Probabilistic Databases: Other Topics and Conclusion

Antoine Amarilli

TELECOM
Paris

Table of contents

Recursive and homomorphism-closed queries

Uniform probabilities

Approximate evaluation

Repairs

Summary and directions

Recursive and
homomorphism-closed queries

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms
\rightarrow We restrict to arity-two signatures (work in progress...)

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed
- Homomorphism-closed queries can equivalently be seen as infinite unions of CQs (corresponding to their models)

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME - In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard

Uniform probabilities

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be $1 / 2$?

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the uniform reliability (UR) problem:
$\rightarrow \mathrm{UR}(Q)$: given a graph, how many of its subgraphs satisfy Q

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the uniform reliability (UR) problem:
$\rightarrow \mathrm{UR}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The UR problem reduces to PQE, but no obvious reduction in the other direction

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the uniform reliability (UR) problem:
$\rightarrow \mathrm{UR}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the "small" Dalvi and Suciu dichotomy to UR:
Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

- If Q is hierarchical, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, even $\mathrm{UR}(Q)$ is \#P-hard

Approximate evaluation

Approximation

- When it's too hard to compute the exact probability, we can approximate it

Approximation

- When it's too hard to compute the exact probability, we can approximate it
- One possibility is to compute a lower bound and upper bound:
$\cdot \max (\operatorname{Pr}(\phi), \operatorname{Pr}(\psi)) \leq \operatorname{Pr}(\phi \vee \psi) \leq \min (\operatorname{Pr}(\phi)+\operatorname{Pr}(\psi), 1)$
- max $(0, \operatorname{Pr}(\phi)+\operatorname{Pr}(\psi)-1) \leq \operatorname{Pr}(\phi \wedge \psi) \leq \min (\operatorname{Pr}(\phi), \operatorname{Pr}(\psi))$ (by duality)
- $\operatorname{Pr}(\neg \phi)=1-\operatorname{Pr}(\phi)$ (reminder)

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the proportion of times when it was true

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the proportion of times when it was true
- Theoretical guarantees: on how many samples suffice so that, with high probability, the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

Using external tools

- Specialized software to compute the probability of a formula: weighted model counters
- Examples (ongoing research):
- c2d: http://reasoning.cs.ucla.edu/c2d/download.php
- d4: https://www.cril.univ-artois.fr/KC/d4.html
- dsharp: https://bitbucket.org/haz/dsharp

Repairs

Repairs

- Another kind of uncertainty: we know that the database must satisfy some constraints (e.g., functionality)
- The data that we have does not satisfy it
- Reason about the ways to repair the data, e.g., removing a minimal subset of tuples
- Can we evaluate queries on this representation? E.g., is a query true on every maximal repair? See, e.g., [Koutris and Wijsen, 2015].

Summary and directions

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can make all queries in MSO tractable by bounding the instance treewidth
\rightarrow And MSO is intractable if you do not bound treewidth (under some conditions)

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can make all queries in MSO tractable by bounding the instance treewidth \rightarrow And MSO is intractable if you do not bound treewidth (under some conditions)
- Extensions: homomorphism-closed queries, uniform reliability...

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

- Infinite domains [Carmeli et al., 2021]
- PQE under updates [Berkholz and Merz, 2021]
- Open-world probabilistic databases [Ceylan et al., 2021]
- Active probabilistic databases [Drien et al., 2022]

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

- Infinite domains [Carmeli et al., 2021]
- PQE under updates [Berkholz and Merz, 2021]
- Open-world probabilistic databases [Ceylan et al., 2021]
- Active probabilistic databases [Drien et al., 2022]
- (Others? talk to me :))

Future research directions

- Reusability of techniques : repairs, Shapley values, graphical models, probabilistic programming, probabilistic constraints...

Future research directions

- Reusability of techniques : repairs, Shapley values, graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

Future research directions

- Reusability of techniques : repairs, Shapley values, graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?

Future research directions

- Reusability of techniques : repairs, Shapley values, graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?
- Connections to knowledge compilation and intensional-extensional conjecture
\rightarrow Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

Future research directions

- Reusability of techniques : repairs, Shapley values, graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?
- Connections to knowledge compilation and intensional-extensional conjecture
\rightarrow Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?
- Combining the query-based and structure-based approaches

Future research directions

- Reusability of techniques : repairs, Shapley values, graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?
- Connections to knowledge compilation and intensional-extensional conjecture
\rightarrow Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?
- Combining the query-based and structure-based approaches

Thanks for your attention! 13/13

References i

E- Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. (2009).
On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5).
E- Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
E- Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.

References ii

围 Amarilli, A. and Ceylan, I. I. (2020).
A dichotomy for homomorphism-closed queries on probabilistic graphs.
In ICDT.
Amarilli, A. and Kimelfeld, B. (2022).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.
(e) Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D. (2015).

Symmetric weighted first-order model counting.
In PODS.
围 Benedikt, M., Kharlamov, E., Olteanu, D., and Senellart, P. (2010).
Probabilistic XML via Markov chains.
PVLDB, 3(1).

References iif

[i Berkholz, C. and Merz, M. (2021).
Probabilistic databases under updates: Boolean query evaluation and ranked enumeration.
In PODS.
圁 Carmeli, N., Grohe, M., Lindner, P., and Standke, C. (2021).
Tuple-independent representations of infinite probabilistic databases.
In PODS.
囯 Ceylan, I. I., Darwiche, A., and Van den Broeck, G. (2021).
Open-world probabilistic databases: Semantics, algorithms, complexity. Artificial Intelligence, 295.

References iv

E- Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic xml.
In PODS.
图 Dalvi, N., Ré, C., and Suciu, D. (2009).
Probabilistic databases: Diamonds in the dirt.
Communications of the ACM, 52(7).
Dalvi, N. N. and Suciu, D. (2004).
Efficient query evaluation on probabilistic databases.
In VLDB.
囦 Drien, O., Freiman, M., and Amsterdamer, Y. (2022).
ActivePDB: Active probabilistic databases.
Working draft.

References v

围 Fink，R．and Olteanu，D．（2016）．
Dichotomies for queries with negation in probabilistic databases．
ACM Transactions on Database Systems，41（1）．
囯 Imielinski，T．and Lipski，W．（1984）．
Incomplete information in relational databases．
Journal of the ACM，31（4）．
回 Jung，J．C．and Lutz，C．（2012）．
Ontology－based access to probabilistic data with OWL QL． In ISWC．

围 Kenig, B. and Suciu, D. (2021).
A dichotomy for the generalized model counting problem for unions of conjunctive queries.
In PODS.
Re Koutris, P. and Wijsen, J. (2015).
The data complexity of consistent query answering for self-join-free conjunctive queries under primary key constraints.
In SIGMOD.
国 Olteanu, D. and Huang, J. (2009).
Secondary-storage confidence computation for conjunctive queries with inequalities.
In SIGMOD.

References vii

国 Suciu, D. (2020).
Probabilistic databases for all.
In PODS.
E Widom, J. (2005).
Trio: A system for integrated management of data, accuracy, and lineage.
In CIDR.

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\operatorname{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

Any unbounded query closed under homomorphisms has a tight pattern

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

is coded as

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y$

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to
 to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

- If Q becomes false at one step, then we have found a tight pattern

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D
- This contradicts the minimality of the large D

Rescuing the proof

We know that we have a tight pattern:

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

We know that we have a tight pattern:
 but

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

Case 1: some iterate violates the query:

Rescuing the proof

Case 1: some iterate violates the query:

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Case 1: some iterate violates the query:

$$
\begin{aligned}
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

but

Rescuing the proof

We know that we have a tight pattern:

Case 1: some iterate violates the query:

$$
\begin{aligned}
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

but

\rightarrow Call this an iterable pattern

Using iterable patterns to show hardness of PQE

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

We have an iterable pattern:
 but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\mathrm{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\operatorname{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\operatorname{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- Show invertibility of this matrix to recover the X_{i} from the N_{i}

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction
\rightarrow If the matrix is invertible, then we have succeeded

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction
\rightarrow If the matrix is invertible, then we have succeeded
We can choose gadgets and parameters to get a Vandermonde matrix, and show invertibility via several arithmetical tricks

The semistructured model and XML

- Tree-like structuring of data
- No (or less) schema constraints
- Allow mixing tags (structured data) and text (unstructured content)
- Particularly adapted to tagged or heterogeneous content

Simple probabilistic annotations

- Probabilities associated to tree nodes
- Express parent/child dependencies
- Impossible to express more complex dependencies
$\cdot \Rightarrow$ some sets of possible worlds are not expressible this way!

Annotations with event variables

Event	Prob.
w_{1}	0.8
w_{2}	0.7

Annotations with event variables

Event	Prob.
w_{1}	0.8
w_{2}	0.7
	$p_{1}=0.06 \quad p_{2}=0.70 \quad p_{3}=0.24$

- Expresses arbitrarily complex dependencies

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]
- \#P-hard in the general model

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]
- \#P-hard in the general model
- This generalizes to PQE for MSO on relational databases (TID) when assuming that the treewidth is bounded [Amarilli et al., 2015]

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]
- \#P-hard in the general model
- This generalizes to PQE for MSO on relational databases (TID) when assuming that the treewidth is bounded [Amarilli et al., 2015]
- Bounding the treewidth is necessary for tractability in a certain sense [Amarilli et al., 2016]

A general probabilistic XML model

[Abiteboul et al., 2009]

- e: event "it did not rain" at time 1
- mux: mutually exclusive options
- $N(70,4)$: normal distribution
- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (e) and local (mux)
- Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

```
<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>
```

D: directory

$$
P: \text { person }
$$

- Probabilistic model that extends PXML with local dependencies
- Generate documents of unbounded width or depth

C-tables [Imielinski and Lipski, 1984]

Patient	Examin. 1	Examin. 2	Diagnosis	Condition
A	23	12	α	
B	10	23	\perp_{1}	
C	2	4	γ	
D	\perp_{2}	15	\perp_{1}	
E	\perp_{3}	17	β	$18<\perp_{3}<\perp_{2}$

- NULLs are labeled, and can be reused inside and across tuples
- Arbitrary correlations across tuples
- Closed under the relational algebra
- Every set of possible worlds can be represented as a database with c-tables

