Graph databases

Graph Databases?

Graph Databases?

Graph Databases?

Information stored as a graph

Graph Databases?

Information stored as a graph
Rather intuitive

The Query, Visualized

"US artists who died of poisoning"

The Query, Visualized

"US artists who died of poisoning"

output node

The Query, Visualized

"US artists who died of poisoning"

The Query, Visualized

"US artists who died of poisoning"

Graph Queries By Example "US artists who died of poisoning"

Graph Queries By Example "US artists who died of poisoning"

Graph Queries By Example

Queries can have cycles

Artists who live in the US and have US citizenship

Why Graph Databases?
 Why are they interesting?

Why Graph Databases?
 Why are they interesting?

Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50\% of the market), Tigergraph, Redis, SAP, ArangoDB, Amazon Neptune, etc etc Often hidden: e.g., Google's Knowledge Graph

Why Graph Databases?
 Why are they interesting?

Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50\% of the market), Tigergraph, Redis, SAP, ArangoDB, Amazon Neptune, etc etc Often hidden: e.g., Google's Knowledge Graph

New Standards
 ISO is now developing its second database query language standard called GQL: Graph Query Language. The first one they developed is SQL

Why Graph Databases?
 Why are they interesting?

Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50\% of the market), Tigergraph, Redis, SAP, ArangoDB, Amazon Neptune, etc etc Often hidden: e.g., Google's Knowledge Graph

New Standards

ISO is now developing its second database query language standard called GQL: Graph Query Language. The first one they developed is SQL

New Applications

Social networks, Semantic Web, bioinformatics, fraud analysis, real-time recommendation, network/IT systems, even investigative journalism (Panama+Pandora papers)

Why Graph Databases?
 Why are they interesting?

Why Graph Databases?
 Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all analytics task will involve graph databases

Why Graph Databases?
 Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all analytics task will involve graph databases

Growth potential

IDG prediction: 600\% growth up to 2025

Why Graph Databases?
 Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all analytics task will involve graph databases

Growth potential

IDG prediction: 600\% growth up to 2025

Current and future use

75% of Fortune 100 companies currently use graph databases

Phenomenal fundraising (last year alone, around 500M)

GQL Influence Graph

GQL Influence Graph

[https://www.gqlstandards.org/existing-languages]

Models for Graph Databases?

Currently, two main data models:

- Property Graph Databases (today: the dominant model)
- RDF-like Databases (an earlier and interesting approach but not as prevalent in industry)

Property Graph Data Model

Property Graph Data Model

More formally, this is

Property Graph Data Model

More formally, this is

- a set of node identifiers N

Property Graph Data Model

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E

Property Graph Data Model

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $\mathrm{N} \times \mathrm{N}$

Property Graph Data Model

Labels L: person, profession, spouse

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $\mathrm{N} \times \mathrm{N}$

Property Graph Data Model

Labels L: person, profession, spouse Values V: Liz, Taylor, 10.10.1975

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $\mathrm{N} \times \mathrm{N}$

Property Graph Data Model

Labels L: person, profession, spouse
Values V: Liz, Taylor, 10.10.1975
Properties P: first name, last name

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $\mathrm{N} \times \mathrm{N}$

Property Graph Data Model

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $\mathrm{N} \times \mathrm{N}$
- a function from $N \cup E$ to (subsets of) labels L

Property Graph Data Model

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E
- a function that maps E to $\mathrm{N} \times \mathrm{N}$
- a function from $N \cup E$ to (subsets of) labels L
- a function from $(N \cup E) \times P$ to (subsets of) values V

Property Graph Data Model

More formally, this is

- a set of node identifiers N
- a set of edge identifiers E

Some models also directly incorporate paths

- a function that maps E to $\mathrm{N} \times \mathrm{N}$
- a function from $\mathrm{N} \cup \mathrm{E}$ to (subsets of) labels L
- a function from $(N \cup E) \times P$ to (subsets of) values V

RDF Data Model

person
first name: Liz last name:Taylor

RDF Data Model

RDF Data Model

RDF Data Model

More formally, this is a set of triples from

RDF Data Model

More formally, this is a set of triples from

$$
I \times I \times(I \cup L)
$$

RDF Data Model

More formally, this is a set of triples from

$$
I \times I \times(I \cup L)
$$

where

RDF Data Model

More formally, this is a set of triples from

$$
I \times I \times(I \cup L)
$$

where

- I is the set of Internationalized Resource Identifiers (IRIs)

RDF Data Model

More formally, this is a set of triples from

$$
I \times I \times(I \cup L)
$$

where

- I is the set of Internationalized Resource Identifiers (IRIs)
- L is the set of literals (constants)

RDF Data Model

More formally, this is a set of triples from

$$
I \times I \times(I \cup L)
$$

where

- I is the set of Internationalized Resource Identifiers (IRIs)
- L is the set of literals (constants)

These triples (s,p,o) are referred to as subject / predicate / object triples

Most theoretical development is based

 On

Edge-labeled, directed graphs

Graph Database

We assume that Σ is a countably infinite set of labels

Graph Database

We assume that Σ is a countably infinite set of labels

Definition

A graph database (over Σ) is a pair $G=(V, E)$ where

- V is a finite set of nodes
- $E \subseteq V \times \Sigma \times V$ is a finite set of edges

Building blocks of query languages: RPQs and CRPQs

Building blocks of query languages: RPQs and CRPQs

Conjunctive Queries (CQs)

Building blocks of query languages: RPQs and CRPQs

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Building blocks of query languages: RPQs and CRPQs

Notation and Basic Principles

If $n \in \mathbb{N}$, we use $[n]$ to denote the set $\{1, \ldots, n\}$

Regular Expressions

Operators:
(1) Kleene star (denoted *)
(2) concatenation (omitted in notation)
(3) disjunction
(denoted +)
Priorities of operators: first (1), then (2), then (3)
Example: $a b+c d^{*}$

The language of regular expression r is denoted $L(r)$

We use r^{n} to abbreviate n-fold concatenation of r
(So we write a^{4} for $a a a a$)

Regular Path Queries

Why regular path queries?

Conjunctive queries (and even first-order queries) on graphs are limited: they can only express local properties

Regular path queries overcome this, using regular expressions to query paths

Definition

A path in graph G is a sequence

$$
p=\left(v_{0}, a_{1}, v_{1}\right)\left(v_{1}, a_{2}, v_{2}\right) \ldots\left(v_{n-2}, a_{n}, v_{n-1}\right)\left(v_{n-1}, a_{n}, v_{n}\right)
$$

of edges of G. Label of p is $a_{1} a_{2} \cdots a_{n}$

Regular Path Queries

Definition
A regular path query (RPQ) is an expression of the form

$$
x \xrightarrow{r} y
$$

where x and y are variables and r is a regular expression over Σ
(Notice that r can only mention a finite subset of Σ)

Semantics of RPQs

Semantics of RPQs

$$
\begin{aligned}
& \mathrm{RPQ} \\
& x \xrightarrow{r} y
\end{aligned}
$$

(u, v) is returned iff there is a path from u to v
whose label matches r

Semantics of RPQs

$$
\begin{aligned}
& \mathrm{RPQ} \\
& x \xrightarrow{r} y
\end{aligned}
$$

(u, v) is returned iff there is a path from u to v
whose label matches r

Regular Path Queries

The RPQ $x \xrightarrow{H^{*}} y$ returns:

Regular Path Queries $_{\text {Scemantis }}$

The RPQ $x \xrightarrow{H^{*}} y$ returns: (guitarist, guitarist),

Regular Path Queries

The RPQ $x \xrightarrow{H^{*}} y$ returns: (guitarist, guitarist), (guitarist, instrumentalist),

Regular Path Queries

The RPQ $x \xrightarrow{H^{*}} y$ returns:
(guitarist, guitarist), (guitarist, instrumentalist), (guitarist, musician), (guitarist, artist),

Regular Path Queries

The RPQ $x \xrightarrow{H^{*}} y$ returns: $\quad \begin{aligned} & \text { (guitarist, guitarist), (guitarist, instrumentalist), } \\ & \text { (guitarist, musician), (guitarist, artist), } \\ & \\ & \text { (United States, United States),... }\end{aligned}$

Semantics of RPQs

Semantics of RPQs

Matching Paths

Let r be a regular expression and G be a graph
A path $p=\left(v_{0}, a_{1}, v_{l}\right)\left(v_{1}, a_{2}, v_{2}\right) \ldots\left(v_{n-1}, a_{n}, v_{n}\right)$ in G matches r, if its label $a_{1} a_{2} \ldots a_{n} \in L(r)$

Semantics of RPQs

Matching Paths

Let r be a regular expression and G be a graph
A path $p=\left(v_{0}, a_{1}, v_{1}\right)\left(v_{1}, a_{2}, v_{2}\right) \ldots\left(v_{n-1}, a_{n}, v_{n}\right)$ in G matches r, if its label $a_{1} a_{2} \ldots a_{n} \in L(r)$

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be a regular path query and $G=(V, E)$ be a graph
The answer of Q on G is

$$
Q(G)=\{(u, v) \in V \times V \mid \text { there exists a path } p \text { from } u \text { to } v \text { in } G \text { that matches } r\}
$$

Semantics of RPQs

Matching Paths

Let r be a regular expression and G be a graph
A path $p=\left(v_{0}, a_{1}, v_{1}\right)\left(v_{1}, a_{2}, v_{2}\right) \ldots\left(v_{n-1}, a_{n}, v_{n}\right)$ in G matches r, if its label $a_{1} a_{2} \ldots a_{n} \in L(r)$

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be a regular path query and $G=(V, E)$ be a graph
The answer of Q on G is

$$
Q(G)=\{(u, v) \in V \times V \mid \text { there exists a path } p \text { from } u \text { to } v \text { in } G \text { that matches } r\}
$$

Notation

If $Q=(x \xrightarrow{r} y)$, we sometimes denote $Q(G)$ by $r(G)$

Semantics of RPQs

Matching Paths

Let r be a regular expression and G be a graph
A path $p=\left(v_{0}, a_{1}, v_{1}\right)\left(v_{1}, a_{2}, v_{2}\right) \ldots\left(v_{n-1}, a_{n}, v_{n}\right)$ in G matches r, if its label $a_{1} a_{2} \ldots a_{n} \in L(r)$

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be a regular path query and $G=(V, E)$ be a graph
The answer of Q on G is

$$
Q(G)=\{(u, v) \in V \times V \mid \text { there exists a path } p \text { from } u \text { to } v \text { in } G \text { that matches } r\}
$$

Notation

If $Q=(x \xrightarrow{r} y)$, we sometimes denote $Q(G)$ by $r(G)$

Regular Path Queries

Semantics

There are different semantics of RPQs in the literature and in graph database systems!
every path trail simple path shortest path

The differences between these are significant

Regular Path Queries

Semantics

There are different semantics of RPQs in the literature and in graph database systems!

The differences between these are significant

Semantics of RPQs

Why will we consider these different semantics?

Semantics of RPQs

Why will we consider these different semantics?
Each of these semantics is important:

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Consensus - all. Every path (walk), shortest, simple, trail.

Semantics of RPQs

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be a regular path query and $G=(V, E)$ be a graph
The answer of Q on G under every path semantics is
$Q(G)=\{(u, v) \in V \times V \mid$ there exists a path p from u to v in G that matches $r\}$

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be a regular path query and $G=(V, E)$ be a graph
The answer of Q on G under every path semantics is

$$
Q(G)=\{(u, v) \in V \times V \mid \text { there exists a path } p \text { from } u \text { to } v \text { in } G \text { that matches } r\}
$$

Notice that we do not have any constraint on the path p

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be a regular path query and $G=(V, E)$ be a graph
The answer of Q on G under every path semantics is

$$
Q(G)=\{(u, v) \in V \times V \mid \text { there exists a path } p \text { from } u \text { to } v \text { in } G \text { that matches } r\}
$$

Notice that we do not have any constraint on the path p
Hence, "every path" is eligible for the query

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Simple Paths and Trails

Definition (Simple path, trail)

Let $p=\left(v_{0}, a_{1}, v_{l}\right)\left(v_{1}, a_{2}, v_{2}\right) \ldots\left(v_{n-1}, a_{n}, v_{n}\right)$ be a path
Path p is a simple path if it is empty or

- v_{0}, v_{n} appear exactly once and
- every node in $\left\{v_{l}, \ldots, v_{n-1}\right\}$ appears exactly twice in p

Path p is a trail if it is empty or

- every edge $\left(v_{i-1}, a_{i}, v_{i}\right)$ appears exactly once in p

Semantics of RPQs

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be an RPQ and $G=(V, E)$ be a graph
The answer of Q on G under simple path semantics is

$$
Q(G)_{s}=\{(u, v) \in V \times V \mid \text { there exists a simple path } p
$$

Semantics of RPQs

Let $Q=(x \xrightarrow{r} y)$ be an RPQ and $G=(V, E)$ be a graph
The answer of Q on G under trail semantics is

$$
Q(G)_{t}=\{(u, v) \in V \times V \mid \text { there exists a trail } p
$$

RPQ Semantics: Examples

Take $r=(a a)^{*}$

Take $r=(a a)^{*} a$

Take $r=(a b)^{*} a$

RPQ Semantics: Examples

Take $r=(a a)^{*}$ then $(1,4) \in r(G), r(G)_{t}$, and $r(G)_{s}$

Take $r=(a a)^{*} a$

Take $r=(a b)^{*} a$

RPQ Semantics: Examples

Take $r=(a a)^{*}$ then $(1,4) \in r(G), r(G)_{t}$, and $r(G)_{s}$

Take $r=(a a)^{*} a$ then $(1,4) \in r(G)$

Take $r=(a b)^{*} a$

RPQ Semantics: Examples

Take $r=(a a)^{*}$ then $(1,4) \in r(G), r(G)_{t}$, and $r(G)_{s}$

Take $r=(a a)^{*} a$ then $(1,4) \in r(G)$ but $(1,4) \notin r(G)_{t}$ or $r(G)_{s}$

Take $r=(a b)^{*} a$

RPQ Semantics: Examples

Take $r=(a a)^{*}$ then $(1,4) \in r(G), r(G)_{t}$, and $r(G)_{s}$

Take $r=(a a)^{*} a$ then $(1,4) \in r(G)$ but $(1,4) \notin r(G)_{t}$ or $r(G)_{s}$

Take $r=(a b)^{*} a$ G: then $(1,4) \in r(G)$ and $r(G)_{t}$

RPQ Semantics: Examples

Take $r=(a a)^{*}$ then $(1,4) \in r(G), r(G)_{t}$, and $r(G)_{s}$

Take $r=(a a)^{*} a$ then $(1,4) \in r(G)$ but $(1,4) \notin r(G)_{t}$ or $r(G)_{s}$

Take $r=(a b)^{*} a$ G:
then $(1,4) \in r(G)$ and $r(G)_{t}$ but $(1,4) \notin r(G)_{s}$

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)

A conjunctive regular path query (CRPQ) is an expression of the form

$$
Q(\bar{x}):=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)
$$

where

- \bar{x} is a tuple of variables from $\left\{y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}\right\}$ and
- $\quad\left(y_{i} \xrightarrow{r_{i}} z_{i}\right)$ is an RPQ over \sum for all $i \in[n]$

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)

A conjunctive regular path query (CRPQ) is an expression of the form

$$
Q(\bar{x}):=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)
$$

where

- \bar{x} is a tuple of variables from $\left\{y_{1}, \ldots, y_{n}, z_{l}, \ldots, z_{n}\right\}$ and
- $\left(y_{i} \xrightarrow{r_{i}} z_{i}\right)$ is an RPQ over \sum for all $i \in[n]$

Observation 1

Since every symbol a in Σ is a regular expression, every CQ over graphs is also a CRPQ

Conjunctive Regular Path Queries

Definition (Conjunctive Regular Path Query)

A conjunctive regular path query (CRPQ) is an expression of the form

$$
Q(\bar{x}):=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)
$$

where

- \bar{x} is a tuple of variables from $\left\{y_{1}, \ldots, y_{n}, z_{l}, \ldots, z_{n}\right\}$ and
- $\left(y_{i} \xrightarrow{r_{i}} z_{i}\right)$ is an RPQ over \sum for all $i \in[n]$

Observation 1

Essentially a CQ where building blocks are RPQs

Observation 2

Since every symbol a in Σ is a regular expression, every CQ over graphs is also a CRPQ

Conjunctive Regular Path Queries

Semantics of CRPQs
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be a CRPQ and $G=(V, E)$ be a graph
The set of answers of Q on G (under every path semantics) is $Q(G)=\{\mathrm{h}(\bar{x}) \mid \mathrm{h}$ is a homomorphism from $\operatorname{vars}(Q)$ to V such that $\left(\mathrm{h}\left(y_{i}\right), \mathrm{h}\left(z_{i}\right)\right) \in r_{i}(G)$ for every $\left.i \in[n]\right\}$

Conjunctive Regular Path Queries

Semantics of CRPQs
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be a CRPQ and $G=(V, E)$ be a graph

The set of answers of Q on G (under every path semantics) is
$Q(G)=\{\mathrm{h}(\bar{x}) \mid \mathrm{h}$ is a homomorphism from $\operatorname{vars}(Q)$ to V such that $\left(\mathrm{h}\left(y_{i}\right), \mathrm{h}\left(z_{i}\right)\right) \in r_{i}(G)$ for every $\left.i \in[n]\right\}$

Answers of Q on G under simple path and trail semantics are defined analogously: we require that

$$
\begin{aligned}
& \left(\mathrm{h}\left(x_{i}\right), \mathrm{h}\left(y_{i}\right)\right) \in r_{i}(G)_{s} \text { and } \\
& \left(\mathrm{h}\left(x_{i}\right), \mathrm{h}\left(y_{i}\right)\right) \in r_{i}(G)_{t} \text { respectively }
\end{aligned}
$$

Conjunctive Regular Path Queries

Semantics of CRPQs
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be a CRPQ and $G=(V, E)$ be a graph

The set of answers of Q on G (under every path semantics) is
$Q(G)=\{\mathrm{h}(\bar{x}) \mid \mathrm{h}$ is a homomorphism from $\operatorname{vars}(Q)$ to V such that $\left(\mathrm{h}\left(y_{i}\right), \mathrm{h}\left(z_{i}\right)\right) \in r_{i}(G)$ for every $\left.i \in[n]\right\}$

Answers of Q on G under simple path and trail semantics are defined analogously: we require that

$$
\begin{aligned}
& \left(\mathrm{h}\left(x_{i}\right), \mathrm{h}\left(y_{i}\right)\right) \in r_{i}(G)_{s} \text { and } \\
& \left(\mathrm{h}\left(x_{i}\right), \mathrm{h}\left(y_{i}\right)\right) \in r_{i}(G)_{t} \text { respectively }
\end{aligned}
$$

Notation: $\quad Q(G)_{s}$ for simple path semantics $Q(G)_{t}$ for trail semantics

Notation and Basic Principles

If $n \in \mathbb{N}$, we use $[n]$ to denote the set $\{1, \ldots, n\}$

Finite Automata

We denote a nondeterministic finite automaton (NFA) as
In the example:

$$
N=(S, A, \delta, I, F)
$$

where

- S is the finite set of states
$S=\{1,2\}$
- A is the finite alphabet
- $\delta \subseteq S \times A \times S$ is the transition relation
- $I \subseteq S$ is the set of initial states
- $F \subseteq S$ is the set of accepting (or "final") states

The language of N is denoted $L(N)$

Evaluation Problems

RPQ Evaluation
 (every path semantics)

Input: Graph database G, pair (u, v) of nodes regular path query Q

Question: Is $(u, v) \in Q(G)$?

Evaluation Problems

RPQ Evaluation
(every path semantics)
Input: Graph database G, pair (u, v) of nodes regular path query Q

Question: Is $(u, v) \in Q(G)$?

CRPQ Evaluation
 (every path semantics)

Input: Graph database G, tuple \bar{u} of nodes conjunctive regular path query Q

Question: Is $\bar{u} \in Q(G)$?

Evaluation Problems

RPQ Evaluation
 (every path semantics)

Input: Graph database G, pair (u, v) of nodes regular path query Q

Question: Is $(u, v) \in Q(G)$?

CRPQ Evaluation (every path semantics)
 Input: Graph database G, tuple \bar{u} of nodes conjunctive regular path query Q
 Question: Is $\bar{u} \in Q(G)$?

The decision problems for simple path and trail semantics are defined analogously

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

RPQs, Every Path Semantics

Theorem
 RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let $Q=(x \xrightarrow{r} y)$ be the RPQ , let G be the graph, and (u, v) the pair of nodes

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let $Q=(x \xrightarrow{r} y)$ be the RPQ, let G be the graph, and (u, v) the pair of nodes
Let $N=(S, A, \delta, I, F)$ be an NFA for r

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let $Q=(x \xrightarrow{r} y)$ be the RPQ , let G be the graph, and (u, v) the pair of nodes
Let $N=(S, A, \delta, I, F)$ be an NFA for r
Construct a product $G \times N$, treating u as "initial state" in G
(This is similar to a product between automata)

RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let $Q=(x \xrightarrow{r} y)$ be the RPQ , let G be the graph, and (u, v) the pair of nodes
Let $N=(S, A, \delta, I, F)$ be an NFA for r
Construct a product $G \times N$, treating u as "initial state" in G
(This is similar to a product between automata)
Accept iff there is a path from (i, u) to (f, v) in $G \times N$, for some $i \in I$ and $f \in F$

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

G

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?
$\rightarrow \mathrm{q}_{1}, 1$

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

Example

RPQ Evaluation under Every Path Semantics

Consider the RPQ $r=(a a)^{*}$

Is $(1,2)$ in $r(G)$?

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)
Upper bound:
Guess a path from u to v in G and check if it is simple and matches r

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)
Upper bound:
Guess a path from u to v in G and check if it is simple and matches r
Lower bound:

Reduction from (directed) Hamiltonian Path

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)
Upper bound:
Guess a path from u to v in G and check if it is simple and matches r
Lower bound:

Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u, v) a pair of nodes of H

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)
Upper bound:
Guess a path from u to v in G and check if it is simple and matches r
Lower bound:

> Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u, v) a pair of nodes of H Let G_{a} be obtained from H by labeling each edge with a

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)
Upper bound:
Guess a path from u to v in G and check if it is simple and matches r
Lower bound:

> Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u, v) a pair of nodes of H Let G_{a} be obtained from H by labeling each edge with a

Then H has a Hamiltonian Path from u to v

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)

Input: $Q=(x \xrightarrow{r} y)$, graph data G, and pair of nodes (u, v)
Upper bound:
Guess a path from u to v in G and check if it is simple and matches r
Lower bound:

> Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u, v) a pair of nodes of H
Let G_{a} be obtained from H by labeling each edge with a
Then H has a Hamiltonian Path from u to v
iff
(u, v) in $Q\left(G_{a}\right)_{s}$
with $Q=\left(x \xrightarrow{a^{n-1}} y\right)$

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard under data complexity

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, even for the RPQ $Q=\left(x \xrightarrow{(a a)^{*}} y\right)$

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard,

$$
\text { even for the RPQ } Q=\left(x \xrightarrow{(a a)^{*}} y\right)
$$

Reduction from

Even Length Simple Path

Given a directed graph G and a pair (u, v) of nodes, is there a simple path of even length from u to v ?

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard,

$$
\text { even for the RPQ } Q=\left(x \xrightarrow{(a a)^{*}} y\right)
$$

Reduction from

Even Length Simple Path

Given a directed graph G and a pair (u, v) of nodes, is there a simple path of even length from u to v ?

Even Length Simple Path is NP-complete

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard,

$$
\text { even for the RPQ } Q=\left(x \xrightarrow{(a a)^{*}} y\right)
$$

Reduction from

Even Length Simple Path

Given a directed graph G and a pair (u, v) of nodes, is there a simple path of even length from u to v ?

Even Length Simple Path is NP-complete

Proof (sketch)

Let G_{a} be the graph constructed before
Then G has a simple path of even length from u to v iff $(u, v) \in Q\left(G_{a}\right)_{s}$

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, even for the RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, even for the RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there node-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} respectively?

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, even for the RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (u_{l}, v_{l}) and (u_{2}, v_{2}) are there node-disjoint paths p_{l} and p_{2}, from u_{1} to v_{l} and from u_{2} to v_{2} respectively?

Two Disjoint Paths is NP-complete

RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, even for the RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (u_{l}, v_{l}) and (u_{2}, v_{2}) are there node-disjoint paths p_{l} and p_{2}, from u_{1} to v_{l} and from u_{2} to v_{2} respectively?

Two Disjoint Paths is NP-complete
[Fortune, Hopcroft, Wyllie TCS 1980]

Proof (sketch)

Let G_{b} be obtained from G_{a} by adding the edge (v_{1}, b, u_{2})
Then G has node-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} iff $\left(u_{1}, v_{2}\right) \in Q\left(G_{b}\right)_{s}$

RPQs, Simple Path Semantics

RPQs, Simple Path Semantics

RPQs, Simple Path Semantics

RPQs, Simple Path Semantics

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2})
are there edge-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} respectively?

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$
Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2})
are there edge-disjoint paths p_{I} and p_{2}, from u_{1} to v_{I} and from u_{2} to v_{2} respectively?
Two Edge Disjoint Paths is NP-complete

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there edge-disjoint paths p_{I} and p_{2}, from u_{1} to v_{I} and from u_{2} to v_{2} respectively?

Two Edge Disjoint Paths is NP-complete

Split graph

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$
Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there edge-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} respectively?

Two Edge Disjoint Paths is NP-complete

Split graph

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$
Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there edge-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} respectively?

Two Edge Disjoint Paths is NP-complete

Split graph

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$
Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there edge-disjoint paths p_{I} and p_{2}, from u_{1} to v_{I} and from u_{2} to v_{2} respectively?

Two Edge Disjoint Paths is NP-complete

Split graph

n

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$
Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there edge-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} respectively?

Two Edge Disjoint Paths is NP-complete
[Fortune, Hopcroft, Wyllie TCS 1980]
[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{a^{*} b a^{*}} y\right)$
Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (u_{1}, v_{l}) and (u_{2}, v_{2}) are there edge-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} respectively?

Two Edge Disjoint Paths is NP-complete
[Fortune, Hopcroft, Wyllie TCS 1980]
[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

Proof (sketch - same reduction as before)

Let G_{b} be obtained from G_{a} by adding the edge (v_{1}, b, u_{2})
Then G has edge-disjoint paths p_{1} and p_{2}, from u_{1} to v_{1} and from u_{2} to v_{2} iff

$$
\left(u_{1}, v_{2}\right) \in Q\left(G_{b}\right)_{t}
$$

RPQs, Trail Semantics

Theorem

RPQ Evaluation under trail semantics is NP-hard, even for RPQ $Q=\left(x \xrightarrow{(a a)^{*}} y\right)$

A similar proof.

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries
Upper bound:
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be the query

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries
Upper bound:
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be the query
For each regular expression r_{i}, we can compute in polynomial time a relation R_{i} containing the pairs $r_{i}(G)$

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries
Upper bound:
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be the query
For each regular expression r_{i}, we can compute in polynomial time a relation R_{i} containing the pairs $r_{i}(G)$

Then, evaluation for Q is the same as evaluation of the conjunctive query

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries
Upper bound:
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be the query
For each regular expression r_{i}, we can compute in polynomial time a relation R_{i} containing the pairs $r_{i}(G)$

Then, evaluation for Q is the same as evaluation of the conjunctive query

$$
Q_{R}(\bar{x})=\left(\left(y_{1} \xrightarrow{R_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{R_{n}} z_{n}\right)\right)
$$

CRPQs, Every Path Semantics

Theorem

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries
Upper bound:
Let $Q(\bar{x})=\left(\left(y_{1} \xrightarrow{r_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{r_{n}} z_{n}\right)\right)$ be the query
For each regular expression r_{i}, we can compute in polynomial time a relation R_{i} containing the pairs $r_{i}(G)$

Then, evaluation for Q is the same as evaluation of the conjunctive query

$$
Q_{R}(\bar{x})=\left(\left(y_{1} \xrightarrow{R_{1}} z_{1}\right) \wedge \cdots \wedge\left(y_{n} \xrightarrow{R_{n}} z_{n}\right)\right)
$$

over the relations R_{i}

CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let $\mathrm{C}_{\text {Rel }}$ be the class of (relational) CQs , defined as $\mathrm{C}_{\mathrm{Rel}}=\left\{Q_{R} \mid Q \in \mathrm{C}\right\}$

CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let $\mathrm{C}_{\mathrm{Rel}}$ be the class of (relational) CQs , defined as $\mathrm{C}_{\mathrm{Rel}}=\left\{Q_{R} \mid Q \in \mathrm{C}\right\}$
Corollary
Let C be a class of CRPQs
Then Evaluation for C under every path semantics is tractable iff
Evaluation for $\mathrm{C}_{\text {Rel }}$ is tractable in the relational model

CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let $\mathrm{C}_{\mathrm{Rel}}$ be the class of (relational) CQs , defined as $\mathrm{C}_{\mathrm{Rel}}=\left\{Q_{R} \mid Q \in \mathrm{C}\right\}$

Corollary

Let C be a class of CRPQs
Then Evaluation for C under every path semantics is tractable iff
Evaluation for $\mathrm{C}_{\text {Rel }}$ is tractable in the relational model

So, by the results on tree-shaped conjunctive queries, evaluation on tree-shaped CRPQs is also tractable

CRPQs, Simple Path / Trail Semantics

Theorem
CRPQ Evaluation is NP-complete under simple path and under trail semantics

CRPQs, Simple Path / Trail Semantics

Theorem

CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)

Lower bound: already holds for RPQs
Upper bound: simple guess-and-check algorithm

Overview

	RPQs	CRPQs
every path	PTIME	NP-complete
simple path	NP-complete	NP-complete
trail	NP-complete	NP-complete

Basic Containment Problems

```
RPQ Containment
Input: RPQs Q Q and }\mp@subsup{Q}{2}{
Question: Is }\mp@subsup{Q}{1}{}(G)\subseteq\mp@subsup{Q}{2}{}(G)\mathrm{ for every graph G?
```


CRPQ Containment

Input: $\mathrm{CRPQs} Q_{l}$ and Q_{2}
Question: Is $Q_{1}(G) \subseteq Q_{2}(G)$ for every graph G ?

The problems for simple path and trail semantics are analogous

RPQ Containment

Theorem
RPQ Containment is PSPACE-complete

Theorem
CRPQ Containment is EXPSPACE-complete

RPQ Containment

Theorem
 RPQ Containment is PSPACE-complete

```
Proof (sketch)
```

Theorem
CRPQ Containment is EXPSPACE-complete

RPQ Containment

Theorem
 RPQ Containment is PSPACE-complete

Proof (sketch)
 Let $Q_{1}=\left(x_{1} \xrightarrow{r_{1}} y_{1}\right)$ and $Q_{2}=\left(x_{2} \xrightarrow{r_{2}} y_{2}\right)$ be RPQs

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

Theorem
 RPQ Containment is PSPACE-complete

Proof (sketch)

Let $Q_{1}=\left(x_{1} \xrightarrow{r_{1}} y_{1}\right)$ and $Q_{2}=\left(x_{2} \xrightarrow{r_{2}} y_{2}\right)$ be RPQs
It is easy to see that $Q_{1} \subseteq Q_{2}$ iff $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

Theorem
 RPQ Containment is PSPACE-complete

Proof (sketch)

Let $Q_{1}=\left(x_{1} \xrightarrow{r_{1}} y_{1}\right)$ and $Q_{2}=\left(x_{2} \xrightarrow{r_{2}} y_{2}\right)$ be RPQs
It is easy to see that $Q_{1} \subseteq Q_{2}$ iff $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$
Testing $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$ for two given regular expressions r_{1} and r_{2} is PSPACE-complete

Theorem

CRPQ Containment is EXPSPACE-complete

RPQ Containment

Theorem

RPQ Containment is PSPACE-complete

Proof (sketch)

Let $Q_{1}=\left(x_{1} \xrightarrow{r_{1}} y_{1}\right)$ and $Q_{2}=\left(x_{2} \xrightarrow{r_{2}} y_{2}\right)$ be RPQs
It is easy to see that $Q_{1} \subseteq Q_{2}$ iff $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$
Testing $L\left(r_{1}\right) \subseteq L\left(r_{2}\right)$ for two given regular expressions r_{1} and r_{2} is PSPACE-complete

The same proof works for simple path and trail semantics

Theorem

CRPQ Containment is EXPSPACE-complete

Data Values

Queries With Data Value Comparisons

Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

Queries With Data Value Comparisons

Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts

Queries With Data Value Comparisons

Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts

$$
x \sim y \quad \text { or } \quad x \nsim y
$$

Queries With Data Value Comparisons

Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts

$$
x \sim y \quad \text { or } \quad x \not x y
$$

satisfied if nodes x and y have the same, resp., different label (or data value)

Queries With Data Value Comparisons

Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts

$$
x \sim y \quad \text { or } \quad x \not x y
$$

satisfied if nodes x and y have the same, resp., different label (or data value)

Such queries are usually considered on a different data model
(data words, data trees, data graphs)
but since we chose Σ infinite, the main argument also works here

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Regular expressions with binding:

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Regular expressions with binding:

$$
\Sigma^{*} \cdot \downarrow x \cdot \Sigma^{+}[=x] \cdot \Sigma^{*}
$$

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Regular expressions with binding:

$$
\Sigma^{*} \cdot \downarrow x \cdot \Sigma^{+}[=x] \cdot \Sigma^{*}
$$

expresses $L_{e q}$: bind x, see if it occurs elsewhere ($[=x]$)

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Regular expressions with binding:

$$
\Sigma^{*} \cdot \downarrow x \cdot \Sigma^{+}[=x] \cdot \Sigma^{*}
$$

expresses $L_{e q}$: bind x, see if it occurs elsewhere $([=x])$
Regular expressions with equality:

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Regular expressions with binding:

$$
\Sigma^{*} \cdot \downarrow x \cdot \Sigma^{+}[=x] \cdot \Sigma^{*}
$$

expresses $L_{e q}$: bind x, see if it occurs elsewhere $([=x])$
Regular expressions with equality:

$$
\Sigma^{*} \cdot\left(\Sigma^{+}\right)_{=} \cdot \Sigma^{*}
$$

Queries With Data Value Comparisions

Consider the query $L_{e q}$, matching all paths that contain two equal values
Let $\overline{L_{e q}}$ be its complement,
matching all paths containing pairwise different values

Theorem

Evaluation of $\overline{L_{e q}}$ on graph databases is NP-complete

Language $L_{e q}$ is the most basic one imaginable that compares data values. Hence regular expressions should avoid complementation.

Regular expressions with binding:

$$
\Sigma^{*} \cdot \downarrow x \cdot \Sigma^{+}[=x] \cdot \Sigma^{*}
$$

expresses $L_{e q}$: bind x, see if it occurs elsewhere $([=x])$
Regular expressions with equality:

$$
\Sigma^{*} \cdot\left(\Sigma^{+}\right)_{=} \cdot \Sigma^{*}
$$

also expresses $L_{e q}$: guesses where equal values occur

