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Recursive and
homomorphism-closed queries



Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)
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Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)
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Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
( )∗

• It is not equivalent to a UCQ: infinite disjunction
( )i

for all i ∈ N
• Hence, PQE(Q) is #P-hard
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Uniform probabilities



Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13



Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13



Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13



Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13



Approximate evaluation



Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(Pr(ϕ),Pr(ψ)) ≤ Pr(ϕ ∨ ψ) ≤ min(Pr(ϕ) + Pr(ψ), 1)
• max(0,Pr(ϕ) + Pr(ψ)− 1) ≤ Pr(ϕ ∧ ψ) ≤ min(Pr(ϕ),Pr(ψ)) (by duality)
• Pr(¬ϕ) = 1 − Pr(ϕ) (reminder)
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Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm
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Using external tools

• Specialized software to compute the probability of a formula: weighted model
counters

• Examples (ongoing research):
• c2d: http://reasoning.cs.ucla.edu/c2d/download.php
• d4: https://www.cril.univ-artois.fr/KC/d4.html
• dsharp: https://bitbucket.org/haz/dsharp
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Repairs



Repairs

• Another kind of uncertainty: we know that the database must satisfy some
constraints (e.g., functionality)

• The data that we have does not satisfy it
• Reason about the ways to repair the data, e.g., removing a minimal subset of tuples
• Can we evaluate queries on this representation? E.g., is a query true on every

maximal repair? See, e.g., [Koutris and Wijsen, 2015].
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Summary and directions



Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...
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Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]
• (Others? talk to me :))
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Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!
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Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern
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Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:
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•
•
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•
•

•
• to •
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•
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•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D
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Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

( )n

Case 1: some iterate violates the query:

•

• • • •

•

( )i
satisfies Q

but
•

• • • •

•

( )i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

( )n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern
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Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

( )n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right
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Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:
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Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
... . . . ...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni
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Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
... . . . ...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks
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The semistructured model and XML

A

B C

D

<a>

<b>...</b>

<c>

<d>...</d>

</c>

</a>

• Tree-like structuring of data
• No (or less) schema constraints
• Allow mixing tags (structured data) and text (unstructured content)
• Particularly adapted to tagged or heterogeneous content



Simple probabilistic annotations

A

B C

D

0.24

0.70

• Probabilities associated to tree nodes
• Express parent/child dependencies
• Impossible to express more complex dependencies
• ⇒ some sets of possible worlds are not expressible this

way!



Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8
w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

• Expresses arbitrarily complex dependencies

• Obviously, analogous to probabilistic c-tables
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Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]
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A general probabilistic XML model
[Abiteboul et al., 2009]

root

sensor

id

i25

mes
e

t

1

vl

30

mes

t

2

vl

N(70, 4)

sensor

id

i35
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t

1

vl

mux

17
.6

23
.1

20
.3

• e: event “it did not rain” at
time 1

• mux: mutually exclusive
options

• N(70, 4): normal
distribution

• Compact representation of a set of possible worlds
• Two kinds of dependencies: global (e) and local (mux)
• Generalizes all previously proposed models of the literature



Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)>

<!ELEMENT person (name,phone*)>

• •
• • •

D: directory

P

1
0.8

1

0.2

• • • • • •
•

P: person

N T1 1 0.5

1

0.5

• Probabilistic model that extends PXML with local dependencies
• Generate documents of unbounded width or depth



C-tables [Imielinski and Lipski, 1984]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α

B 10 23 ⊥1

C 2 4 γ

D ⊥2 15 ⊥1

E ⊥3 17 β 18 < ⊥3 < ⊥2

• NULLs are labeled, and can be reused inside and across tuples
• Arbitrary correlations across tuples
• Closed under the relational algebra
• Every set of possible worlds can be represented as a database with c-tables
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