Graph databases

Graph Databases?

Graph Databases?

guitarist

barbiturate overdose
occupation
subclassof
cause of death

instrumentalist Jimi Hendrix

o , subclassof
citizenship
subclassof occupation

United States

musician <— singer
subclassof
occupation citizenship
/drug overdose
subclassof cause of death

Marilyn Monroe

occupation

artist —

actor °e°
subclassof
watlon citizenship
cause of death ¢

River Phoenix > poisoning

subclassof

Graph Databases?

guitarist

barbiturate overdose
occupation
subclassof
cause of death

instrumentalist Jimi Hendrix

o , subclassof
citizenship
subclassof occupation

United States

musician <— singer
subclassof
occupation citizenship
drug overdose
subclassof

cause of death
Marllyn Monroe
occupatlon
artist ﬁsubclassof subclassof
wat'on/maenshlp
cause of death ¢
River Phoenix > poisoning

Information stored as a graph

Graph Databases?

guitarist

barbiturate overdose
occupation
subclassof
cause of death

instrumentalist Jimi Hendrix

o , subclassof
citizenship
subclassof occupation

United States

musician <— singer
subclassof
occupation citizenship
drug overdose
subclassof

cause of death
Marllyn Monroe
occupatlon
artist ﬁsubclassof subclassof
wat'on/maenshlp
cause of death ¢
River Phoenix > poisoning

Information stored as a graph

Rather intuitive

The Query, Visualized

"US artists who died of poisoning"

citizenship
> S %
\ 4
United
subclassof States subclassof
v
artist v

poisoning

The Query, Visualized

"US artists who died of poisoning"

v

arti

subclassof

st

citizenship

v
United

States

——

v

poisoning

subclassof

\J
output node

D
wildcard test

The Query, Visualized

"US artists who died of poisoning"

v

arti

subclassof

st

citizenship

v
United

States

v

poisoning

subclassof

\J
output node

The Query, Visualized

"US artists who died of poisoning"

citizenship

%k
v
United
subclassof States S [B
artist v
. poisoning
. v
1 ' output node
wildcard test matches paths

consisting of subclassof-edges

Graph Queries By Example

"US artists who died of poisoning”

guitarist

barbiturate overdose
occupation
subclassof
cause of death

%k United * instrumentalist Jimi Hendrix

States N _ subclassof
citizenship
subclassof occupation
subclassof* subclassof*

United States

v. i vnin musician <«— singer
artist polsoning subclassof
occupation citizenship
drug overdose
subclassof

Manlyn Monroe cause of death

occupatlon

subclassof
waﬂon%mzenshlp
cause of death ¢

River Phoenix > poisoning

artist < subclassof

Graph Queries By Example

"US artists who died of poisoning”

uitarist)
& barbiturate overdose

occupation

subclassof
cause of death
* United * instrumentalist
States N _ subclassof
citizenship
subclassof
subclassof* subclassof*
United States
\ 4 V. musician singer
drug overdose
subclassof
Marilyn Monroe
artist actor subclassof

River Phoenix poisoning

Graph Queries By Example

Queries can have cycles

. /
b
subclassof United \O

States

v

artist

Artists who live in the US and have US citizenship

Why Graph Databases?

Why are they interesting?

Why Graph Databases?

Why are they interesting?

Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
Often hidden: e.g., Google’s Knowledge Graph

Why Graph Databases?

Why are they interesting?

Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
Often hidden: e.g., Google’s Knowledge Graph

New Standards

ISO is now developing its second database query language

standard called GQL: Graph Query Language.
The first one they developed is SQL

Why Graph Databases?

Why are they interesting?

Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
Often hidden: e.g., Google’s Knowledge Graph

New Standards

ISO is now developing its second database query language

standard called GQL: Graph Query Language.
The first one they developed is SQL

New Applications

Social networks, Semantic Web, bioinformatics, fraud
analysis, real-time recommendation, network/IT systems,
even investigative journalism (Panama+Pandora papers)

Why Graph Databases?

Why are they interesting?

Why Graph Databases?

Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

Why Graph Databases?

Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

e

Growth potential

IDG prediction: 600% growth up to 2025

Why Graph Databases?

Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

e

Growth potential

IDG prediction: 600% growth up to 2025

T

Current and future use

75% of Fortune 100 companies currently use graph databases

Phenomenal fundraising (last year alone, around S00M)

GQL Influence Graph

GQL Influence Graph

]gntuumnm |

[Creme, Bead Updute, Delete
< Advpred comples pad eapres oy
with conlig wable mal-bing v
CColn L & progec prapln
- Compotadie

~

=

cCraate, Bagrd UpSate, Dadets 20D |

e
Crexe Ryl
ACVINOET COMETER DALY enD e ons
Conaruct R project griphs

cComunalie

| https://www.gglstandards.org/existing-languages|

https://www.gqlstandards.org/existing-languages

Models for Graph Databases?

Currently, two main data models:

- Property Graph Databases (today: the dominant
model)

- RDF-like Databases (an earlier and interesting
approach but not as prevalent in industry)

Property Graph Data Model
—

hasprofession

from: 1943

hasprofession

from: 1942

from: 10.10.1975
until: 29.07.1976

o) | Comen)
first name: Liz _C spouse | first name: Richard
last name: Tapler from: 15.03.1964 it Rame: Burien

w&o& 1974 /

Property Graph Data Model
—

hasprofession

from: 1943

hasprofession

from: 1942

from: 10.10.1975
until: 29.07.1976

e
first name: Liz _(spouse | first name: Richard
last name: Taylor from: 15.03.1964 last name: Burton

w&o& 1974 /

More formally, this is

Property Graph Data Model
)
(et (b

from: 10.10.1975
until: 29.07.1976

) | Comen)
first name: Liz _C spouse)_ first name: Richard
last name: Tapler from: 15.03.1964 it Rame: Burien

w&o& 1974 /

More formally, this is
- a set of node identifiers N

Property Graph Data Model
)
(et (b

from: 10.10.1975
until: 29.07.1976

) | G

first name: Liz _C spouse)_ first name: Richard
last Rame: Taylor from: 15.03.1964 ot ame: Burean
v&ntil:26.06.|974 /
More formally, this is

- a set of node identifiers N
- a set of edge identifiers E

Property Graph Data Model
)
(et (b

from: 10.10.1975
until: 29.07.1976

) | G

first name: Liz _C spouse)_ first name: Richard
last Rame: Taylor from: 15.03.1964 ot ame: Burean
v&ntil:26.06.|974 /
More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to N X N

Property Graph Data Model

profession
name: film actor

hasprofession
from: 1942

%

from: 10.10.1975

hasprofession
from: 1943

until: 29.07.1976

)|

first name: Liz
last name: Taylor

from: 15.03.1964

C spouse)

-

wé,%, 1974

More formally, this is

- a set of node

identifiers N

- a set of edge identifiers E
- a function that maps E to N X N

(person)

first name: Richard
last name: Burton

Labels L: person, profession, spouse

Property Graph Data Model

profession
name: film actor

hasprofession
from: 1942

%

from: 10.10.1975
until: 29.07.1976

Labels L: person, profession, spouse

Ehasprofession% Values V: Liz, Taylor, 10.10.1975
from: 1943

)|

first name: Liz
last name: Taylor

from: 15.03.1964

C spouse)

-

wé,%, 1974

More formally, this is

- a set of node

identifiers N

- a set of edge identifiers E
- a function that maps E to N X N

(person)

first name: Richard
last name: Burton

Property Graph Data Model

profession
name: film actor

hasprofession
from: 1942

%

from: 10.10.1975
until: 29.07.1976

hasprofession
from: 1943

)|

first name: Liz
last name: Taylor

from: 15.03.1964

C spouse)

-

wé,%, 1974

More formally, this is

- a set of node

identifiers N

- a set of edge identifiers E
- a function that maps E to N X N

(person)

first name: Richard
last name: Burton

Labels L: person, profession, spouse

Values V: Liz, Taylor, 10.10.1975

Properties P: first name, last name

Property Graph Data Model

profession
name: film actor
Labels L: person, profession, spouse

% Ehasprofession% Values V: Liz, Taylor, 10.10.1975

from: 1943

from: 1942

hasprofession
Properties P: first name, last name

from: 10.10.1975
until: 29.07.1976

G| G

first name: Liz _C spouse)_ first name: Richard
last Rame: Taylor from: 15.03.1964 ot ame: Burean
v&ntil:26.06.|974 /
More formally, this is

a set of node identifiers N

a set of edge identifiers E

a function that maps F to N X N

a function from N U E to (subsets of) labels L

\

\

\

\

Property Graph Data Model

profession
name: film actor
Labels L: person, profession, spouse

ﬁhaspmfession % EhaSmeessiO"% Values V: Liz, Taylor, 10.10.1975

from: 1943
from: 1942

Properties P: first name, last name

from: 10.10.1975
until: 29.07.1976

G| G

first name: Liz _C spouse)_ first name: Richard
last Rame: Taylor from: 15.03.1964 ot ame: Burean
v&ntil:26.06.|974 /
More formally, this is

- a set of node identifiers N

a set of edge identifiers E

a function that maps F to N X N

a function from N U E to (subsets of) labels L

a function from (N U E) X P to (subsets of) values V

\

\

\

\

Property Graph Data Model

profession
name: film actor
Labels L: person, profession, spouse

ﬁhaspmfession % EhaSmeessiO"% Values V: Liz, Taylor, 10.10.1975

from: 1943
from: 1942

Properties P: first name, last name

from: 10.10.1975
until: 29.07.1976

G| o)

first name: Liz _C spouse)_ first name: Richard
last Rame: Taylor from: 15.03.1964 ot ame: Burean
W6.06.|974 7
More formally, this is
- aset of node identifiers N Some models also directly

incorporate paths

\

a set of edge identifiers E
a function that maps F to N X N - -
a function from N U E to (subsets of) labels L

a function from (N U E) X P to (subsets of) values V

\

\

\

RDF Data Model

last name: Taylor

first name: Liz
last name: Taylor

RDF Data Model

person
i instance of
1Z ﬁ/‘st .,
a,;,e
Q34851
\ast ne
Taylor profession

stage actor

first name: Liz
last name: Taylor

RDF Data Model

person
Li instance of Richard
'z 7 s e
r'se n pouse (\@X“
8’77@ /\ ‘{\(5‘,
Q34851 Q 151973
st Rsy
/7,9/77
Taylor professmn spouse e
Burton

stage actor

RDF Data Model

person
Liz instance of Richard
ﬁ"st spouse (\@X“e’
%ame /\ st
first name: Liz Q3485I 151573
last name: Taylor e y
y 2y
/7,9/77
Taylor professmn spouse e

Burton
stage actor

More formally, this is a set of triples from

RDF Data Model

person
Liz instance of Richard
firse spouse (\@X“e’
%ame /\ st
first name: Liz Q3485I 151573
last name: Taylor e /
y 2y
/7,9/77
Taylor professmn spouse e

Burton
stage actor

More formally, this is a set of triples from

[XIX(IulL)

RDF Data Model

person
Liz instance of Richard
ﬁ"st spouse (\@X“e’
%ame /\ st
first name: Liz Q3485I 151573
last name: Taylor e /
y 2y
/7,9/77
Taylor professmn spouse e

Burton
stage actor

More formally, this is a set of triples from

[XIX(IulL)

where

RDF Data Model

person
Liz instance of Richard
firse . spouse (@X‘\e
a,he /\ ‘{\(C}'
first name: Liz Q3485I 151573
last name: Taylor e
‘V /e&t
/7,3/77
Taylor professmn spouse e

Burton
stage actor

More formally, this is a set of triples from

[XIX(IulL)

where

- I is the set of Internationalized Resource Identifiers (IRIs)

first name: Liz
last name: Taylor

RDF Data Model

Liz

Taylor

person

. instance of Richard

Irse spouse

Q3485 Q 151973
me
AW /‘9&0
2
professmn spouse &

Burton
stage actor

More formally, this is a set of triples from

where

[XIX(IulL)

- I is the set of Internationalized Resource Identifiers (IRIs)

- L is the set of literals (constants)

RDF Data Model

person
Liz instance of Richard
firse spouse R
Na A
first name: Liz 034851 151573
last name: Taylor e
AV v\/ /‘9&[
/7,3/77
Taylor profession spouse e
Burton

stage actor

More formally, this is a set of triples from

[XIX(IulL)

where
- I is the set of Internationalized Resource Identifiers (IRIs)

- L is the set of literals (constants)

These triples (s,p,0) are referred to as subject / predicate / object triples

Most theoretical development is based
on

person

Liz instance of Richard

7 spouse <
m /\ ¢
Q34851 QI51973
e
‘w \/ /Q&t
23
Taylor profession spouse &
Burton
stage actor

Edge-labeled, directed graphs

Graph Database

We assume that > is a countably infinite set of labels

Graph Database

We assume that > is a countably infinite set of labels

A graph database (over X) is a pair G = (V, E) where
- Vis a finite set of nodes
- EC VX X X Vis a finite set of edges

Building blocks of query languages:
RPQs and CRPQs

Building blocks of query languages:
RPQs and CRPQs

Conjunctive Queries (CQs)

Building blocks of query languages:
RPQs and CRPQs

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Building blocks of query languages:
RPQs and CRPQs

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)

Notation and Basic Principles

If n €N, we use [7] to denote the set {/,..., n}

Regular Expressions

Operators:

(1) Kleene star (denoted *)
(2) concatenation (omitted in notation)
(3) disjunction (denoted +)

Priorities of operators: first (1), then (2), then (3)

Example: ab + cd*
The language of regular expression r is denoted L(r)

We use r” to abbreviate n-fold concatenation of r
(So we write a* for aaaaq)

Regular Path Queries

Why regular path queries?

Conjunctive queries (and even first-order queries) on graphs are limited:
they can only express local properties

Regular path queries overcome this, using regular expressions to query paths

A path in graph G is a sequence

p = (VO; aj, V]) (V], ap, VZ) coo (Vn-Z, dn, Vn-l) (Vn-], dn, Vn)
of edges of G. Label of p is a,a,--a,

Regular Path Queries

A regular path query (RPQ) is an expression of the form

r
X =Y

where x and y are variables and 7 is a regular expression over

(Notice that 7 can only mention a finite subset of X)

Semantics of RPQs

RPQ

r
X =Y

(u,v) is returned ift
there is a path

fromu tov

whose label matches r

Semantics of RPQs

RPQ

r
X =Y

(u,v) is returned ift
there is a path

fromu tov

whose label matches r

Semantics of RPQs

matchesr

RPQ

r
X =Y

(u,v) is returned ift
there is a path

fromu tov

whose label matches r

Regular Path Queries

Semantics

H
/ gmtarlst —\

instrumentalist

Jay Buchanan P
H

/P—* singer H v

— musician

Marilyn Monroe lH

\ H artist
/ actor ——

United States

H*
The RPQ x = y returns:

e

Regular Path Queries

Semantics

H
/ gmtarlst —\

instrumentalist

Jay Buchanan P
H

/P—> singer H v

~ musician

Marilyn Monroe lH

\ H artist
/ actor 7

United States

H>I<
The RPQ » ' y returns: (guitarist, guitarist),

Regular Path Queries

Semantics

H

/ﬂ guitarist —\

instrumentalist

Jay Buchanan P
H

P H v

singer
/_> $ ~ musician
Marilyn Monroe lH
\ H artist
/ actor -

United States

The RPQ + ™~ y returns: (guitarist, guitarist), (guitarist, instrumentalist),

Regular Path Queries

Semantics

H

/§> guitarist —\

instrumentalist

Jay Buchanan P
H

P H v

singer

/_> ® ~ musician

Marilyn Monroe lH
\ H artist

/ actor ——

United States
H:k
The RPQ r = y returns: (guitarist, guitarist), (guitarist, instrumentalist),

(guitarist, musician), (guitarist, artist),

Regular Path Queries

Semantics

H

/ﬂ guitarist —\

instrumentalist

Jay Buchanan P
H

/P—>singer H . v
musician
Marilyn Monroe lH

actor

/ \ I{/v artist

United States

The RPQ + ™~ y returns: (guitarist, guitarist), (guitarist, instrumentalist),
(guitarist, musician), (guitarist, artist),

(United States, United States),...

Semantics of RPQs

Semantics of RPQs

Let 7 be a regular expression and G be a graph

A pathp = (vo, a1, vi) (vi, a2, v2) ... (Va-1, Gn, Vn) in G matches r, if
its label aja; ... an € L(r)

Semantics of RPQs

Let 7 be a regular expression and G be a graph

A pathp = (vo, a1, vi) (vi, a2, v2) ... (Va-1, Gn, Vn) in G matches r, if
its label aja; ... an € L(r)

| l
l

Semantics of RPQs
Let O = (x 4 y) be a regular path query and G = (V, E) be a graph

The answer of Q on G is

QO(G) ={(u,v) € VX V| there exists a path p from u to v in G that matches r}

Semantics of RPQs

Let 7 be a regular expression and G be a graph

A pathp = (vo, a1, vi) (vi, a2, v2) ... (Va-1, Gn, Vn) in G matches r, if
its label aja; ... an € L(r)

| !
l

Semantics of RPQs
Let O = (x 4 y) be a regular path query and G = (V, E) be a graph

The answer of Q on G is

QO(G) ={(u,v) € VX V| there exists a path p from u to v in G that matches r}

If Q= (x> y),wesometimes denote O(G) by r(G)

Semantics of RPQs

Matching Paths

Let 7 be a regular expression and G be a graph

A pathp = (vo, a1, vi) (vi, a2, v2) ... (Va-1, Gn, Vn) in G matches r, if
its label aja; ... an € L(r)

Semantics of RPQs
Let O = (x 4 y) be a regular path query and G = (V, E) be a graph

(every path semantics)

The answer of Q on G is

QO(G) ={(u,v) € VX V| there exists a path p from u to v in G that matches r}

If Q= (x> y),wesometimes denote O(G) by r(G)

Regular Path Queries

Semantics
There are different semantics of RPQs in the literature and

in graph database systems!

every path trail

simple path shortest path

The differences between these are significant

Regular Path Queries

Semantics
There are different semantics of RPQs in the literature and

in graph database systems!

(every path} trail |

[simple path: (shortest path)

The differences between these are significant

Semantics of RPQs

Why will we consider these different semantics?

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

Semantics of RPQs

Why will we consider these different semantics?
Each of these semantics is important:

- Every path semantics has been studied most in the literature

Semantics of RPQs

Why will we consider these different semantics?
Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while

Semantics of RPQs

Why will we consider these different semantics?
Each of these semantics is important:

- Every path semantics has been studied most in the literature

- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature

- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)

- Trail semantics is the default in Neo4j Cypher

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature

- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)

- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature

- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)

- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Consensus - all. Every path (walk), shortest, simple, trail.

Semantics of RPQs

Semantics of RPQs (every path semantics)

Let O = (x 5 y) be a regular path query and G = (V, E) be a graph

The answer of Q on G under every path semantics is

O(G) =1{(u,v) e VX V| there exists a path p from u to v in G that matches r}

Semantics of RPQs

Semantics of RPQs (every path semantics)

Let O = (x 5 y) be a regular path query and G = (V, E) be a graph
The answer of Q on G under every path semantics is

O(G) =1{(u,v) e VX V| there exists a path p from u to v in G that matches r}

Notice that we do not have any constraint on the path p

Semantics of RPQs

Semantics of RPQs (every path semantics)

Let O = (x 5 y) be a regular path query and G = (V, E) be a graph
The answer of Q on G under every path semantics is

O(G) =1{(u,v) e VX V| there exists a path p from u to v in G that matches r}

Notice that we do not have any constraint on the path p

Hence, "every path’ is eligible for the query

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

~

Simple Paths and Trails

~

Path

Simple Paths and Trails

~

Path V4

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Path v
Trail X
Simple path

Simple Paths and Trails

Path v
Trail X
Simple path X

Simple Paths and Trails

Path v
Trail v
Simple path X

Simple Paths and Trails

Path v
Trail v
Simple path ¢/

Simple Paths and Trails

Definition (Simple path, trail)

Letp = (vo, a1, vi) (vi, az, v2) ... V-1, Gn, Vu) be a path

Path p is a simple path if it is empty or
- Vo, Vp appear exactly once and

- every node in {Vv; ,..., Va1} appears exactly twice in p

Path p is a trail if it is empty or

- every edge (Vi-1, ai, Vi) appears exactly once in p

Semantics of RPQs

Semantics of RPQs (simple path semantics)
Let O = (x > y) bean RPQ and G = (V, E) be a graph

The answer of Q on G under simple path semantics is

O(G),=1{(u, v) € VX V| there exists a simple path p

from u to v in G that matches r}

Semantics of RPQs

Semantics of RPQs (trail semantics)

Let O = (x > y) bean RPQ and G = (V, E) be a graph

The answer of O on G under trail semantics is

O(G), ={(u, v) € VX V| there exists a trail p

from u to v in G that matches r}

RPQ Semantics: Examples

Take r = (aa)*

Take r = (aa)*a

G: % Z\a‘ - 4
a
% b
1 3
Take r = (ab)*a —a

RPQ Semantics: Examples

Take r = (aa)*
then (1,4) S5 I"(G), I"(G)t, and I"(G)S

Take r = (aa)*a

G: 4

Pt
a
a
ﬂ N
1 3
Take r = (ab)*a —a

RPQ Semantics: Examples

Take r = (aa)*
then (1,4) S5 I"(G), I"(G)t, and I"(G)S

Take r = (aa)*a

then (1,4) € r(G) G: %Zﬁ -4

1 3
Take r = (ab)*a —a

RPQ Semantics: Examples

Take r = (aa)*
then (1,4) S5 I"(G), I"(G)t, and I"(G)S

Take r = (aa)*a
2
b

; 14
@)y lﬁ Ng

Take r = (ab)*a —a

RPQ Semantics: Examples

Take r = (aa)*
then (1,4) S5 I"(G), I"(G)t, and I"(G)S

Take r = (aa)*a
2
b

then (1,4) € r(G) G: ¢ .4
but (1,4) & r(G), or r(G), / N‘
1 / N 3
Take r = (ab)*a Sl
then (1,4) € r(G) and r(G),

RPQ Semantics: Examples

Take r = (aa)*
then (1,4) S5 I"(G), I"(G)t, and I"(G)S

Take r = (aa)*a
2
b

then (1,4) € r(G) G "
but (1,4) & r(G), or r(G); / N
1/ K3

then (1,4) € r(G) and r(G),
but (1,4) & r(G),

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form

0F) == (D z) A AGp 2 2))

where

- X isatuple of variables from {yj,..., yu, z1,..., Zo} and
- (y; = z)isan RPQ over = for all i € [n]

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form

0®) = (1 Dz A A2 z,)

where

- X isatuple of variables from {yj,..., yu, z1,..., Zo} and
- (y; = z)isan RPQ over = for all i € [n]

Observation 1

Since every symbol a in ¥ is a regular expression,

every CQ over graphs is also a CRPQ

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)

A conjunctive regular path query (CRPQ) is an expression of the form

0®) = (1 Dz A A2 z,)

where

- X isatuple of variables from {yj,..., yu, z1,..., Zo} and
- (y; = z)isan RPQ over = for all i € [n]

Observation 1

Essentially a CQ where building blocks are RPQs

T

Observation 2

Since every symbol a in ¥ is a regular expression,

every CQ over graphs is also a CRPQ

Conjunctive Regular Path Queries

Semantics of CRPQs (every path semantics)

Let O(x) = ((y1 4 ZDA - A, n zn)) be a CRPQ and G = (V, E) be a graph

The set of answers of Q on G (under every path semantics) is
Q(G) = { h(%) | h is a homomorphism from vars(Q) to V
such that (h(y:), h(zi)) € r(G) for every i € [n]}

Conjunctive Regular Path Queries

Semantics of CRPQs (every path semantics)

Let O(x) = ((y1 4 Z) A A, n zn)) be a CRPQ and G = (V, E) be a graph

The set of answers of Q on G (under every path semantics) is
Q(G) = { h(%) | h is a homomorphism from vars(Q) to V
such that (h(y:), h(zi)) € r(G) for every i € [n]}

Answers of Q on G under simple path and trail semantics are defined analogously:

we require that
(h(xi), h(yi)) € r(G); and
(h(xi), h(yi)) € r(G), respectively

Conjunctive Regular Path Queries

Semantics of CRPQs (every path semantics)

Let O(x) = ((y1 4 Z) A A, n zn)) be a CRPQ and G = (V, E) be a graph

The set of answers of Q on G (under every path semantics) is
Q(G) = { h(%) | h is a homomorphism from vars(Q) to V
such that (h(y:), h(zi)) € r(G) for every i € [n]}

Answers of Q on G under simple path and trail semantics are defined analogously:

we require that
(h(xi), h(yi)) € r(G); and
(h(xi), h(yi)) € r(G), respectively

Notation: Q(G), for simple path semantics
Q(G), for trail semantics

Query Evaluation

Regular Path Queries (RPQs)

Notation and Basic Principles

If n €N, we use [7] to denote the set {/,..., n}

oo

a

Finite Automata

We denote a nondeterministic finite automaton (NFA) as In the example:

N=(S$,A, 0,1l F)

where

- S is the finite set of states S=1{12)

- A is the finite alphabet A = {a}

- 0C § X A X S is the transition relation 5= {(1,a2),2,a,1))
- | C S is the set of initial states [={1)

- F C S is the set of accepting (or "final") states F={1)

The language of N is denoted L(N)

Evaluation Problems

RPQ Evaluation (every path semantics)

Input: Graph database G, pair (i, v) of nodes
regular path query O

Question: Is (u, v) € Q(G)?

Evaluation Problems

RPQ Evaluation (every path semantics)

Input: Graph database G, pair (i, v) of nodes
regular path query O

Question: Is (u, v) € Q(G)?

CRPQ Evaluation (every path semantics)

Input: Graph database G, tuple & of nodes

conjunctive regular path query Q

Question: Is iz € O(G) 2

Evaluation Problems

RPQ Evaluation (every path semantics)

Input: Graph database G, pair (i, v) of nodes
regular path query O

%estion: Is (u,v) € 0(G)?

CRPQ Evaluation (every path semantics)

Input: Graph database G, tuple & of nodes

conjunctive regular path query Q

Question: Is iz € O(G) 2

The decision problems for simple path and trail semantics are defined analogously

RPQs, Every Path Semantics

RPQ Evaluation under every path semantics is in PTIME

RPQs, Every Path Semantics

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

RPQs, Every Path Semantics

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q= (x > y) bethe RPQ, let G be the graph, and (u,v) the pair of nodes

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q= (x > y) bethe RPQ, let G be the graph, and (u,v) the pair of nodes

Let N=(S, A, 6, I, F) be an NFA forr

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q= (x > y) bethe RPQ, let G be the graph, and (u,v) the pair of nodes

Let N=(S, A, 6, I, F) be an NFA forr

Construct a product G X N, treating u as "initial state” in G

(This is similar to a product between automata)

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q= (x > y) bethe RPQ, let G be the graph, and (u,v) the pair of nodes

Let N=(S, A, 6, I, F) be an NFA forr

Construct a product G X N, treating u as "initial state” in G

(This is similar to a product between automata)

Accept iff there is a path from (7,u) to (f,v) in G X N, for somei € landfe F

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)* G 5
| &
@, ®©

Is (1,2) in 7(G)?

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

Is (1,2) in 7(G)?

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

Is (1,2) in 7(G)?

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

Is (1,2) in 7(G)?

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

Is (1,2) in 7(G)?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

@ , ©

Is (1,2) in 7(G)?

Example
RPQ Evaluation under Every Path Semantics

Consider the RPQ 7 = (aa)*

@ , ©

Is (1,2) in 7(G)?

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-complete

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: Q = (x - y), graph data G, and pair of nodes (u, v)

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: Q = (x - y), graph data G, and pair of nodes (u, v)
Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: Q = (x - y), graph data G, and pair of nodes (u, v)

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
Reduction from (directed) Hamiltonian Path

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: Q = (x - y), graph data G, and pair of nodes (u, v)

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: Q = (x - y), graph data G, and pair of nodes (u, v)

i
i

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let G, be obtained from H by labeling each edge with a

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: Q = (x - y), graph data G, and pair of nodes (u, v)

{
f

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let G, be obtained from H by labeling each edge with a

Then H has a Hamiltonian Path from u to v

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: Q = (x - y), graph data G, and pair of nodes (u, v)

{
f

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let G, be obtained from H by labeling each edge with a

Then H has a Hamiltonian Path from u to v

iff (u,v) in O(G,), with 0 = (x 5 y)

T P ——

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard

under data complexity

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard,)
even for the RPQ O = (x G y)

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard,)
even for the RPQ O = (x G y)

Reduction from

Even Length Simple Path
Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard,)
even for the RPQ O = (x G y)

Reduction from

Even Length Simple Path
Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

————————

Even Length Simple Path is NP —complete [Lapaugh, Papadimitriou, Networks 1984]

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard,)
even for the RPQ O = (x G y)

Reduction from

Even Length Simple Path

Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

Even Length Simple Path is NP —complete [Lapaugh, Papadimitriou, Networks 1984]

Proof (sketch)

Let G be the graph constructed before
Then G has a simple path of even length from u to v ift (u,v) € Q(G);

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Al y)

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Gl y)

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there node-disjoint paths p;and p2, from u; to v; and from u> to v2 respectively?

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Gl y)

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there node-disjoint paths p;and p2, from u; to v; and from u> to v2 respectively?

Two Disjoint Paths is NP-complete [Fortune, Hopcroft, Wyllie TCS 1980]

RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Al y)

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there node-disjoint paths p;and p2, from u; to v; and from u2 to v2 respectively?

Two Disjoint Paths is NP-complete [Fortune, Hopcroft, Wyllie TCS 1980]

Proof (sketch)
Let G be obtained from G, by adding the edge (vy, b, u2)

Then G has node-disjoint paths p1 and p», from u; to vi and from u, to v, ift
(1, v)) € Q(Gy);

RPQs, Simple Path Semantics

G

RPQs, Simple Path Semantics

G

RPQs, Simple Path Semantics

G

RPQs, Simple Path Semantics

G

RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

Two Edge Disjoint Paths is NP-complete

RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

Two Edge Disjoint Paths is NP-complete

Split graph

RPQs, Trail Semantics

Theorem

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

Two Edge Disjoint Paths is NP-complete

Split graph ><

RPQs, Trail Semantics

Theorem

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

Two Edge Disjoint Paths is NP-complete

Split graph >< -

RPQs, Trail Semantics

Theorem

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

Two Edge Disjoint Paths is NP-complete

N L

RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p; and p2, from u; to v; and from u2 to v2 respectively?

Two Edge Disjoint Paths is NP-complete

 Fortune, Hopcroft, Wyllie TCS 1980]
LaPaugh, Rivest JCSS 1980]
Perl, Shiloach JACM 1978]

RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p;and p2, from u; to v; and from u2 to v respectively?

Two Edge Disjoint Paths is NP-complete Fortune, Hopcroft, Wyllie TCS 1980]

LaPaugh, Rivest JCSS 1980]
Perl, Shiloach JACM 1978]

Proof (sketch - same reduction as before)

Let G be obtained from G, by adding the edge (vy, b, u2)

Then G has edge-disjoint paths p; and p2, from u; to v; and from uz to vz ift
(U, vp) € O(Gy),

RPQs, Trail Semantics

aa)*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x —)

A similar proof.

CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound:
Let O(x) = (()’1 4 Z) A - A, I zn)) be the query

CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound:
Let O(x) = (()’1 4 Z) A - A, I zn)) be the query

For each regular expression 7, we can compute in polynomial time

a relation R; containing the pairs r(G)

CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound:
Let O(x) = (()’1 4 Z) A - A, I zn)) be the query

For each regular expression 7, we can compute in polynomial time

a relation R; containing the pairs r(G)

Then, evaluation for Q is the same as evaluation of the conjunctive query

CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound:
Let O(x) = (()’1 4 Z) A - A, I zn)) be the query

For each regular expression 7, we can compute in polynomial time

a relation R; containing the pairs r(G)

Then, evaluation for Q is the same as evaluation of the conjunctive query

0@ = (] 2D A A, 3 2)

CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound:
Let O(x) = (()’1 4 Z) A - A, I zn)) be the query

For each regular expression 7, we can compute in polynomial time

a relation R; containing the pairs r(G)

Then, evaluation for Q is the same as evaluation of the conjunctive query

0@ = (] 2D A A, 3 2)

over the relations R;

CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let Crel be the class of (relational) CQs, defined as Cre={Qr | Q € C}

CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let Crel be the class of (relational) CQs, defined as Cre={Qr | Q € C}

Corollary
Let C be a class of CRPQs

Then Evaluation for C under every path semantics is tractable ift
Evaluation for Cgrel is tractable in the relational model

CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let Crel be the class of (relational) CQs, defined as Cre={Qr | Q € C}

Corollary
Let C be a class of CRPQs

Then Evaluation for C under every path semantics is tractable ift
Evaluation for Cgrel is tractable in the relational model

So, by the results on tree-shaped conjunctive queries,
evaluation on tree-shaped CRPQs is also tractable

CRPQs, Simple Path / Trail Semantics

CRPQ Evaluation is NP-complete under simple path and under trail semantics

CRPQs, Simple Path / Trail Semantics

CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)

Lower bound: already holds for RPQs
Upper bound: simple guess-and-check algorithm

Overview

every path PTIME NP-complete

simple path NP-complete NP-complete

trail NP-complete NP-complete

Basic Containment Problems

RPQ Containment

Input: RPQs Q;and Q>
Question: Is Q1(G) € O,(G) for every graph G2

CRPQ Containment

Input: CRPQs Q; and Q>
Question: Is Q1(G) € O,(G) for every graph G?

The problems for simple path and trail semantics are analogous

RPQ Containment

RPQ Containment is PSPACE-complete

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)
Let O; = (x; = y;) and Q) = (X, = y,) be RPQs

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Let Q) = (; >) and @, = (x;) be RPQs
It is easy to see that Q; € Oz ift L(r;) € L(r2)

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Let Q) = (; >) and @, = (x;) be RPQs
It is easy to see that Q; € Oz ift L(r;) € L(r2)

Testing L(r7) € L(r2) for two given regular expressions r; and 2
is PSPACE-complete

Theorem

CRPQ Containment is EXPSPACE-coplete

RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Let Q) = (; >) and @, = (x;) be RPQs
It is easy to see that Q; € Oz ift L(r;) € L(r2)

Testing L(r7) € L(r2) for two given regular expressions r; and 2
is PSPACE-complete

The same proof works for simple path and trail semantics

Theorem

CRPQ Containment is EXPSPACE-complete

Data Values

Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts

Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts

X~y or X+ Yy

Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts
X~y or X+ Yy

satisfied if nodes x and y have the same, resp., different label (or data value)

Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts
X~y or X+ Yy

satisfied if nodes x and y have the same, resp., different label (or data value)

Such queries are usually considered on a different data model
(data words, data trees, data graphs)
but since we chose X infinite, the main argument also works here

%eries With Data Value Comparisions

Consider the query Leg, matching all paths that contain two equal values

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

%eries With Data Value Comparisions

Consider the query Leg, matching all paths that contain two equal values

Let L, . be its complement,
matching all paths containing pairwise different values

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of qu on graph databases is NP-complete

Language Leg is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of qu on graph databases is NP-complete

Language Leg is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of qu on graph databases is NP-complete

Language Leg is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
2 0 [z« 5 =] o

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of qu on graph databases is NP-complete

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
2 0 [z« 5 =] o

expresses Leg: bind x, see if it occurs elsewhere ([= x])

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of qu on graph databases is NP-complete

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
2 0 [z« 5 =] o

expresses Leg: bind x, see if it occurs elsewhere ([= x])

Regular expressions with equality:

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of qu on graph databases is NP-complete

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
2 0 [z« 5 =] o

expresses Leg: bind x, see if it occurs elsewhere ([= x])

Regular expressions with equality:
S# L (Z)_ . X

Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of L_eq on graph databases is NP-complete

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
2 0 [z« 5 =] o

expresses Leg: bind x, see if it occurs elsewhere ([= x])

Regular expressions with equality:
S# L (Z)_ . X

also expresses Leg: guesses where equal values occur

T ——

