
Probabilistic Databases: Other Topics and Conclusion

Antoine Amarilli

1/13

Table of contents

Recursive and homomorphism-closed queries

Uniform probabilities

Approximate evaluation

Repairs

Summary and directions

2/13

Recursive and
homomorphism-closed queries

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/13

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/13

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/13

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/13

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)

4/13

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)

4/13

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)

4/13

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

4/13

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)
4/13

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/13

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/13

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/13

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N

• Hence, PQE(Q) is #P-hard

5/13

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/13

Uniform probabilities

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/13

Approximate evaluation

Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(Pr(ϕ),Pr(ψ)) ≤ Pr(ϕ ∨ ψ) ≤ min(Pr(ϕ) + Pr(ψ), 1)
• max(0,Pr(ϕ) + Pr(ψ)− 1) ≤ Pr(ϕ ∧ ψ) ≤ min(Pr(ϕ),Pr(ψ)) (by duality)
• Pr(¬ϕ) = 1 − Pr(ϕ) (reminder)

7/13

Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(Pr(ϕ),Pr(ψ)) ≤ Pr(ϕ ∨ ψ) ≤ min(Pr(ϕ) + Pr(ψ), 1)
• max(0,Pr(ϕ) + Pr(ψ)− 1) ≤ Pr(ϕ ∧ ψ) ≤ min(Pr(ϕ),Pr(ψ)) (by duality)
• Pr(¬ϕ) = 1 − Pr(ϕ) (reminder)

7/13

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

8/13

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

8/13

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

8/13

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm
8/13

Using external tools

• Specialized software to compute the probability of a formula: weighted model
counters

• Examples (ongoing research):
• c2d: http://reasoning.cs.ucla.edu/c2d/download.php
• d4: https://www.cril.univ-artois.fr/KC/d4.html
• dsharp: https://bitbucket.org/haz/dsharp

9/13

http://reasoning.cs.ucla.edu/c2d/download.php
https://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp

Repairs

Repairs

• Another kind of uncertainty: we know that the database must satisfy some
constraints (e.g., functionality)

• The data that we have does not satisfy it
• Reason about the ways to repair the data, e.g., removing a minimal subset of tuples
• Can we evaluate queries on this representation? E.g., is a query true on every

maximal repair? See, e.g., [Koutris and Wijsen, 2015].

10/13

Summary and directions

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

11/13

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

11/13

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

11/13

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

11/13

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

11/13

Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]
• (Others? talk to me :))

12/13

Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]

• (Others? talk to me :))

12/13

Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]
• (Others? talk to me :))

12/13

Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

13/13

Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

13/13

Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

13/13

Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

13/13

Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches

Thanks for your attention!

13/13

Future research directions

• Reusability of techniques : repairs, Shapley values, graphical models, probabilistic
programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention! 13/13

References i

Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. (2009).
On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5).
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/

References ii

Amarilli, A. and Ceylan, I. I. (2020).
A dichotomy for homomorphism-closed queries on probabilistic graphs.
In ICDT.
Amarilli, A. and Kimelfeld, B. (2022).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.
Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D. (2015).
Symmetric weighted first-order model counting.
In PODS.
Benedikt, M., Kharlamov, E., Olteanu, D., and Senellart, P. (2010).
Probabilistic XML via Markov chains.
PVLDB, 3(1).

https://drops.dagstuhl.de/opus/volltexte/2020/11939/
https://diku-dk.github.io/edbticdt2020/
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1412.1505

References iii

Berkholz, C. and Merz, M. (2021).
Probabilistic databases under updates: Boolean query evaluation and ranked
enumeration.
In PODS.
Carmeli, N., Grohe, M., Lindner, P., and Standke, C. (2021).
Tuple-independent representations of infinite probabilistic databases.
In PODS.
Ceylan, I. I., Darwiche, A., and Van den Broeck, G. (2021).
Open-world probabilistic databases: Semantics, algorithms, complexity.
Artificial Intelligence, 295.

References iv

Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic xml.
In PODS.
Dalvi, N., Ré, C., and Suciu, D. (2009).
Probabilistic databases: Diamonds in the dirt.
Communications of the ACM, 52(7).

Dalvi, N. N. and Suciu, D. (2004).
Efficient query evaluation on probabilistic databases.
In VLDB.
Drien, O., Freiman, M., and Amsterdamer, Y. (2022).
ActivePDB: Active probabilistic databases.
Working draft.

References v

Fink, R. and Olteanu, D. (2016).
Dichotomies for queries with negation in probabilistic databases.
ACM Transactions on Database Systems, 41(1).

Imielinski, T. and Lipski, W. (1984).
Incomplete information in relational databases.
Journal of the ACM, 31(4).

Jung, J. C. and Lutz, C. (2012).
Ontology-based access to probabilistic data with OWL QL.
In ISWC.

http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf

References vi

Kenig, B. and Suciu, D. (2021).
A dichotomy for the generalized model counting problem for unions of conjunctive
queries.
In PODS.
Koutris, P. and Wijsen, J. (2015).
The data complexity of consistent query answering for self-join-free conjunctive
queries under primary key constraints.
In SIGMOD.
Olteanu, D. and Huang, J. (2009).
Secondary-storage confidence computation for conjunctive queries with
inequalities.
In SIGMOD.

https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/2008.00896
http://pages.cs.wisc.edu/~paris/papers/repairs_all.pdf
http://pages.cs.wisc.edu/~paris/papers/repairs_all.pdf

References vii

Suciu, D. (2020).
Probabilistic databases for all.
In PODS.
Widom, J. (2005).
Trio: A system for integrated management of data, accuracy, and lineage.
In CIDR.

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but

•

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•

to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
•

to •
•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates

• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q

• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D

• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

The semistructured model and XML

A

B C

D

<a>

...

<c>

<d>...</d>

</c>

• Tree-like structuring of data
• No (or less) schema constraints
• Allow mixing tags (structured data) and text (unstructured content)
• Particularly adapted to tagged or heterogeneous content

Simple probabilistic annotations

A

B C

D

0.24

0.70

• Probabilities associated to tree nodes
• Express parent/child dependencies
• Impossible to express more complex dependencies
• ⇒ some sets of possible worlds are not expressible this

way!

Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8
w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

• Expresses arbitrarily complex dependencies

• Obviously, analogous to probabilistic c-tables

Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8
w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

• Expresses arbitrarily complex dependencies

• Obviously, analogous to probabilistic c-tables

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]

• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model

• This generalizes to PQE for MSO on relational databases (TID) when assuming that
the treewidth is bounded [Amarilli et al., 2015]

• Bounding the treewidth is necessary for tractability in a certain
sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]

• Bounding the treewidth is necessary for tractability in a certain
sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]

A general probabilistic XML model
[Abiteboul et al., 2009]

root

sensor

id

i25

mes
e

t

1

vl

30

mes

t

2

vl

N(70, 4)

sensor

id

i35

mes
e

t

1

vl

mux

17
.6

23
.1

20
.3

• e: event “it did not rain” at
time 1

• mux: mutually exclusive
options

• N(70, 4): normal
distribution

• Compact representation of a set of possible worlds
• Two kinds of dependencies: global (e) and local (mux)
• Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)>

<!ELEMENT person (name,phone*)>

• •
• • •

D: directory

P

1
0.8

1

0.2

• • • • • •
•

P: person

N T1 1 0.5

1

0.5

• Probabilistic model that extends PXML with local dependencies
• Generate documents of unbounded width or depth

C-tables [Imielinski and Lipski, 1984]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α

B 10 23 ⊥1

C 2 4 γ

D ⊥2 15 ⊥1

E ⊥3 17 β 18 < ⊥3 < ⊥2

• NULLs are labeled, and can be reused inside and across tuples
• Arbitrary correlations across tuples
• Closed under the relational algebra
• Every set of possible worlds can be represented as a database with c-tables

	Other Topics and Conclusion
	Recursive and homomorphism-closed queries
	Uniform probabilities
	Approximate evaluation
	Repairs
	Summary and directions
	Appendix

