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Information stored as a graph
Rather intuitive
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Graph Queries By Example
Queries can have cycles
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Graph DBs are becoming standard in Industry
Oracle, Neo4j (about 50% of the market), Tigergraph, 
Redis, SAP, ArangoDB, Amazon Neptune, etc etc 
O#en hidden: e.g., Google’s Knowledge Graph 

New Standards
ISO is now developing its second database query language 
standard called GQL: Graph Query Language.  
!e $rst one they developed is SQL

New Applications
Social networks, Semantic Web, bioinformatics, fraud 
analysis, real-time recommendation, network/IT systems, 
even investigative journalism (Panama+Pandora papers)
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Why Graph Databases?
Why are they interesting?

Future in Analytics
Gartner prediction: in the next 5 years, up to 80% of all 
analytics task will involve graph databases 

Growth potential
IDG prediction: 600% growth up to 2025

Current and future use
75% of Fortune 100 companies currently use graph databases 

Phenomenal fundraising (last year alone, around 500M)
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[https://www.gqlstandards.org/existing-languages]

https://www.gqlstandards.org/existing-languages


Models for Graph Databases?

Currently, two main data models:
- Property Graph Databases (today: the dominant 

model) 
- RDF-like Databases (an earlier and interesting 

approach but not as prevalent in industry)
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Some models also directly 
incorporate paths  
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More formally, this is a set of triples from
I ⨉ I ⨉ (I ∪ L)

where 
- I is the set of  Internationalized Resource Identi$ers (IRIs)
- L is the set of literals (constants)

!ese triples (s,p,o) are referred to as subject / predicate / object triples



Most theoretical development is based 
on 

Edge-labeled, directed graphs
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Graph Database

De$nition
A graph database (over Σ) is a pair G = (V, E) where 
- V is a $nite set of nodes 
- E ⊆ V ⨉ Σ ⨉ V is a $nite set of edges

We assume that Σ is a countably in$nite set of labels
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RPQs and CRPQs

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)



Notation and Basic Principles

Regular Expressions
Operators: 
(1) Kleene star                                               (denoted ) 
(2) concatenation                       (omitted in notation)  
(3) disjunction                                              (denoted +) 

Priorities of operators:  $rst (1), then (2), then (3) 

Example:   

!e language of regular expression r is denoted L(r)

We use rn to abbreviate n-fold concatenation of r
(So we write  for )

*

ab + cd*

a4 aaaa

If n ∈ℕ, we use [n] to denote the set {1,..., n}



Regular Path Queries

Why regular path queries?
Conjunctive queries (and even $rst-order queries) on graphs are limited: 

they can only express local properties 

Regular path queries overcome this, using regular expressions to query paths

De$nition

A path in graph G is a sequence 
p = (v0, a1, v1) (v1, a2, v2) ... (vn-2, an, vn-1) (vn-1, an, vn)

of edges of . Label of  is G p a1a2⋯an



Regular Path Queries

De$nition
A regular path query (RPQ) is an expression of the form 

where x and y are variables and r is a regular expression over Σ

x r y

(Notice that r can only mention a $nite subset of Σ)
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RPQ

G

u

v

x r y

(u,v) is returned i' 
there is a path  

from u to v 
whose label matches r

matches r    ✔
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instrumentalist

!e RPQ  returns:x H* y

H H

H
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H
H

P
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P
C

C

(guitarist, guitarist),

(United States, United States),...
(guitarist, musician), (guitarist, artist),

(guitarist, instrumentalist), 
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Let                        be a regular path query and  be a graph 

!e answer of Q on G is 

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

(every path semantics)

Notation
If                           , we sometimes denote  by Q(G) r(G)Q = (x r y)
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Semantics of RPQs

Consensus - all.  Every path (walk), shortest, simple, trail.

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature
- (A variant of ) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the $rst that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher 

What to use in new languages: 
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Let                        be a regular path query and  be a graph 

!e answer of Q on G under every path semantics is 
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G = (V, E)Q = (x r y)

Q(G)

(every path semantics)
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Notice that we do not have any constraint on the path p
Hence, "every path" is eligible for the query

Semantics of RPQs

Semantics of RPQs
Let                        be a regular path query and  be a graph 

!e answer of Q on G under every path semantics is 

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

(every path semantics)
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De$nition (Simple path, trail)                                                                                                           

Let p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) be a path 

Path p is a simple path if it is empty or 
- v0, vn appear exactly once and 
- every node in {v1 ,..., vn-1} appears exactly twice in p 

Path p is a trail if it is empty or 
- every edge (vi-1, ai, vi) appears exactly once in p

Simple Paths and Trails



Semantics of RPQs                                                                       (simple path semantics)
Let  be an RPQ and  be a graph
!e answer of  on  under simple path semantics is

            = {(u, v) ∈ V ⨉ V | there exists a simple path p  
from u to v in G that matches r}

Q = (x r y) G = (V, E)
Q G

Q(G)s

Semantics of RPQs



Semantics of RPQs                                                                                     (trail semantics)

Semantics of RPQs

Let  be an RPQ and  be a graph
!e answer of  on  under trail semantics is

             = {(u, v) ∈ V ⨉ V | there exists a trail p  
from u to v in G that matches r}

Q = (x r y) G = (V, E)
Q G

Q(G)t
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RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ r(G), r(G)t,  and r(G)s

then (1,4) ∈ r(G)
but (1,4) ∉ r(G)t or r(G)s

then (1,4) ∈ r(G) and r(G)t
but (1,4) ∉ r(G)s
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Conjunctive Regular Path Queries
De$nition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form 

                                   

where  
-  is a tuple of variables from {y1,..., yn, z1,..., zn} and  
-  is an RPQ over Σ for all i ∈ [n]

Q(x̄) := ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

x̄
(yi

ri zi)
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Observation 1

Since every symbol a in Σ is a regular expression, 
every CQ over graphs is also a CRPQ



Conjunctive Regular Path Queries
De$nition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form 

                                   

where  
-  is a tuple of variables from {y1,..., yn, z1,..., zn} and  
-  is an RPQ over Σ for all i ∈ [n]

Q(x̄) := ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

x̄
(yi

ri zi)

Observation 1

Since every symbol a in Σ is a regular expression, 
every CQ over graphs is also a CRPQ

Observation 2

Essentially a CQ where building blocks are RPQs



Semantics of CRPQs                                                                      (every path semantics)

Let  be a CRPQ and G = (V, E) be a graph 

!e set of answers of  on  (under every path semantics) is   
 = { h( ) | h is a homomorphism from vars(Q) to V  

such that (h(yi), h(zi)) ∈  for every i ∈ [n]}

Q(x̄) = ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

Q G
Q(G) x̄

ri(G)

Conjunctive Regular Path Queries
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Semantics of CRPQs                                                                      (every path semantics)

Let  be a CRPQ and G = (V, E) be a graph 

!e set of answers of  on  (under every path semantics) is   
 = { h( ) | h is a homomorphism from vars(Q) to V  

such that (h(yi), h(zi)) ∈  for every i ∈ [n]}

Q(x̄) = ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

Q G
Q(G) x̄

ri(G)

Conjunctive Regular Path Queries

Answers of  on  under simple path and trail semantics are de$ned analogously: 
we require that 
                   (h(xi), h(yi)) ∈  and 
                   (h(xi), h(yi)) ∈  respectively

Q G

ri(G)s

ri(G)t

Notation:           for simple path semantics 
                              for trail semantics

Q(G)s
Q(G)t



Query Evaluation

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)



Finite Automata

Notation and Basic Principles
If n ∈ℕ, we use [n] to denote the set {1,..., n}

1 2

a

a

We denote a nondeterministic "nite automaton (NFA) as 
N = (S, A, !, I, F)  

where 
- S is the $nite set of states 
- A is the $nite alphabet 
- & ⊆ S ⨉ A ⨉ S is the transition relation 
- I ⊆ S is the set of initial states 
- F ⊆ S is the set of accepting (or "$nal") states 
!e language of N is denoted L(N)

In the example: 

 
 

 
 
 

S = {1,2}
A = {a}
δ = {(1,a,2), (2,a,1)}
I = {1}
F = {1}



Evaluation Problems
RPQ Evaluation                                   (every path semantics)

Input:   Graph database G, pair (u, v) of nodes 
               regular path query Q 

Question: Is (u, v) ? ∈ Q(G)



Evaluation Problems
RPQ Evaluation                                   (every path semantics)

Input:   Graph database G, pair (u, v) of nodes 
               regular path query Q 

Question: Is (u, v) ? ∈ Q(G)

CRPQ Evaluation                               (every path semantics)
Input:   Graph database G, tuple  of nodes 
               conjunctive regular path query Q  

Question: Is  ? 

ū
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Evaluation Problems
RPQ Evaluation                                   (every path semantics)

Input:   Graph database G, pair (u, v) of nodes 
               regular path query Q 

Question: Is (u, v) ? ∈ Q(G)

CRPQ Evaluation                               (every path semantics)
Input:   Graph database G, tuple  of nodes 
               conjunctive regular path query Q  

Question: Is  ? 

ū

ū ∈ Q(G)

!e decision problems for simple path and trail semantics are de$ned analogously
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RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q =                   be the RPQ, let G be the graph, and (u,v) the pair of nodes

Let N = (S, A, !, I, F) be an NFA for r

Construct a product G ⨉ N, treating u as "initial state" in G 
                                                 (!is is similar to a product between automata)

Accept i' there is a path from (i,u) to (f,v) in G ⨉ N, for some i ∈ I and f ∈ F

(x r y)



RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)* 

Example
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RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound: 
      Guess a path from u to v in G and check if it is simple and matches r

Lower bound:  
                             Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let  be obtained from H by labeling each edge with aGa

!en H has a Hamiltonian Path from u to v         
                     i'                        (u,v) in                     with Q(Ga)s Q = (x an−1

y)



!eorem
RPQ Evaluation under simple path semantics is NP-hard 
under data complexity

RPQs, Simple Path Semantics
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!eorem
RPQ Evaluation under simple path semantics is NP-hard,  
                                                                                       even for the RPQ Q = (x (aa)* y)

Proof (sketch)

Reduction from

Even Length Simple Path is NP-complete                 [Lapaugh, Papadimitriou, Networks 1984]

Even Length Simple Path
Given a directed graph G and a pair (u,v) of nodes, 

is there a simple path of even length from u to v?

Let Ga be the graph constructed before 
!en G has a simple path of even length from u to v i'   (u, v) ∈ Q(Ga)s

RPQs, Simple Path Semantics
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Q = (x a*ba* y)

Reduction from
Two Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)      
are there node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Two Disjoint Paths is NP-complete                              [Fortune, Hopcro#, Wyllie TCS 1980]

Proof (sketch)
Let Gb be obtained from Ga by adding the edge (v1, b, u2) 
!en G has node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2  i' 

(u1, v2) ∈ Q(Gb)s
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!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete                 [Fortune, Hopcro#, Wyllie TCS 1980]

Proof (sketch - same reduction as before)
Let Gb be obtained from Ga by adding the edge (v1, b, u2) 
!en G has edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2  i' 

(u1, v2) ∈ Q(Gb)t

[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)      
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?



!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x (aa)* y)

A similar proof.

RPQs, Trail Semantics
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CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

Upper bound: 
Let  be the queryQ(x̄) = ((y1

r1 z1) ∧ ⋯ ∧ (yn
rn zn))

For each regular expression ri, we can compute in polynomial time 
                                         a relation Ri containing the pairs ri(G)

!en, evaluation for Q is the same as evaluation of the conjunctive query 

                                       QR(x̄) = ((y1
R1 z1) ∧ ⋯ ∧ (yn

Rn zn))
over the relations  Ri   
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Let C be a class of CRPQs
Let CRel be the class of (relational) CQs, de$ned as CRel = {QR | Q ∈ C}

CRPQs, Every Path Semantics

So, by the results on tree-shaped conjunctive queries, 
evaluation on tree-shaped CRPQs is also tractable
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CRPQs, Simple Path / Trail Semantics

!eorem
CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)
Lower bound: already holds for RPQs 
Upper bound: simple guess-and-check algorithm



Overview

RPQs CRPQs

every path PTIME NP-complete

simple path NP-complete NP-complete

trail NP-complete NP-complete



Basic Containment Problems
RPQ Containment

Input:   RPQs Q1 and Q2 
Question: Is  for every graph G? Q1(G) ⊆ Q2(G)

CRPQ Containment

!e problems for simple path and trail semantics are analogous

Input:   CRPQs Q1 and Q2 
Question: Is  for every graph G? Q1(G) ⊆ Q2(G)
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RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

Proof (sketch)

Let                                 and                                 be RPQs
It is easy to see that Q1 ⊆ Q2 i'  L(r1) ⊆ L(r2)

Testing L(r1) ⊆ L(r2) for two given regular expressions r1 and r2  
                                                                                                             is PSPACE-complete

Q1 = (x1
r1 y1) Q2 = (x2

r2 y2)

!e same proof works for simple path and trail semantics

CRPQ Containment is EXPSPACE-complete
!eorem
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Queries With Data Value Comparisons
Until now, we never compared labels with each other 
Example: 

- Return pairs of people with the same last name

!is idea leads to di'erent types of queries, e.g., adding conjuncts
 x ~ y         or           x ≁ y

satis$ed if nodes x and y have the same, resp., di'erent label (or data value)

Such queries are usually considered on a di'erent data model 
(data words, data trees, data graphs) 

but since we chose Σ in$nite, the main argument also works here
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Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let            be its complement,  
                                       matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of           on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.  
Hence regular expressions should avoid complementation. 

Regular expressions with binding:
                                                        Σ* ⋅ ↓x ⋅ Σ+[ = x] ⋅ Σ*
expresses Leq: bind , see if it occurs elsewhere ( )x [ = x]

Regular expressions with equality:
                                                        Σ* ⋅ (Σ+)= ⋅ Σ*
also expresses Leq: guesses where equal values occur


