- X — y means “x is the parent of y”

“Is there both a pink and
a blue node?”

3xy Po(x) A Po(y)

6/17

Non-probabilistic query evaluation on trees

L) Database: a tree T where nodes have a color from an
AN—rv alphabet OO O

Query Q: in monadic second-order logic (MSO) “Is there both a pink and
- Po(x) means “x is blue” a blue node?”
- X — y means “x is the parent of y” Ixy Po(x) A Po(y)

@ Result: YES/NO indicating if the tree T satisfies the query Q

6/17

Tree alphabet: OO O

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton
e “Is there both a pink and a blue node?”

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton
e “Is there both a pink and a blue node?”
» States: {1,B,P, T}

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton
e “Is there both a pink and a blue node?”
» States: {1,B,P, T}
* Final states: {T}

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton
e “Is there both a pink and a blue node?”
» States: {1,B,P, T}

Final states: {T}

Initial function: O L QP QOB

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton
e “Is there both a pink and a blue node?”
» States: {1,B,P, T}

Final states: {T}

Initial function: O L QP QOB

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

P L L B R P\ P\

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

AR R

7/17

Tree alphabet: O ©Q @ e Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

AR R

7/17

Tree alphabet: O Q@ e Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

AR R

Theorem ([Thatcher and Wright, 1968])

MSO and tree automata have the same expressive power on trees

7/17

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

8/17

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

) Database: a tree T where each node has a probability 20%

N— of keeping its color (vs taking the default color Q) 80% 60%

8/17

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

) Database: a tree T where each node has a probability 20%

N— of keeping its color (vs taking the default color Q) 80% 60%

Q) Query Q: in monadic second-order logic (MSO) Ixy Po(x) A Po(y)

8/17

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

() Database: a tree T where each node has a probability 20%
N— of keeping its color (vs taking the default color O) 80% 60%
Q) Query Q: in monadic second-order logic (MSO) Ixy Po(x) A Po(y)

@ Result: probability that the probabilistic tree T satisfies the query Q

8/17

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

() Database: a tree T where each node has a probability 20%
N— of keeping its color (vs taking the default color O) 80% 60%
@ Query Q: in monadic second-order logic (MSO) Ixy Po(x) A Po(y)

@ Result: probability that the probabilistic tree T satisfies the query Q

For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/17

Uncertain trees: capturing how the query result depends on the choices

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

e e Valuation: {2,3,7+ 1, > 0}

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

a e Valuation: {2 — 1, *+— 0}

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

a e Valuation: {2,7 — 1, * > 0}

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) o

discard (0) node labels
Valuation: {2,7 — 1, *— 0}

Q: “Is there both a pink and a blue node?”

r

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2,3,7 — 1, *+ 0}
Q: “Is there both a pink and a blue node?”

The query Q returns YES

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 — 1, *+— 0}
Q: “Is there both a pink and a blue node?”

The query Q returns NO

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2,7 — 1, *— 0}
Q: “Is there both a pink and a blue node?”

The query Q returns YES

9/17

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Q: “Is there both a pink and a blue node?”

— This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!

9/17

Boolean circuit

@ * Directed acyclic graph of gates

10/17

Boolean circuit

@ * Directed acyclic graph of gates

e QOutput gate: @

10/17

Boolean circuit

@ * Directed acyclic graph of gates

e QOutput gate: @
a ° Variable gates: @

10/17

Boolean circuit

O

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

10/17

Boolean circuit

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

Valuation: function from variables to {0, 1}

° 0 Example: v = {x — 0, y > 1}..

10/17

Boolean circuit

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

Valuation: function from variables to {0, 1}
Example: v = {x— 0, y — 1}...

10/17

Boolean circuit

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

Valuation: function from variables to {0, 1}
Example: v = {x— 0, y — 1}...

10/17

Boolean circuit

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

Valuation: function from variables to {0, 1}
Example: v = {x +— 0, y +— 1}.. mapped to 1

10/17

Example: Provenance circuit

Query: Is there both a pink and a blue node?

1/

Example: Provenance circuit

Query: Is there both a pink and a blue node?

e e Provenance circuit; 0 e

M/

Example: Provenance circuit

Query: Is there both a pink and a blue node?

e e Provenance circuit; 0 e

Formal definition of provenance circuits:

e Boolean query Q, uncertain tree T, circuit C
 Variable gates of C: nodes of T
 Condition: Let v be a valuation of T, then v(C) iff »(T) satisfies Q

M/

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

12/17

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

12/17

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

Building provenance circuits on trees

For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of Aon T in O(|A| x |T|)

« Alphabet: OO O * States: * Transitions:
. T P
« Automaton: “Is there both a pink {L,B,P, T} R R
and a blue node?” * Final: {T} P 1L P L

B P T
OIOIVIOIO) o

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable

) = 40%
y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)

O

) = 40%
y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

O

) = 40%
y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

O

* In general, #P-hard (harder than SAT)

) = 40%
y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

6 G e Here it's easy:

) = 40%
y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

6 G e Here it's easy:

- The inputs to the A-gate are independent

) = 40%
y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

6 G 20% e Here it's easy:

- The inputs to the A-gate are independent

* P(x) = 40%
* P(y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

6 G 20% e Here it's easy:

- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)
* P(x) = 40%

. Py) = 50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

6 60% G 20% e Here it's easy:

- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)
* P(x) = 40%

. Py) = 50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

6 60% G 20% e Here it's easy:

- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)

° 0 - The V-gate has mutually exclusive inputs

* P(x) = 40%
* P(y) =50%

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

* Here it's easy:
- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)
- The V-gate has mutually exclusive inputs

13/17

Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

* Here it's easy:
- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)
- The V-gate has mutually exclusive inputs

e Let's focus on a restricted class of circuits
that satisfies these conditions

13/17

The circuit is a d-DNNF...

/7

The circuit is a d-DNNF...

. @ gates only have variables as
inputs

/7

The circuit is a d-DNNF...

. @ gates only have variables as
inputs

. @ gates always have mutually
exclusive inputs

/7

The circuit is a d-DNNF...

. @ gates only have variables as
inputs

. @ gates always have mutually
exclusive inputs

. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!

. @ gates only have variables as
inputs

. @ gates always have mutually
exclusive inputs

. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!
) 9
. @ gates only have variables as
inputs g

. @ gates always have mutually
exclusive inputs

. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!
) 9
. @ gates only have variables as P(g) :=1—P(g")
inputs g

. @ gates always have mutually
exclusive inputs

. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!
) 9
. @ gates only have variables as P(g) :=1—P(g")
inputs g
g
. @ gates always have mutually
exclusive inputs g g,

. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!
) 9
. @ gates only have variables as P(g) :=1—P(g")
inputs g
g
. @ gates always have mutually P(g) := P(g}) + P(g5)
exclusive inputs g g,

. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!
) 9
. @ gates only have variables as P(g) :=1—P(g")
inputs g

g
. @ gates always have mutually /®\ P(g) := P(g}) + P(g5)

exclusive inputs

g
. @ gates are all on

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!
) 9
. @ gates only have variables as P(g) :=1—P(g")
inputs g

g
. @ gates always have mutually /®\ P(g) := P(g}) + P(g5)

exclusive inputs g, 95

g
. @ gates are all on /(i : j’\ P(g) := P(g}) x P(g5)

independent inputs

/7

The circuit is a d-DNNF... ... SO probability computation is easy!

9
. @ gates only have variables as Q P(g) :=1—P(g")

inputs g

g
. @ gates always have mutually /®\ P(g) := P(g}) + P(g})

exclusive inputs g, 95

g
. @ gates are all on }:’)\ P(g) := P(g7) x P(g3)

independent inputs

The provenance circuit computed in our construction is a d-DNNF

wh

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

WAVANI
o

Treewidth by example:

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

D I

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

D

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

D A=

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

D =

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

N,)

‘.-(‘
VAN

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

NN 7
o —()b

))
/NN

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

N,)

‘.-(‘
VAN

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

N,)

‘.-(‘
VAN

» Trees have treewidth 1
e Cycles have treewidth 2
» k-cliques and (k — 1)-grids have treewidth k — 1

15/17

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

‘.-{‘\v- N
y

» Trees have treewidth 1
e Cycles have treewidth 2
» k-cliques and (k — 1)-grids have treewidth k — 1

— Treelike: the treewidth is bounded by a constant

15/17

Courcelle’s theorem and extension to PQE

Treelike data

LL5250
=,

MSO query

dxy
Fo () ARy (¥)

16/17

Courcelle’s theorem and extension to PQE

Treelike data

LL5%"
=

MSO query Tree automaton

dxy
Po (X) A Py (V) @

16/17

Courcelle’s theorem and extension to PQE

Treelike data Tree encoding

@o linear
W@

MSO query Tree automaton

dxy
Po (X) A Py (V) @

16/17

Courcelle’s theorem and extension to PQE

Treelike data Tree encoding
Query

o%o linear linear answer
— >
<Z Z TRUE

MSO query Tree automaton

dxy I
Po (X) A Py (V) @

16/17

Courcelle’s theorem and extension to PQE

Treelike data Tree encoding
Query

o%o linear linear answer
— > >
<OO Z TRUE

MSO query Tree automaton

dxy I
Po (X) A Py (V) @

Theorem ([Courcelle, 1990])
For any fixed Boolean MSO query Q and kR € N, given a database D of treewidth < R,
we can compute in linear time in D whether D satisfies Q

16/17

Courcelle’s theorem and extension to PQE

Probabilistic
treelike data

20% 50%

MSO query

dxy
Fo () ARy (¥)

16/17

Courcelle’s theorem and extension to PQE

Probabilistic
treelike data

20% 50%

MSO query Tree automaton

dxy
Po (X) A Py (V) @

16/17

Courcelle’s theorem and extension to PQE

Probabilistic Probabilistic
treelike data tree encoding

20% 50%

. linear s0% 30%
30% %505 —

MSO query Tree automaton

dxy
Po (X) A Py (V) @

16/17

Courcelle’s theorem and extension to PQE

Probabilistic Probabilistic d-DNNF circuit
treelike data tree encoding with probabilities
- linear s0% 30% linear @

30% D 80% —_— > ° °
50% 30%
MSO query Tree automaton

dxy I
Po (X) A Py (V) @

16/17

Courcelle’s theorem and extension to PQE

Probabilistic Probabilistic d-DNNF circuit
treelike data tree encoding with probabilities
- linear so0% 30% linear @

30% D 80% —_— > ° °
50% 30%
MSO query Tree automaton linear ¢

xy 95%
Po (X) ARy (V) @ Probability

16/17

Courcelle’s theorem and extension to PQE

Probabilistic Probabilistic
treelike data tree encoding

20% 50%

o linear so0% 30%

linear

d-DNNF circuit
with probabilities

O

30% °80% —

10%

MSO query Tree automaton

dxy I
Po (X) A Py (V) @

Theorem (A., Bourhis, Senellart, 2015, 2016)

> O W

50% 30%

linear ¢

95%
Probability

For any fixed Boolean MSO query Q and kR € N, given a database D of treewidth < R,
we can solve the PQE problem in linear time (assuming constant-time arithmetics)

16/17

Why is this a dichotomy? Where’s the lower bound?

17/17

Why is this a dichotomy? Where’s the lower bound?

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

17/17

Why is this a dichotomy? Where’s the lower bound?

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

17/17

Why is this a dichotomy? Where’s the lower bound?

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

e Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > k

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

e Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > k

e Constructible: given k, we can compute such an instance I, in PTIME

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

e Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > k
e Constructible: given k, we can compute such an instance I, in PTIME

» Under RP reductions: reduce in PTIME with high probability

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

e Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > k
e Constructible: given k, we can compute such an instance I, in PTIME
» Under RP reductions: reduce in PTIME with high probability

— This result does not generalize to higher-arity!

17/17

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

e Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > k
e Constructible: given k, we can compute such an instance I, in PTIME
» Under RP reductions: reduce in PTIME with high probability

— This result does not generalize to higher-arity!

— Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

17/17

References i

[Amarilli, A, Bourhis, P, and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
[Amarilli, A, Bourhis, P, and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
[@ Chekuri, C. and Chuzhoy, J. (2014).
Polynomial bounds for the grid-minor theorem.
In STOC.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/

References ii

[\ Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1).

[d Thatcher,). W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of

second-order logic.
Mathematical systems theory, 2(1).

	Width-Based Approaches
	Appendix

