Probabilistic Databases: Width-Based Approaches

Antoine Amarilli

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

Conversely, there is a query Q for which $\mathrm{PQE}(Q)$ is intractable on any input instance family of unbounded treewidth (under some technical assumptions)

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence (yes/no question) in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

1 Result: TRUE/FALSE indicating if the word w satisfies the query Q

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence (yes/no question) in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

1 Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
- $\exists S \forall x S(x)$ means "there is a set S containing every element x "
- Can express transitive closure $x \rightarrow^{*} y$, i.e., " x is before y "
- $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \wedge x \rightarrow^{*} y$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$ w: ○-○-○-○ $Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$ $w: \underset{\perp}{\bigcirc}-\bigcirc-\bigcirc$

$$
Q: \exists x \text { y } P_{\circ}(x) \wedge P_{O}(y)
$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$ $w: \underset{\perp}{\bigcirc}-\bigcirc-\bigcirc$
$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{\circ}(x) \wedge P_{\circ}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} T-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp \underset{P}{\bigcirc} P-\bigcirc T-\underset{T}{\bigcirc}$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$

$$
Q: \exists x \text { y } P_{\circ}(x) \wedge P_{O}(y)
$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Corollary

Query evaluation of MSO on words is in linear time (in data complexity)

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
$?$ Query Q: in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and
a blue node?"
$\exists x$ y $P_{\circ}(x) \wedge P_{\circ}(y)$

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and a blue node?"
$\exists x$ y $P_{\circ}(x) \wedge P_{\circ}(y)$
1 Result: YES / NO indicating if the tree T satisfies the query Q

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Theorem ([Thatcher and Wright, 1968])

MSO and tree automata have the same expressive power on trees

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:
Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

细
Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
$?$ Query Q: in monadic second-order logic (MSO)

$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

绞
Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
? Query Q: in monadic second-order logic (MSO)

$\exists x y P_{\bigcirc}(x) \wedge P_{\circ}(y)$
(1) Result: probability that the probabilistic tree T satisfies the query Q

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
$?$ Query Q: in monadic second-order logic (MSO)

$$
\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

1 Result: probability that the probabilistic tree T satisfies the query Q

Theorem

For any fixed MSO query Q, the problem $\operatorname{PQE}(Q)$ on trees is in linear time assuming constant-time arithmetics

Uncertain trees: capturing how the query result depends on the choices

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,3,7 \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2} \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2}, \mathbf{7} \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (0) node labels
> Valuation: $\{2,7 \mapsto 1, * \mapsto 0\}$
> Q: "Is there both a pink and a blue node?"

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns YES

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns NO

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns YES

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Q: "Is there both a pink and a blue node?"
\rightarrow This is a so-called Boolean provenance circuit on the "color facts" of the tree nodes!

Boolean circuit

- Directed acyclic graph of gates

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates: X

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
- Internal gates:

$\checkmark \wedge$
- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} .$. mapped to 1

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Formal definition of provenance circuits:

- Boolean query Q, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then $\nu(C)$ iff $\nu(T)$ satisfies Q

Building provenance circuits on trees

```
Theorem
For any bottom-up tree automaton \(A\) and input tree \(T\), we can build a provenance circuit of \(A\) on \(T\) in \(O(|A| \times|T|)\)
```


Building provenance circuits on trees

Theorem
 For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- $P(x)=40 \%$
- $P(y)=50 \%$
- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- Let's focus on a restricted class of circuits that satisfies these conditions

d-DNNFs

The circuit is a d-DNNF...

d-DNNFs

The circuit is a d-DNNF...

- $($ gates only have variables as inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- $\underbrace{}_{\text {inputs }}$ gates only have variables as

- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- $\underbrace{}_{\text {inputs }}$ gates only have variables as
g
g^{\prime}

$$
P(g):=1-P\left(g^{\prime}\right)
$$

- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs

- \triangle gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
... so probability computation is easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

$$
P(g):=P\left(g_{1}^{\prime}\right)+P\left(g_{2}^{\prime}\right)
$$

g
g_{2}^{\prime}

- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as
... so probability computation is easy!
inputs
- V gates always have mutually exclusive inputs
- (gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as
... so probability computation is easy!
inputs
- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs
($\quad P(g):=1-P\left(g^{\prime}\right)$

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs

Lemma

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$
\rightarrow Treelike: the treewidth is bounded by a constant

Courcelle's theorem and extension to PQE

[^0]
Courcelle's theorem and extension to PQE

Treelike data

MSO query

Courcelle's theorem and extension to PQE

Treelike data Tree encoding

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Theorem ([Courcelle, 1990])

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can compute in linear time in D whether D satisfies Q

Courcelle's theorem and extension to PQE

MSO query

$$
\begin{gathered}
\exists x y \\
P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
\end{gathered}
$$

Courcelle's theorem and extension to PQE

Probabilistic

 treelike data

Courcelle's theorem and extension to PQE

MSO query
Tree automaton
$\underset{P_{O}(x) \wedge P_{O}(y)}{\exists x y} \rightarrow$

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Theorem (A., Bourhis, Senellart, 2015, 2016)

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can solve the PQE problem in linear time (assuming constant-time arithmetics)

Why is this a dichotomy? Where's the lower bound?

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability
\rightarrow This result does not generalize to higher-arity!

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability
\rightarrow This result does not generalize to higher-arity!
\rightarrow Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014]) and use them for a lower bound

References i

E- Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
Chekuri, C. and Chuzhoy, J. (2014).
Polynomial bounds for the grid-minor theorem.
In STOC.

References ii

国 Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1).
: Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of second-order logic.
Mathematical systems theory, 2(1).

[^0]: Treelike data

 MSO query

 $$
 \begin{gathered}
 \exists x y \\
 P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
 \end{gathered}
 $$

