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Information stored as a graph

Rather intuitive
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The Query, Visualized

"US artists who died of poisoning"
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"US artists who died of poisoning”
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Graph Queries By Example

Queries can have cycles

. /
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Artists who live in the US and have US citizenship
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Graph DBs are becoming standard in Industry

Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
Often hidden: e.g., Google’s Knowledge Graph

New Standards

ISO is now developing its second database query language

standard called GQL: Graph Query Language.
The first one they developed is SQL

New Applications

Social networks, Semantic Web, bioinformatics, fraud
analysis, real-time recommendation, network/IT systems,
even investigative journalism (Panama+Pandora papers)
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Why Graph Databases?

Why are they interesting?

Future in Analytics

Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

e

Growth potential

IDG prediction: 600% growth up to 2025

T

Current and future use

75% of Fortune 100 companies currently use graph databases

Phenomenal fundraising (last year alone, around S00M)
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Models for Graph Databases?

Currently, two main data models:

- Property Graph Databases (today: the dominant
model)

- RDF-like Databases (an earlier and interesting
approach but not as prevalent in industry)
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More formally, this is a set of triples from

[ XIX(IulL)

where
- I is the set of Internationalized Resource Identifiers (IRIs)

- L is the set of literals (constants)

These triples (s,p,0) are referred to as subject / predicate / object triples
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Edge-labeled, directed graphs
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Graph Database

We assume that > is a countably infinite set of labels

A graph database (over X) is a pair G = (V, E) where
- Vis a finite set of nodes
- EC VX X X Vis a finite set of edges
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Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)



Notation and Basic Principles

If n €N, we use [7] to denote the set {/,..., n}

Regular Expressions

Operators:

(1) Kleene star (denoted *)
(2) concatenation (omitted in notation)
(3) disjunction (denoted +)

Priorities of operators: first (1), then (2), then (3)

Example: ab + cd*
The language of regular expression r is denoted L(r)

We use r” to abbreviate n-fold concatenation of r
(So we write a* for aaaaq)




Regular Path Queries

Why regular path queries?

Conjunctive queries (and even first-order queries) on graphs are limited:
they can only express local properties

Regular path queries overcome this, using regular expressions to query paths

A path in graph G is a sequence

p = (VO; aj, V]) (V], ap, VZ) coo (Vn-Z, dn, Vn-l) (Vn-], dn, Vn)
of edges of G. Label of p is a,a,--a,




Regular Path Queries

A regular path query (RPQ) is an expression of the form

r
X =Y

where x and y are variables and 7 is a regular expression over

(Notice that 7 can only mention a finite subset of X)
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Semantics
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(guitarist, musician), (guitarist, artist),

(United States, United States),...
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Semantics of RPQs

Matching Paths

Let 7 be a regular expression and G be a graph

A pathp = (vo, a1, vi) (vi, a2, v2) ... (Va-1, Gn, Vn) in G matches r, if
its label aja; ... an € L(r)

Semantics of RPQs
Let O = (x 4 y) be a regular path query and G = (V, E) be a graph

(every path semantics)

The answer of Q on G is

QO(G) ={(u,v) € VX V| there exists a path p from u to v in G that matches r}

If Q= (x> y),wesometimes denote O(G) by r(G)
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Semantics of RPQs

Why will we consider these different semantics?

Each of these semantics is important:

- Every path semantics has been studied most in the literature

- (A variant of ) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the first that was studied (back in 1987)

- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Consensus - all. Every path (walk), shortest, simple, trail.
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Semantics of RPQs

Semantics of RPQs (every path semantics)

Let O = (x 5 y) be a regular path query and G = (V, E) be a graph
The answer of Q on G under every path semantics is

O(G) =1{(u,v) e VX V| there exists a path p from u to v in G that matches r}

Notice that we do not have any constraint on the path p

Hence, "every path’ is eligible for the query
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Path v
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Simple Paths and Trails

Definition (Simple path, trail)

Letp = (vo, a1, vi) (vi, az, v2) ... V-1, Gn, Vu) be a path

Path p is a simple path if it is empty or
- Vo, Vp appear exactly once and

- every node in {Vv; ,..., Va1} appears exactly twice in p

Path p is a trail if it is empty or

- every edge (Vi-1, ai, Vi) appears exactly once in p




Semantics of RPQs

Semantics of RPQs (simple path semantics)
Let O = (x > y) bean RPQ and G = (V, E) be a graph

The answer of Q on G under simple path semantics is

O(G),=1{(u, v) € VX V| there exists a simple path p

from u to v in G that matches r}




Semantics of RPQs

Semantics of RPQs (trail semantics)

Let O = (x > y) bean RPQ and G = (V, E) be a graph

The answer of O on G under trail semantics is

O(G), ={(u, v) € VX V| there exists a trail p

from u to v in G that matches r}
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Take r = (aa)*a
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RPQ Semantics: Examples

Take r = (aa)*
then (1,4) S5 I"(G), I"(G)t, and I"(G)S

Take r = (aa)*a
2
b

then (1,4) € r(G) G "
but (1,4) & r(G), or r(G); / N
1/ K3

then (1,4) € r(G) and r(G),
but (1,4) & r(G),
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Definition (Conjunctive Regular Path Query)

A conjunctive regular path query (CRPQ) is an expression of the form

0®) = (1 Dz A A2 z,)

where

- X isatuple of variables from {yj,..., yu, z1,..., Zo} and
- (y; = z)isan RPQ over = for all i € [n]

Observation 1

Essentially a CQ where building blocks are RPQs

T

Observation 2

Since every symbol a in ¥ is a regular expression,

every CQ over graphs is also a CRPQ
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Conjunctive Regular Path Queries

Semantics of CRPQs (every path semantics)

Let O(x) = ((y1 4 Z) A A, n zn)) be a CRPQ and G = (V, E) be a graph

The set of answers of Q on G (under every path semantics) is
Q(G) = { h(%) | h is a homomorphism from vars(Q) to V
such that (h(y:), h(zi)) € r(G) for every i € [n]}

Answers of Q on G under simple path and trail semantics are defined analogously:

we require that
(h(xi), h(yi)) € r(G); and
(h(xi), h(yi)) € r(G), respectively

Notation:  Q(G), for simple path semantics
Q(G), for trail semantics




Query Evaluation

Regular Path Queries (RPQs)



Notation and Basic Principles

If n €N, we use [7] to denote the set {/,..., n}

oo

a

Finite Automata

We denote a nondeterministic finite automaton (NFA) as In the example:

N=(S$,A, 0,1l F)

where

- S is the finite set of states S=1{12)

- A is the finite alphabet A = {a}

- 0C § X A X S is the transition relation 5= {(1,a2),2,a,1))
- | C S is the set of initial states [={1)

- F C S is the set of accepting (or "final") states F={1)

The language of N is denoted L(N)
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Input: Graph database G, pair (i, v) of nodes
regular path query O

Question: Is (u, v) € Q(G)?
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Evaluation Problems

RPQ Evaluation (every path semantics)

Input: Graph database G, pair (i, v) of nodes
regular path query O

%estion: Is (u,v) € 0(G)?

CRPQ Evaluation (every path semantics)

Input: Graph database G, tuple & of nodes

conjunctive regular path query Q

Question: Is iz € O(G) 2

The decision problems for simple path and trail semantics are defined analogously
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RPQs, Every Path Semantics

Theorem

RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q= (x > y) bethe RPQ, let G be the graph, and (u,v) the pair of nodes

Let N=(S, A, 6, I, F) be an NFA forr

Construct a product G X N, treating u as "initial state” in G

(This is similar to a product between automata)

Accept iff there is a path from (7,u) to (f,v) in G X N, for somei € landfe F
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@ , ©
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RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: Q = (x - y), graph data G, and pair of nodes (u, v)

{
f

Upper bound:

Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let G, be obtained from H by labeling each edge with a

Then H has a Hamiltonian Path from u to v

iff (u,v) in O(G,), with 0 = (x 5 y)

T P ——
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RPQ Evaluation under simple path semantics is NP-hard

under data complexity
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Theorem

RPQ Evaluation under simple path semantics is NP-hard, )
even for the RPQ O = (x G y)

Reduction from

Even Length Simple Path

Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

Even Length Simple Path is NP —complete [Lapaugh, Papadimitriou, Networks 1984]

Proof (sketch)

Let G be the graph constructed before
Then G has a simple path of even length from u to v ift (u,v) € Q(G);




RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Al y)




RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Gl y)

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there node-disjoint paths p;and p2, from u; to v; and from u> to v2 respectively?




RPQs, Simple Path Semantics

Theorem

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Gl y)

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there node-disjoint paths p;and p2, from u; to v; and from u> to v2 respectively?

Two Disjoint Paths is NP-complete [Fortune, Hopcroft, Wyllie TCS 1980]



RPQs, Simple Path Semantics

RPQ Evaluation under simple path semantics is NP-hard, R
even for the RPQ QO = (x Al y)

Reduction from

Two Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there node-disjoint paths p;and p2, from u; to v; and from u2 to v2 respectively?

Two Disjoint Paths is NP-complete [Fortune, Hopcroft, Wyllie TCS 1980]

Proof (sketch)
Let G be obtained from G, by adding the edge (vy, b, u2)

Then G has node-disjoint paths p1 and p», from u; to vi and from u, to v, ift
(1, v)) € Q(Gy);
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Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)
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RPQs, Trail Semantics

a*ba*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x — )

Reduction from

Two Edge Disjoint Paths

Given a directed graph G and node pairs (#;,v;) and (u2,v2)

are there edge-disjoint paths p;and p2, from u; to v; and from u2 to v respectively?

Two Edge Disjoint Paths is NP-complete Fortune, Hopcroft, Wyllie TCS 1980]

LaPaugh, Rivest JCSS 1980]
Perl, Shiloach JACM 1978]

Proof (sketch - same reduction as before)

Let G be obtained from G, by adding the edge (vy, b, u2)

Then G has edge-disjoint paths p; and p2, from u; to v; and from uz to vz ift
(U, vp) € O(Gy),




RPQs, Trail Semantics

aa)*

RPQ Evaluation under trail semantics is NP-hard, even for RPQ O = (x — )

A similar proof.
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CRPQs, Every Path Semantics

CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)

Lower bound: immediate from conjunctive queries

Upper bound:
Let O(x) = (()’1 4 Z) A - A, I zn)) be the query

For each regular expression 7, we can compute in polynomial time

a relation R; containing the pairs r(G)

Then, evaluation for Q is the same as evaluation of the conjunctive query

0@ = (] 2D A A, 3 2)

over the relations R;
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CRPQs, Every Path Semantics

Let C be a class of CRPQs
Let Crel be the class of (relational) CQs, defined as Cre={Qr | Q € C}

Corollary
Let C be a class of CRPQs

Then Evaluation for C under every path semantics is tractable ift
Evaluation for Cgrel is tractable in the relational model

So, by the results on tree-shaped conjunctive queries,
evaluation on tree-shaped CRPQs is also tractable
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CRPQs, Simple Path / Trail Semantics

CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)

Lower bound: already holds for RPQs
Upper bound: simple guess-and-check algorithm




Overview

every path PTIME NP-complete

simple path NP-complete  NP-complete

trail NP-complete  NP-complete



Basic Containment Problems

RPQ Containment

Input: RPQs Q;and Q>
Question: Is Q1(G) € O,(G) for every graph G2

CRPQ Containment

Input: CRPQs Q; and Q>
Question: Is Q1(G) € O,(G) for every graph G?

The problems for simple path and trail semantics are analogous



RPQ Containment

RPQ Containment is PSPACE-complete

Theorem

CRPQ Containment is EXPSPACE-complete




RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Theorem

CRPQ Containment is EXPSPACE-complete




RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)
Let O; = (x; = y;) and Q) = (X, = y,) be RPQs

Theorem

CRPQ Containment is EXPSPACE-complete




RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Let Q) = (; > ) and @, = (x; ) be RPQs
It is easy to see that Q; € Oz ift L(r;) € L(r2)

Theorem

CRPQ Containment is EXPSPACE-complete




RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Let Q) = (; > ) and @, = (x; ) be RPQs
It is easy to see that Q; € Oz ift L(r;) € L(r2)

Testing L(r7) € L(r2) for two given regular expressions r; and 2
is PSPACE-complete

Theorem

CRPQ Containment is EXPSPACE-coplete




RPQ Containment

RPQ Containment is PSPACE-complete

Proof (sketch)

Let Q) = (; > ) and @, = (x; ) be RPQs
It is easy to see that Q; € Oz ift L(r;) € L(r2)

Testing L(r7) € L(r2) for two given regular expressions r; and 2
is PSPACE-complete

The same proof works for simple path and trail semantics

Theorem

CRPQ Containment is EXPSPACE-complete
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Queries With Data Value Comparisons

Until now, we never compared labels with each other

Example:

- Return pairs of people with the same last name

This idea leads to different types of queries, e.g., adding conjuncts
X~y or X+ Yy

satisfied if nodes x and y have the same, resp., different label (or data value)

Such queries are usually considered on a different data model
(data words, data trees, data graphs)
but since we chose X infinite, the main argument also works here
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Queries With Data Value Comparisions

Consider the query L.¢, matching all paths that contain two equal values

Let L, J be its complement,
matching all paths containing pairwise different values

Evaluation of L_eq on graph databases is NP-complete

Language L, is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
2 0 [z« 5 = ] o

expresses Leg: bind x, see if it occurs elsewhere ([ = x])

Regular expressions with equality:
S# L (Z)_ . X

also expresses Leg: guesses where equal values occur

T ——



