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OK, PQE is intractable for essentially all queries. What now?

» We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

 In the non-probabilistic case, this ensures tractability for complex queries

— Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound kR € N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth < k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)
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() Database: a word w where nodes have a color from an
~—" o—-O0O00
hN—rv alphabet OO O
Query Q: a sentence (yes/no question) “Is there both a pink and
in monadic second-order logic (MSO) a blue node?”

@ Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)
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Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Po(X), Po(x)
o-0-0O00-0

e X — y means “x is the predecessor of y”

 Propositional logic: formulas with AND A, OR v, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier V
- 3xy Po(X) A Po(y) means “There is both a pink and a blue node”

« Monadic second-order logic (MSO): adds quantifiers over sets
- 35 ¥x S(x) means “there is a set S containing every element x”
- Can express transitive closure x —* y, i.e., “x is before y”
- VXPo(X) = JyPo(y) AX =*y

means “There is a blue node after every pink node 7
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Word automata

Translate the query Q to a deterministic word automaton

Alphabet: OO O w: O-O-O-0-0 Q: 3xy Po(x) A Po(y)
L P P T T

o States: {L,B,P, T}
 Final states: {T}
e Initial function: O L QP OB

« Transitions (examples): L —O P —O T —O

Theorem (Biichi, 1960)
MSO and word automata have the same expressive power on words

.
.
~

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)
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Non-probabilistic query evaluation on trees

L ) Database: a tree T where nodes have a color from an
AN—rv alphabet OO O

Query Q: in monadic second-order logic (MSO) “Is there both a pink and
- Po(x) means “x is blue” a blue node?”
- X — y means “x is the parent of y” Ixy Po(x) A Po(y)

@ Result: YES/NO indicating if the tree T satisfies the query Q
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Tree alphabet: O Q@ e Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

AR R

Theorem ([Thatcher and Wright, 1968])

MSO and tree automata have the same expressive power on trees
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Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

() Database: a tree T where each node has a probability 20%
N— of keeping its color (vs taking the default color O) 80% 60%
@ Query Q: in monadic second-order logic (MSO) Ixy Po(x) A Po(y)

@ Result: probability that the probabilistic tree T satisfies the query Q

For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics
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Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Q: “Is there both a pink and a blue node?”

— This is a so-called Boolean provenance circuit on the “color facts” of the tree nodes!
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Boolean circuit

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

Valuation: function from variables to {0, 1}
Example: v = {x +— 0, y +— 1}.. mapped to 1

10/17



Example: Provenance circuit

Query: Is there both a pink and a blue node?

1/



Example: Provenance circuit

Query: Is there both a pink and a blue node?

e e Provenance circuit; 0 e

M/



Example: Provenance circuit

Query: Is there both a pink and a blue node?

e e Provenance circuit; 0 e

Formal definition of provenance circuits:

e Boolean query Q, uncertain tree T, circuit C
 Variable gates of C: nodes of T
 Condition: Let v be a valuation of T, then v(C) iff »(T) satisfies Q
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Building provenance circuits on trees
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Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

* In general, #P-hard (harder than SAT)

* Here it's easy:
- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)
- The V-gate has mutually exclusive inputs

e Let's focus on a restricted class of circuits
that satisfies these conditions

13/17
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The circuit is a d-DNNF... ... SO probability computation is easy!

9
. @ gates only have variables as Q P(g) :=1—P(g")

inputs g

g
. @ gates always have mutually /®\ P(g) := P(g}) + P(g})

exclusive inputs g, 95

g
. @ gates are all on }:’)\ P(g) := P(g7) x P(g3)

independent inputs

The provenance circuit computed in our construction is a d-DNNF

wh
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Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

‘.-{‘\v- N
y

» Trees have treewidth 1
e Cycles have treewidth 2
» k-cliques and (k — 1)-grids have treewidth k — 1

— Treelike: the treewidth is bounded by a constant
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Courcelle’s theorem and extension to PQE

Treelike data Tree encoding
Query

o%o linear linear answer
— > >
<OO Z TRUE

MSO query Tree automaton

dxy I
Po (X) A Py (V) @

Theorem ([Courcelle, 1990])
For any fixed Boolean MSO query Q and kR € N, given a database D of treewidth < R,
we can compute in linear time in D whether D satisfies Q
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Courcelle’s theorem and extension to PQE
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Courcelle’s theorem and extension to PQE
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Courcelle’s theorem and extension to PQE

Probabilistic Probabilistic
treelike data tree encoding

20% 50%

o linear so0% 30%

linear

d-DNNF circuit
with probabilities

O

30% °80% —

10%

MSO query Tree automaton

dxy I
Po (X) A Py (V) @

Theorem (A., Bourhis, Senellart, 2015, 2016)

> O W

50% 30%

linear ¢

95%
Probability

For any fixed Boolean MSO query Q and kR € N, given a database D of treewidth < R,
we can solve the PQE problem in linear time (assuming constant-time arithmetics)
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Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family Z of probabilistic graphs,
the PQE problem for Q and T is #P-hard under RP reductions

« Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

e Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > k
e Constructible: given k, we can compute such an instance I, in PTIME
» Under RP reductions: reduce in PTIME with high probability

— This result does not generalize to higher-arity!

— Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound
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