
Graph databases

Graph Databases?

River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

Graph Databases?

River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

Graph Databases?

Information stored as a graph

River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

Graph Databases?

Information stored as a graph
Rather intuitive

"US artists who died of poisoning"

 x

*

occu
patio

n cause of death

subclassof

poisoning

subclassof

artist

citizenship

United
States

*

!e Query, Visualized

"US artists who died of poisoning"

 x

*

occu
patio

n cause of death

subclassof

poisoning

subclassof

artist

citizenship

United
States

output node

*

!e Query, Visualized

"US artists who died of poisoning"

 x

*

occu
patio

n cause of death

subclassof

poisoning

subclassof

artist

citizenship

United
States

wildcard test
output node

*

!e Query, Visualized

"US artists who died of poisoning"

 x

*

occu
patio

n cause of death

subclassof

poisoning

subclassof

artist

citizenship

United
States

wildcard test
output node

*

matches paths
consisting of subclassof-edges

!e Query, Visualized

River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

 x

* United
States

artist poisoning

oc
cu

pa
tio

n
cause of death

subclassof* subclassof*

*

Graph Queries By Example
"US artists who died of poisoning"

River Phoenix

actor

Marilyn Monroe

musician

barbiturate overdose

drug overdose

poisoning

artist

guitarist

instrumentalist

singer

cause of death

cause of death

cause of death

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

subclassof

United States

citizenship

citizenship

...
citizenship

Jimi Hendrix

occupation

occupation

occupation

occupation

occupation

Graph Queries By Example
"US artists who died of poisoning"

 x

* United
States

artist poisoning

oc
cu

pa
tio

n
cause of death

subclassof* subclassof*

*

Graph Queries By Example
Queries can have cycles

 x

*

occu
patio

n residence

subclassof

artist

citizenship

United
States

*

locate
d-in

Artists who live in the US and have US citizenship

Why Graph Databases?
Why are they interesting?

Why Graph Databases?
Why are they interesting?

Graph DBs are becoming standard in Industry
Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
O#en hidden: e.g., Google’s Knowledge Graph

Why Graph Databases?
Why are they interesting?

Graph DBs are becoming standard in Industry
Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
O#en hidden: e.g., Google’s Knowledge Graph

New Standards
ISO is now developing its second database query language
standard called GQL: Graph Query Language.
!e $rst one they developed is SQL

Why Graph Databases?
Why are they interesting?

Graph DBs are becoming standard in Industry
Oracle, Neo4j (about 50% of the market), Tigergraph,
Redis, SAP, ArangoDB, Amazon Neptune, etc etc
O#en hidden: e.g., Google’s Knowledge Graph

New Standards
ISO is now developing its second database query language
standard called GQL: Graph Query Language.
!e $rst one they developed is SQL

New Applications
Social networks, Semantic Web, bioinformatics, fraud
analysis, real-time recommendation, network/IT systems,
even investigative journalism (Panama+Pandora papers)

Why Graph Databases?
Why are they interesting?

Why Graph Databases?
Why are they interesting?

Future in Analytics
Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

Why Graph Databases?
Why are they interesting?

Future in Analytics
Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

Growth potential
IDG prediction: 600% growth up to 2025

Why Graph Databases?
Why are they interesting?

Future in Analytics
Gartner prediction: in the next 5 years, up to 80% of all
analytics task will involve graph databases

Growth potential
IDG prediction: 600% growth up to 2025

Current and future use
75% of Fortune 100 companies currently use graph databases

Phenomenal fundraising (last year alone, around 500M)

GQL In%uence Graph

GQL In%uence Graph

[https://www.gqlstandards.org/existing-languages]

https://www.gqlstandards.org/existing-languages

Models for Graph Databases?

Currently, two main data models:
- Property Graph Databases (today: the dominant

model)
- RDF-like Databases (an earlier and interesting

approach but not as prevalent in industry)

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N

Labels L: person, profession, spouse

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N

Values V: Liz, Taylor, 10.10.1975
Labels L: person, profession, spouse

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N

Values V: Liz, Taylor, 10.10.1975
Properties P: $rst name, last name

Labels L: person, profession, spouse

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N
- a function from N ∪ E to (subsets of) labels L

Values V: Liz, Taylor, 10.10.1975
Properties P: $rst name, last name

Labels L: person, profession, spouse

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N
- a function from N ∪ E to (subsets of) labels L
- a function from (N ∪ E) ⨉ P to (subsets of) values V

Values V: Liz, Taylor, 10.10.1975
Properties P: $rst name, last name

Labels L: person, profession, spouse

Property Graph Data Model
name: film actor

first name: Liz
last name: Taylor

person

first name: Richard
last name: Burton

person

from: 10.10.1975
until: 29.07.1976

spouse

from: 15.03.1964
until: 26.06.1974

spouse

profession

from: 1942

hasprofession
from: 1943

hasprofession

More formally, this is
- a set of node identi$ers N
- a set of edge identi$ers E
- a function that maps E to N ⨉ N
- a function from N ∪ E to (subsets of) labels L
- a function from (N ∪ E) ⨉ P to (subsets of) values V

Values V: Liz, Taylor, 10.10.1975
Properties P: $rst name, last name

Labels L: person, profession, spouse

Some models also directly
incorporate paths

RDF Data Model

first name: Liz
last name: Taylor

person

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name

instance of

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

More formally, this is a set of triples from

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

More formally, this is a set of triples from
I ⨉ I ⨉ (I ∪ L)

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

More formally, this is a set of triples from
I ⨉ I ⨉ (I ∪ L)

where

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

More formally, this is a set of triples from
I ⨉ I ⨉ (I ∪ L)

where
- I is the set of Internationalized Resource Identi$ers (IRIs)

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

More formally, this is a set of triples from
I ⨉ I ⨉ (I ∪ L)

where
- I is the set of Internationalized Resource Identi$ers (IRIs)
- L is the set of literals (constants)

RDF Data Model

profession

first name: Liz
last name: Taylor

person

Q34851

Liz

Taylor

person

stage actor

last n
ame

first name
spouse

Q151973

Richard

Burton

first
name

spouse

last name

instance of

More formally, this is a set of triples from
I ⨉ I ⨉ (I ∪ L)

where
- I is the set of Internationalized Resource Identi$ers (IRIs)
- L is the set of literals (constants)

!ese triples (s,p,o) are referred to as subject / predicate / object triples

Most theoretical development is based
on

Edge-labeled, directed graphs

profession

spouse

Q34851

Liz

Taylor

person

stage actor

Q151973

Richard

Burton

first
name

last n
ame

spouse

first name

last name

instance of

Graph Database

We assume that Σ is a countably in$nite set of labels

Graph Database

De$nition
A graph database (over Σ) is a pair G = (V, E) where
- V is a $nite set of nodes
- E ⊆ V ⨉ Σ ⨉ V is a $nite set of edges

We assume that Σ is a countably in$nite set of labels

Building blocks of query languages:
RPQs and CRPQs

Building blocks of query languages:
RPQs and CRPQs

Conjunctive Queries (CQs)

Building blocks of query languages:
RPQs and CRPQs

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Building blocks of query languages:
RPQs and CRPQs

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)

Notation and Basic Principles

Regular Expressions
Operators:
(1) Kleene star (denoted)
(2) concatenation (omitted in notation)
(3) disjunction (denoted +)

Priorities of operators: $rst (1), then (2), then (3)

Example:

!e language of regular expression r is denoted L(r)

We use rn to abbreviate n-fold concatenation of r
(So we write for)

*

ab + cd*

a4 aaaa

If n ∈ℕ, we use [n] to denote the set {1,..., n}

Regular Path Queries

Why regular path queries?
Conjunctive queries (and even $rst-order queries) on graphs are limited:

they can only express local properties

Regular path queries overcome this, using regular expressions to query paths

De$nition

A path in graph G is a sequence
p = (v0, a1, v1) (v1, a2, v2) ... (vn-2, an, vn-1) (vn-1, an, vn)

of edges of . Label of is G p a1a2⋯an

Regular Path Queries

De$nition
A regular path query (RPQ) is an expression of the form

where x and y are variables and r is a regular expression over Σ

x r y

(Notice that r can only mention a $nite subset of Σ)

Semantics of RPQs

RPQ

G

u

v

x r y

(u,v) is returned i'
there is a path

from u to v
whose label matches r

Semantics of RPQs

RPQ

G

u

v

x r y

(u,v) is returned i'
there is a path

from u to v
whose label matches r

Semantics of RPQs

RPQ

G

u

v

x r y

(u,v) is returned i'
there is a path

from u to v
whose label matches r

matches r ✔

Regular Path Queries
Semantics

singer

actor
artist

musician
Marilyn Monroe

United States

Jay Buchanan

guitarist

instrumentalist

!e RPQ returns:x H* y

H H

H
H

H
H

P

P

P
C

C

Regular Path Queries
Semantics

singer

actor
artist

musician
Marilyn Monroe

United States

Jay Buchanan

guitarist

instrumentalist

!e RPQ returns:x H* y

H H

H
H

H
H

P

P

P
C

C

(guitarist, guitarist),

Regular Path Queries
Semantics

singer

actor
artist

musician
Marilyn Monroe

United States

Jay Buchanan

guitarist

instrumentalist

!e RPQ returns:x H* y

H H

H
H

H
H

P

P

P
C

C

(guitarist, guitarist), (guitarist, instrumentalist),

Regular Path Queries
Semantics

singer

actor
artist

musician
Marilyn Monroe

United States

Jay Buchanan

guitarist

instrumentalist

!e RPQ returns:x H* y

H H

H
H

H
H

P

P

P
C

C

(guitarist, guitarist),
(guitarist, musician), (guitarist, artist),

(guitarist, instrumentalist),

Regular Path Queries
Semantics

singer

actor
artist

musician
Marilyn Monroe

United States

Jay Buchanan

guitarist

instrumentalist

!e RPQ returns:x H* y

H H

H
H

H
H

P

P

P
C

C

(guitarist, guitarist),

(United States, United States),...
(guitarist, musician), (guitarist, artist),

(guitarist, instrumentalist),

Semantics of RPQs

Matching Paths

Let r be a regular expression and G be a graph

A path p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) in G matches r, if
its label a1a2 ... an ∈ L(r)

Semantics of RPQs

Matching Paths

Let r be a regular expression and G be a graph

A path p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) in G matches r, if
its label a1a2 ... an ∈ L(r)

Semantics of RPQs

Semantics of RPQs
Let be a regular path query and be a graph

!e answer of Q on G is

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

Matching Paths

Let r be a regular expression and G be a graph

A path p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) in G matches r, if
its label a1a2 ... an ∈ L(r)

Semantics of RPQs

Semantics of RPQs
Let be a regular path query and be a graph

!e answer of Q on G is

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

Notation
If , we sometimes denote by Q(G) r(G)Q = (x r y)

Matching Paths

Let r be a regular expression and G be a graph

A path p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) in G matches r, if
its label a1a2 ... an ∈ L(r)

Semantics of RPQs

Semantics of RPQs
Let be a regular path query and be a graph

!e answer of Q on G is

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

(every path semantics)

Notation
If , we sometimes denote by Q(G) r(G)Q = (x r y)

Regular Path Queries
Semantics
!ere are di'erent semantics of RPQs in the literature and
in graph database systems!

!e di'erences between these are signi$cant

simple path

every path trail

shortest path

Regular Path Queries
Semantics
!ere are di'erent semantics of RPQs in the literature and
in graph database systems!

!e di'erences between these are signi$cant

simple path

every path trail

shortest path

Semantics of RPQs

Why will we consider these di'erent semantics?

Semantics of RPQs

Why will we consider these di'erent semantics?
Each of these semantics is important:

Semantics of RPQs

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature

Semantics of RPQs

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while

Semantics of RPQs

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the $rst that was studied (back in 1987)

Semantics of RPQs

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the $rst that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher

Semantics of RPQs

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the $rst that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Semantics of RPQs

Consensus - all. Every path (walk), shortest, simple, trail.

Why will we consider these di'erent semantics?
Each of these semantics is important:
- Every path semantics has been studied most in the literature
- (A variant of) simple path semantics was standard in SPARQL for a while
- Simple path semantics was the $rst that was studied (back in 1987)
- Trail semantics is the default in Neo4j Cypher

What to use in new languages:

Semantics of RPQs

Semantics of RPQs
Let be a regular path query and be a graph

!e answer of Q on G under every path semantics is

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

(every path semantics)

Notice that we do not have any constraint on the path p

Semantics of RPQs

Semantics of RPQs
Let be a regular path query and be a graph

!e answer of Q on G under every path semantics is

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

(every path semantics)

Notice that we do not have any constraint on the path p
Hence, "every path" is eligible for the query

Semantics of RPQs

Semantics of RPQs
Let be a regular path query and be a graph

!e answer of Q on G under every path semantics is

= {(u, v) ∈ V ⨉ V | there exists a path p from u to v in G that matches r}

G = (V, E)Q = (x r y)

Q(G)

(every path semantics)

Simple Paths and Trails

u v

Simple Paths and Trails

u v

Simple Paths and Trails

u v

Simple Paths and Trails

u v

Path

Simple Paths and Trails

u v

Path ✔

Simple Paths and Trails

u v

Path
Trail

✔

Simple Paths and Trails

u v

Path
Trail

✔

"

Simple Paths and Trails

u v

Path

Simple path
Trail

✔

"

Simple Paths and Trails

u v

Path

Simple path
Trail

✔

"
"

Simple Paths and Trails

u v

Path

Simple path
Trail

✔

"
✔

Simple Paths and Trails

u v

Path

Simple path
Trail

✔

✔

✔

De$nition (Simple path, trail)

Let p = (v0, a1, v1) (v1, a2, v2) ... (vn-1, an, vn) be a path

Path p is a simple path if it is empty or
- v0, vn appear exactly once and
- every node in {v1 ,..., vn-1} appears exactly twice in p

Path p is a trail if it is empty or
- every edge (vi-1, ai, vi) appears exactly once in p

Simple Paths and Trails

Semantics of RPQs (simple path semantics)
Let be an RPQ and be a graph
!e answer of on under simple path semantics is

 = {(u, v) ∈ V ⨉ V | there exists a simple path p
from u to v in G that matches r}

Q = (x r y) G = (V, E)
Q G

Q(G)s

Semantics of RPQs

Semantics of RPQs (trail semantics)

Semantics of RPQs

Let be an RPQ and be a graph
!e answer of on under trail semantics is

 = {(u, v) ∈ V ⨉ V | there exists a trail p
from u to v in G that matches r}

Q = (x r y) G = (V, E)
Q G

Q(G)t

RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a
1

2

3

4a
a

b
a

b
a

G:

RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ r(G), r(G)t, and r(G)s

1

2

3

4a
a

b
a

b
a

G:

RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ r(G), r(G)t, and r(G)s

then (1,4) ∈ r(G)

1

2

3

4a
a

b
a

b
a

G:

RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ r(G), r(G)t, and r(G)s

then (1,4) ∈ r(G)
but (1,4) ∉ r(G)t or r(G)s

1

2

3

4a
a

b
a

b
a

G:

RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ r(G), r(G)t, and r(G)s

then (1,4) ∈ r(G)
but (1,4) ∉ r(G)t or r(G)s

then (1,4) ∈ r(G) and r(G)t

1

2

3

4a
a

b
a

b
a

G:

RPQ Semantics: Examples

Take r = (aa)*a

Take r = (aa)*

Take r = (ab)*a

then (1,4) ∈ r(G), r(G)t, and r(G)s

then (1,4) ∈ r(G)
but (1,4) ∉ r(G)t or r(G)s

then (1,4) ∈ r(G) and r(G)t
but (1,4) ∉ r(G)s

1

2

3

4a
a

b
a

b
a

G:

Conjunctive Regular Path Queries
De$nition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form

where
- is a tuple of variables from {y1,..., yn, z1,..., zn} and
- is an RPQ over Σ for all i ∈ [n]

Q(x̄) := ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

x̄
(yi

ri zi)

Conjunctive Regular Path Queries
De$nition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form

where
- is a tuple of variables from {y1,..., yn, z1,..., zn} and
- is an RPQ over Σ for all i ∈ [n]

Q(x̄) := ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

x̄
(yi

ri zi)

Observation 1

Since every symbol a in Σ is a regular expression,
every CQ over graphs is also a CRPQ

Conjunctive Regular Path Queries
De$nition (Conjunctive Regular Path Query)
A conjunctive regular path query (CRPQ) is an expression of the form

where
- is a tuple of variables from {y1,..., yn, z1,..., zn} and
- is an RPQ over Σ for all i ∈ [n]

Q(x̄) := ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

x̄
(yi

ri zi)

Observation 1

Since every symbol a in Σ is a regular expression,
every CQ over graphs is also a CRPQ

Observation 2

Essentially a CQ where building blocks are RPQs

Semantics of CRPQs (every path semantics)

Let be a CRPQ and G = (V, E) be a graph

!e set of answers of on (under every path semantics) is
 = { h() | h is a homomorphism from vars(Q) to V

such that (h(yi), h(zi)) ∈ for every i ∈ [n]}

Q(x̄) = ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

Q G
Q(G) x̄

ri(G)

Conjunctive Regular Path Queries

Semantics of CRPQs (every path semantics)

Let be a CRPQ and G = (V, E) be a graph

!e set of answers of on (under every path semantics) is
 = { h() | h is a homomorphism from vars(Q) to V

such that (h(yi), h(zi)) ∈ for every i ∈ [n]}

Q(x̄) = ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

Q G
Q(G) x̄

ri(G)

Conjunctive Regular Path Queries

Answers of on under simple path and trail semantics are de$ned analogously:
we require that
 (h(xi), h(yi)) ∈ and
 (h(xi), h(yi)) ∈ respectively

Q G

ri(G)s

ri(G)t

Semantics of CRPQs (every path semantics)

Let be a CRPQ and G = (V, E) be a graph

!e set of answers of on (under every path semantics) is
 = { h() | h is a homomorphism from vars(Q) to V

such that (h(yi), h(zi)) ∈ for every i ∈ [n]}

Q(x̄) = ((y1
r1 z1) ∧ ⋯ ∧ (yn

rn zn))

Q G
Q(G) x̄

ri(G)

Conjunctive Regular Path Queries

Answers of on under simple path and trail semantics are de$ned analogously:
we require that
 (h(xi), h(yi)) ∈ and
 (h(xi), h(yi)) ∈ respectively

Q G

ri(G)s

ri(G)t

Notation: for simple path semantics
 for trail semantics

Q(G)s
Q(G)t

Query Evaluation

Conjunctive Queries (CQs)

Regular Path Queries (RPQs)

Conjunctive Regular Path Queries (CRPQs)

Finite Automata

Notation and Basic Principles
If n ∈ℕ, we use [n] to denote the set {1,..., n}

1 2

a

a

We denote a nondeterministic "nite automaton (NFA) as
N = (S, A, !, I, F)

where
- S is the $nite set of states
- A is the $nite alphabet
- & ⊆ S ⨉ A ⨉ S is the transition relation
- I ⊆ S is the set of initial states
- F ⊆ S is the set of accepting (or "$nal") states
!e language of N is denoted L(N)

In the example:

S = {1,2}
A = {a}
δ = {(1,a,2), (2,a,1)}
I = {1}
F = {1}

Evaluation Problems
RPQ Evaluation (every path semantics)

Input: Graph database G, pair (u, v) of nodes
 regular path query Q

Question: Is (u, v) ? ∈ Q(G)

Evaluation Problems
RPQ Evaluation (every path semantics)

Input: Graph database G, pair (u, v) of nodes
 regular path query Q

Question: Is (u, v) ? ∈ Q(G)

CRPQ Evaluation (every path semantics)
Input: Graph database G, tuple of nodes
 conjunctive regular path query Q

Question: Is ?

ū

ū ∈ Q(G)

Evaluation Problems
RPQ Evaluation (every path semantics)

Input: Graph database G, pair (u, v) of nodes
 regular path query Q

Question: Is (u, v) ? ∈ Q(G)

CRPQ Evaluation (every path semantics)
Input: Graph database G, tuple of nodes
 conjunctive regular path query Q

Question: Is ?

ū

ū ∈ Q(G)

!e decision problems for simple path and trail semantics are de$ned analogously

RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q = be the RPQ, let G be the graph, and (u,v) the pair of nodes(x r y)

RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q = be the RPQ, let G be the graph, and (u,v) the pair of nodes

Let N = (S, A, !, I, F) be an NFA for r

(x r y)

RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q = be the RPQ, let G be the graph, and (u,v) the pair of nodes

Let N = (S, A, !, I, F) be an NFA for r

Construct a product G ⨉ N, treating u as "initial state" in G
 (!is is similar to a product between automata)

(x r y)

RPQs, Every Path Semantics
!eorem
RPQ Evaluation under every path semantics is in PTIME

Proof (sketch)

Let Q = be the RPQ, let G be the graph, and (u,v) the pair of nodes

Let N = (S, A, !, I, F) be an NFA for r

Construct a product G ⨉ N, treating u as "initial state" in G
 (!is is similar to a product between automata)

Accept i' there is a path from (i,u) to (f,v) in G ⨉ N, for some i ∈ I and f ∈ F

(x r y)

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1 q2,2

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1 q2,2

q1,3

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1 q2,2

q1,3 q2,1

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1 q2,2

q1,3 q2,1

q1,2

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1 q2,2

q1,3 q2,1

q1,2 q2,3

G

RPQ Evaluation under Every Path Semantics

Consider the RPQ r = (aa)*

Example

1

2

3

a a

a
q1 q2

a

a

Is (1,2) in ?r(G)
q1,1 q2,2

q1,3 q2,1

q1,2 q2,3

G

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound:
 Guess a path from u to v in G and check if it is simple and matches r

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound:
 Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
 Reduction from (directed) Hamiltonian Path

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound:
 Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
 Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound:
 Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
 Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let be obtained from H by labeling each edge with aGa

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound:
 Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
 Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let be obtained from H by labeling each edge with aGa

!en H has a Hamiltonian Path from u to v

RPQs, Simple Path Semantics
!eorem
RPQ Evaluation under simple path semantics is NP-complete

Proof (sketch)
Input: , graph data , and pair of nodes Q = (x r y) G (u, v)

Upper bound:
 Guess a path from u to v in G and check if it is simple and matches r

Lower bound:
 Reduction from (directed) Hamiltonian Path

Let H be a directed graph with n nodes and (u,v) a pair of nodes of H
Let be obtained from H by labeling each edge with aGa

!en H has a Hamiltonian Path from u to v
 i' (u,v) in with Q(Ga)s Q = (x an−1

y)

!eorem
RPQ Evaluation under simple path semantics is NP-hard
under data complexity

RPQs, Simple Path Semantics

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ Q = (x (aa)* y)

RPQs, Simple Path Semantics

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ Q = (x (aa)* y)

Reduction from
Even Length Simple Path
Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

RPQs, Simple Path Semantics

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ Q = (x (aa)* y)

Reduction from

Even Length Simple Path is NP-complete [Lapaugh, Papadimitriou, Networks 1984]

Even Length Simple Path
Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

RPQs, Simple Path Semantics

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ Q = (x (aa)* y)

Proof (sketch)

Reduction from

Even Length Simple Path is NP-complete [Lapaugh, Papadimitriou, Networks 1984]

Even Length Simple Path
Given a directed graph G and a pair (u,v) of nodes,

is there a simple path of even length from u to v?

Let Ga be the graph constructed before
!en G has a simple path of even length from u to v i' (u, v) ∈ Q(Ga)s

RPQs, Simple Path Semantics

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ

RPQs, Simple Path Semantics

Q = (x a*ba* y)

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ

RPQs, Simple Path Semantics

Q = (x a*ba* y)

Reduction from
Two Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ

RPQs, Simple Path Semantics

Q = (x a*ba* y)

Reduction from
Two Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Two Disjoint Paths is NP-complete [Fortune, Hopcro#, Wyllie TCS 1980]

!eorem
RPQ Evaluation under simple path semantics is NP-hard,
 even for the RPQ

RPQs, Simple Path Semantics

Q = (x a*ba* y)

Reduction from
Two Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Two Disjoint Paths is NP-complete [Fortune, Hopcro#, Wyllie TCS 1980]

Proof (sketch)
Let Gb be obtained from Ga by adding the edge (v1, b, u2)
!en G has node-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 i'

(u1, v2) ∈ Q(Gb)s

RPQs, Simple Path Semantics
G

u1

v2

v1u2

RPQs, Simple Path Semantics
G

u1

v2

v1u2

RPQs, Simple Path Semantics
G

u1

v2

v1u2

RPQs, Simple Path Semantics
G

u1

v2

v1
bu2

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Split graph

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Split graph

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Split graph ⇝

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

Split graph ⇝

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete [Fortune, Hopcro#, Wyllie TCS 1980]
[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

RPQs, Trail Semantics
!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x a*ba* y)

Two Edge Disjoint Paths is NP-complete [Fortune, Hopcro#, Wyllie TCS 1980]

Proof (sketch - same reduction as before)
Let Gb be obtained from Ga by adding the edge (v1, b, u2)
!en G has edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 i'

(u1, v2) ∈ Q(Gb)t

[LaPaugh, Rivest JCSS 1980]
[Perl, Shiloach JACM 1978]

Reduction from
Two Edge Disjoint Paths
Given a directed graph G and node pairs (u1,v1) and (u2,v2)
are there edge-disjoint paths p1 and p2, from u1 to v1 and from u2 to v2 respectively?

!eorem
RPQ Evaluation under trail semantics is NP-hard, even for RPQ Q = (x (aa)* y)

A similar proof.

RPQs, Trail Semantics

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

Upper bound:
Let be the queryQ(x̄) = ((y1

r1 z1) ∧ ⋯ ∧ (yn
rn zn))

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

Upper bound:
Let be the queryQ(x̄) = ((y1

r1 z1) ∧ ⋯ ∧ (yn
rn zn))

For each regular expression ri, we can compute in polynomial time
 a relation Ri containing the pairs ri(G)

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

Upper bound:
Let be the queryQ(x̄) = ((y1

r1 z1) ∧ ⋯ ∧ (yn
rn zn))

For each regular expression ri, we can compute in polynomial time
 a relation Ri containing the pairs ri(G)

!en, evaluation for Q is the same as evaluation of the conjunctive query

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

Upper bound:
Let be the queryQ(x̄) = ((y1

r1 z1) ∧ ⋯ ∧ (yn
rn zn))

For each regular expression ri, we can compute in polynomial time
 a relation Ri containing the pairs ri(G)

!en, evaluation for Q is the same as evaluation of the conjunctive query

 QR(x̄) = ((y1
R1 z1) ∧ ⋯ ∧ (yn

Rn zn))

CRPQs, Every Path Semantics
!eorem
CRPQ Evaluation under every path semantics is NP-complete

Proof (sketch)
Lower bound: immediate from conjunctive queries

Upper bound:
Let be the queryQ(x̄) = ((y1

r1 z1) ∧ ⋯ ∧ (yn
rn zn))

For each regular expression ri, we can compute in polynomial time
 a relation Ri containing the pairs ri(G)

!en, evaluation for Q is the same as evaluation of the conjunctive query

 QR(x̄) = ((y1
R1 z1) ∧ ⋯ ∧ (yn

Rn zn))
over the relations Ri

Let C be a class of CRPQs
Let CRel be the class of (relational) CQs, de$ned as CRel = {QR | Q ∈ C}

CRPQs, Every Path Semantics

Corollary
Let C be a class of CRPQs
!en Evaluation for C under every path semantics is tractable i'

Evaluation for CRel is tractable in the relational model

Let C be a class of CRPQs
Let CRel be the class of (relational) CQs, de$ned as CRel = {QR | Q ∈ C}

CRPQs, Every Path Semantics

Corollary
Let C be a class of CRPQs
!en Evaluation for C under every path semantics is tractable i'

Evaluation for CRel is tractable in the relational model

Let C be a class of CRPQs
Let CRel be the class of (relational) CQs, de$ned as CRel = {QR | Q ∈ C}

CRPQs, Every Path Semantics

So, by the results on tree-shaped conjunctive queries,
evaluation on tree-shaped CRPQs is also tractable

CRPQs, Simple Path / Trail Semantics

!eorem
CRPQ Evaluation is NP-complete under simple path and under trail semantics

CRPQs, Simple Path / Trail Semantics

!eorem
CRPQ Evaluation is NP-complete under simple path and under trail semantics

Proof (sketch)
Lower bound: already holds for RPQs
Upper bound: simple guess-and-check algorithm

Overview

RPQs CRPQs

every path PTIME NP-complete

simple path NP-complete NP-complete

trail NP-complete NP-complete

Basic Containment Problems
RPQ Containment

Input: RPQs Q1 and Q2
Question: Is for every graph G? Q1(G) ⊆ Q2(G)

CRPQ Containment

!e problems for simple path and trail semantics are analogous

Input: CRPQs Q1 and Q2
Question: Is for every graph G? Q1(G) ⊆ Q2(G)

RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

CRPQ Containment is EXPSPACE-complete
!eorem

RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

Proof (sketch)

CRPQ Containment is EXPSPACE-complete
!eorem

RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

Proof (sketch)

Let and be RPQsQ1 = (x1
r1 y1) Q2 = (x2

r2 y2)

CRPQ Containment is EXPSPACE-complete
!eorem

RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

Proof (sketch)

Let and be RPQs
It is easy to see that Q1 ⊆ Q2 i' L(r1) ⊆ L(r2)

Q1 = (x1
r1 y1) Q2 = (x2

r2 y2)

CRPQ Containment is EXPSPACE-complete
!eorem

RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

Proof (sketch)

Let and be RPQs
It is easy to see that Q1 ⊆ Q2 i' L(r1) ⊆ L(r2)

Testing L(r1) ⊆ L(r2) for two given regular expressions r1 and r2
 is PSPACE-complete

Q1 = (x1
r1 y1) Q2 = (x2

r2 y2)

CRPQ Containment is EXPSPACE-complete
!eorem

RPQ Containment
!eorem
RPQ Containment is PSPACE-complete

Proof (sketch)

Let and be RPQs
It is easy to see that Q1 ⊆ Q2 i' L(r1) ⊆ L(r2)

Testing L(r1) ⊆ L(r2) for two given regular expressions r1 and r2
 is PSPACE-complete

Q1 = (x1
r1 y1) Q2 = (x2

r2 y2)

!e same proof works for simple path and trail semantics

CRPQ Containment is EXPSPACE-complete
!eorem

Data Values

Queries With Data Value Comparisons
Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

Queries With Data Value Comparisons
Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

!is idea leads to di'erent types of queries, e.g., adding conjuncts

Queries With Data Value Comparisons
Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

!is idea leads to di'erent types of queries, e.g., adding conjuncts
 x ~ y or x ≁ y

Queries With Data Value Comparisons
Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

!is idea leads to di'erent types of queries, e.g., adding conjuncts
 x ~ y or x ≁ y

satis$ed if nodes x and y have the same, resp., di'erent label (or data value)

Queries With Data Value Comparisons
Until now, we never compared labels with each other
Example:

- Return pairs of people with the same last name

!is idea leads to di'erent types of queries, e.g., adding conjuncts
 x ~ y or x ≁ y

satis$ed if nodes x and y have the same, resp., di'erent label (or data value)

Such queries are usually considered on a di'erent data model
(data words, data trees, data graphs)

but since we chose Σ in$nite, the main argument also works here

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
 Σ* ⋅ ↓x ⋅ Σ+[= x] ⋅ Σ*

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
 Σ* ⋅ ↓x ⋅ Σ+[= x] ⋅ Σ*
expresses Leq: bind , see if it occurs elsewhere ()x [= x]

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
 Σ* ⋅ ↓x ⋅ Σ+[= x] ⋅ Σ*
expresses Leq: bind , see if it occurs elsewhere ()x [= x]

Regular expressions with equality:

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
 Σ* ⋅ ↓x ⋅ Σ+[= x] ⋅ Σ*
expresses Leq: bind , see if it occurs elsewhere ()x [= x]

Regular expressions with equality:
 Σ* ⋅ (Σ+)= ⋅ Σ*

Queries With Data Value Comparisions
Consider the query Leq, matching all paths that contain two equal values
Let be its complement,
 matching all paths containing pairwise di'erent values

Leq

!eorem
Evaluation of on graph databases is NP-completeLeq

Language Leq is the most basic one imaginable that compares data values.
Hence regular expressions should avoid complementation.

Regular expressions with binding:
 Σ* ⋅ ↓x ⋅ Σ+[= x] ⋅ Σ*
expresses Leq: bind , see if it occurs elsewhere ()x [= x]

Regular expressions with equality:
 Σ* ⋅ (Σ+)= ⋅ Σ*
also expresses Leq: guesses where equal values occur

