Incomplete Information

What this 1s about

» Incomplete information in general
- Its handling in SQL in particular
+ Why?

- Because SQL remains the main tool for handling incomplete
information

- Because incomplete information is everywhere

- And because we know surprisingly little about providing
correct answers when all data isn’t there

- Not in practice, and theory is largely lacking

The problematic NULL

Payment Reminder for your null null null 1nbox | x

'\‘ngM 3 "
Q¢ X .) o |
Siia ro X Ford Credit accountmanageremail@accountmanageremail.com to me
s, null! i
Thankwm romatically @ appear In Payment Remlnder
boo A download is
nUIlnﬂzn \;2\\: library when the dow :
complete.
i
The Weather Channel e R . o
Your next payment is due on $ PAYMENT_DUE_DATE S foqyour null null null|Please
CONT\NUE SHOPP‘NG note, there is an cverdue payment on your account. Please go to Account Mansger to view
PRIX i i i '
- 0\\(0\\‘“\&% e canceL oRDER details and available services or schedule an online payment.
DES LYCE -
W% -
= Ceats zﬁ “@;‘;
CarkFotnglumber ExridiccoxtType BarkMName BarkAccourtMame LicenseMumber LicenseDOB LicenseState CheckNun 4
1!.] 1 1 B TR 4 d
LRl PLULL 'I'J....... MULL ”_.JLL NULL NULL NULL
Z WULL MULL NULL NULL NULL NULL NULL NULL
F. 1 L] ' | |
3 FULL PULL WULL NULL NULL NULL NULL NULL
£ Y ' "
J JULL NULL NULL NULL NULL NULL NU
E LI
: J WULL NULL NULL NULL NULL NULL MU
Z Y |
JULL NULL NULL MULL NULL MULL NU
. L "a .k.f.. .' JL ”1 .J"Jlll FF I 'ilr
b 1, 1 "
: ' MU MU MU MNULI MULI NU
3 " ' l
1 i MU MU MU MULI MNUI NU
" 1.] i '
| il ML U NULI NULI ML
) % M H MU MULI MULI
i L MULI M

could create lots of trouble for people:

Life:=Connected | Computer

These unlucky people have

names that break computers

A few people have names that can utterly confuse the websites Relc
they visit, and it makes their life online quite the headache. Why

does it happen? m

For Null, a full-time mum who lives in southern Virginia in the
US, frustrations don’t end with booking plane tickets. She's also
had trouble entering her details into a government tax website,
for instance. And when she and her husband tried to get settled
in a new city, there were difficulties getting a utility bill set up,
too.

And when nulls appear, things go bad

Textbooks

Books for database professionals

News headlines

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

1

null

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

What we have now

r N ¢ A
THEORY: PRACTICE:
correctness, efficiency, but
but at a huge correctness
cost sacrificed
\ Y, g J

Just run queries and

Correctness: certain answers hope for the best....

to be defined soon... ,
even more than “just run”:

use a many-valued logic...

Theoretical
Approaches

Incomplete data and certain answers

\

D

Incomplete database D represents
D> many complete databases D1, Do, ...

This is done by interpreting
D incompleteness

For example, by assigning values
to every null that occurs inD

Incomplete data and certain answers

\

D
D>

Tuple a is certain answer to query Qin D
& ais an answer to Q in every D;

D Certainty is hard computationally:
for relational algebra
(first-order logic) queries

The model

Marked nulls - common in data integration, exchange, OBDA, generalize SQL nulls

I

\©)
[\®]
— W N

Valuations v: .NuIIs -=> Constants

Valuations are homomorphisms

- Database elements come from two sets:
(numbers, strings, etc)

, denoted by 11 12 13

- h(c)=c for constants, h(_L) is a constant or null
- valuations v: in addition, v(L) is always a constant

- [D] ={v(D) | v is a valuation}

Certain Answers

For Boolean queries: Q is certainly true in D &

Q is true in [D] - that is, true in v(D) for each valuation v

For queries returning tuples, for tuples of constants:
c is a certain answer & ¢ € Q(v(D)) for each valuation v

An arbitrary tuple a is a certain answer &

v(a) € Q(v(D)) for each valuation v

A bit on the history of certain answers

+ The definition for constant tuples is often given as
{Q(v(D)) | v is a valuation}

- |Issues: let Q that return R (a relation). If all tuples in
R have nulls, big intersection is empty. But
intuitively the answer should be R itself.

- The third definition, sometimes called certain
answers with nulls, proposed in Lipski 1984, but
then forgotten for decades in favour of the second

(from Lipski 1979)

Certain answers are coNP-
complete for first-order queries

- Boolean Q. Certainty is in . Guess a valuation
v so that Q is false in v(D).

- Hardness for unions of CQ with negation. Take a
graph G with nodes N and edges E.

- For each node n € N, create a new null L. For an

edge (n,n’), put (Ln, Ln) INn E.
. Query Q: dx E(x,x) v Ax,y,z,u (x,y,z,u are different)

- Q is certainly true iff the graph is

A side remark: open world assumption

- The semantics is defined as

* [Dlowa = {v(D)u D’ | v is a valuation, D’ has no nulls}

» Alternatively, D' € [D]owa < D’is complete and there is

a homomorphism from D to D’

- Then certainty becomes validity, hence undecidable for
first-order queries

- validity over infinite structures is not r.e.

Homomorphism preservation

- For simplicity, look at Boolean queries

- Qs preserved under homomorphisms ifDEQandh: D — D
imply D' = Q

- Evaluate Q naively in D (as if nulls were constants). If it is
false, then certain answer to Q is false

- |Ifitis true, then it is true in every D’e [D] because we have a
homomorphism D — D’, and certain answer is true.

- For queries preserved under homomorphisms, naive
evaluation gives certain answers.

- For non-Boolean queries, it gives certain answers with nulls.

Queries preserved under
homomorphisms

+ Rossman’s Theorem: a first-order (FO) query is

preserved under homomorphism iff it is equivalent to a
union of conjunctive queries

+ Hence, for UCQs, naive evaluation gives certain

dNSWeErs.

+ Under open world assumption, converse is true: if naive
evaluation gives certain answers for an FO query, then is
equivalent to a UCAQ.

But generally we can do better

» Recall [D] = {v(D) | v is a valuation}

- We have special homomorphisms: D — v(D)

- They are called strong onto homomorphisms in
logic and model theory

- Theorem: If Q is preserved under strong onto
homomorphisms, then naive evaluation produces
certain answers with nulls

Preservation under strong onto
homomorphisms

- Inlogic (FO), an extension of the positive fragment

(without negation)

- closure of atoms R(x) and x=y under v A 3 v and the
rule Vx (R(x) — a(x,y))

- In relational algebra (RA)

- selection, projection, cartesian product, union, and
division by a relation (Q + R)

- Division queries: “find students that take all courses”

But what do we do with
more complex queries?

* First, let's see a bit what happens in everyday
practice...

Orders Payments
ord1 100 pay ord1
ord?2 150 pay2 ord?2
ord3 135
- y,

Query V‘
—

Orders

ord1

ord?

ord3

100

150

135

Payments

Query

I

.

~

Unpaid orders
_J

Incomplete databases

e

ord1

Orders

100

Payments

~
y,
- / \ / \ / \ \ |
O| O| d/ders Payments
ord1 ord1 r preogénted b&)}) D pay ord1
ord?2 ord?2 ord?2 150 pay2 value3
ord3 ord3 ord3 135

Querying incomplete databases

Certain answers:
Answers that are true in all possible worlds

()

Orders Payments

ord1 100 pay ord1

ord2 150 pay2 NULL

ord3 135

\. J

Query \/ Certain answers

() ("~)

Unpaid orders | === " s %)

- _J ~ P - _J

Querying incomplete databases

. . SELECT O.num FROM Orders O WHERE NOT EXISTS (
Unpald OrderS% SELECT * FROM Payments P WHERE P.ord = O.num)

4 A
Orders Payments
ord1 100 pay ord1
ord?2 150 pay2 NULL
ord3 135
\. y,

Certain answers

£

Query

-

-

o

Unpaid orders
_J

ord2, ord3

Are wrong answers common in SQL?

Experiment on the TPC-H Benchmark:
models a business scenario with associated decision support queries

100 - 00000000000 0O0—0O—O0—0O—0O |

z 80| | oW .
Soqpl |09 :
bgD - | Q3 :

60 |- .
S | Qq |
S 501 -
° 40| :
& |]
) 30* T
b.O - |
= 20| -
S 101 .

Ok]

[[N A N (I Y N A S AN N T E N
o 1 2 3 4 5 6 7 &8 9 10
Null rate, %

A company database: orders customers, payments

Orders Customer
ORE_'D T"-E P'E CUST_ID = ORDER CUST_ID = NAME
PP t 1)
r g ata Ord| John
Ord2 SQL | 35 2 2 2 M
Ord3 “Logic” 0 C C ary

Typikalthoedigkvas nid; itdfaehnsitisie g sofcew ritis sthgm:

Customers without an order:

Unpaid orders:
select% order id select C.cust_id from Customer C
from Orders 0 where not exists
where O.order_id not in (select * from Orders O, Pay P
(select order from Pay P) where C.cuit_|d=P.cu§t_|d
and P.order=0.order_id)

Aarsvward Ord¥lew: NONE! AQqGs\wWeri dvaae. New: c2!

What's the deal with nulls?

- Back in the 1980s, when SQL was standardized, it
chose a 3-valued logic for handling nulls

» truth values: t,f, u ufor
+ conditions such as 1 = null evaluate to u

» propagated using
N

H
= = | K
- = = | e=
S e | .
S 8 =~ | S

S n o= [
— |
C o= =

—
=

t
t
u

Types of errors

False negatives: miss some of the correct answers
False positives: return answers that are false

False positives are worse: blatant lie vs hiding some of
the truth

Correct answers: those that are certain

® don’t depend on the interpretation of missing data

SQL gives

Avoiding wrong answers

Nothing prevents us from finding an efficient query
evaluation that

Surprisingly not known until very recently

|dea: translate query Q into queries Qt that returns
and Qf that returns

Underapproximates certainly true/false answers,
overapproximates unknown

The Qt translation

Rt — R (A=B)* = (A= B)
X (A+# B)* = (A# B) Anot_null(A) A not_null(B)

(O’Q(Q)) = (Qt) (010pfo)* = 0opf; forope {A, V)

(7'('@ (Q))t — T (Qt)
(Ql X Q2)t = Q] x Q5
(Q1UQ2) = QuQs
(@1 N Qz)t = QINQ5
(@1 — Q2)t = QiNQ,

A tuple is certainly in Q1 — Qz if it is
certainly in Q1 and certainly not in Qo

The problematic Qf translation

Need an extra operation of left unification (anti)semijoin

Rx,S = {7€R|35€S:F unifies with 5 }

Rx,S = R—Rx,$S

Inefficient translations:

Rf _ adornarity(R) gu R
(59(Q)) = Q" U gy (adom™™(@)
(@ x Q) = Qf x adom®™ (@) adom® (@) « QF

(7a(Q))" = 7a(Q") — ma(adom* ™ ¥ — QF)

Has no chance of working in practice

A different perspective

A tuple is certainly in Q1 = Q2 if it is
certainly in Q1 and certainly not in Q2

(@1 —Q2)t = QI NQ,

Sut this Is not the only possibility

A tuple is certainly in Q1 — Q2 if
e itis certainly in Q¢ and

e it does not match any tuple that could be in Q2

Improved translation

Translate Q into (Q+, Q7) where

« Q+ approximates certain answers
* Q7 represents possible answers

* Both queries have ACP? data complexity

cert(Q, D)

The +/ ? approximation scheme

Qe (Q+ Q7)

Answers to Q+

Certain answers to Q

Answers to Q?

The +/ ? approximation scheme

Rt = R ?
(00(Q))" = o0+ (Q") R =R

(r(@) = 7o () (09(62))? — oo (@)
(Qx Q)" = QF x @i (ra(@) = m(@)
(Q1UQ2)+ _ QJFUQi (Q1xQs) = QI xQ]

1 ?

(1 NQs)" = Q*in (Q1UQ2)? _ Qlug!
(@1 — Q)" = i— : (@1NQ2) = Qi xu Qs
’ = @1 X Q; 2 2
(Ql—Q2) — QZ— 3_

The +/ ? approximation:
performance

- Normally one would not expect to outperform native SQL that
does not care about correctness.

- We observed 3 types of behaviour:

- most commonly, a small overhead (3-4%), very acceptable

- sometimes it outperforms SQL significantly (when the
original query spends all the time looking for wrong
answers)

- Sometimes it lags behind. Reason: case analysis, what is
null and what is not, and this leads to disjunction in queries.
SQL’s well-kept secret: it does not optimize disjunctions.

SQL and 3VL (3-valued logic)

+ Constant source of confusion for programmers
» Committee design, just to handle nulls

- Heauvily criticized ever since

- But was the right many-valued logic chosen?

 First one more example of confusion.

S 2

Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Qs <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S)

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A)

Compute R-S

Answer

H

R 1 S NULL

NULL

Q<<

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q: <

Qs <<

SELECT R.A FROM R
WHERE R.A NOT IN (
SELECT S.A FROM S)

SELECT R.A FROM R

WHERE NOT EXISTS (
SELECT S.A FROM S
WHERE S.A=R.A)

Compute R-S

Answer

H H

NULL

Why this happens

- EXCEPT treats NULL syntactically: this is the usual set

difference, hence {1,NULL} EXCEPT {NULL} = {1}

« NOT IN uses 3VL:

1 NOT IN {NULL} = NOT (1 IN {NULL}) = NOT (1=NULL) =
NOT(UNKNOWN) = UNKNOWN
and hence 1 is not selected.

- NOT EXISTS: mix of 2VL and 3VL. First,

(SELECT AFROM S WHERE A=1) =

(SELECT AFROM S WHERE NULL=1)

returns empty table as NULL=1 is UNKNOWN. Then
NOT EXISTS (SELECT AFROM S WHERE A=1) returns
true and 1 is selected.

Questions about SQL’s 3VL

* Did they choose the right many-valued logic?

* Did they really have to use a many-valued logic?

-+ people prefer to think — and write programs — with
just true and false

Which logic we are talking about?

select C.cust_id from Customer C
where not exists
(select * from Orders O, Pay P
where |C.cust_id=P.cust_id and P.order=0.order _id

or not(O.date = $today))
\ Propositional

Predicate Logic Logic

not exists: 73 (or V) select=3

Core SQL = First-Order Predicate Logic
Conditions in Queries = Propositional Logic

Choosing Propositional Logic:
ldea

- An incomplete database can represent many
completions —

- Let's look at what can be known about an atomic
proposition a in those worlds

W — set of possible worlds

T - worlds where F - worlds where

o IS true o IS false
no knowledge

(W, T, F) — describes what we know about «

This iIdea was used before

- Work on bilattice-based many-valued logics
+ Each such description is treated as truth value
- Too many values that convey the same information

- A better idea:
(W, T, F)

- maximally consistent theory

Building Blocks

KNOWLEDGE POSSIBILITY

@ &
.|=K"a @'—'—P“‘d

Truth Values

true

Ka,"Ka,Pa, " P«

false

Ko, Ka,"Pa,P«a

unknown

“Ka, " K7a,"Pa, P«

sometimes
true

st

Ko, " Ka,Pa, P«

sometimes
false

sf

Ka,"Ka,"Pa,Pa

sometimes

“Ka, " Ka,Pa,Pa

Truth tables

- Th(r,a) - the maximally consistent theory for truth value =
and proposition «

- If o = w(r,7), then
Th(r,ax) ATh(7,B) ATh(c,w(a,[3))

must be consistent for all « and 3.

- Such ¢ Is not unique

- but we need the most general one

More general truth value: sf A sf

a . sf B :sf

an3 :sf anf3 :f

sf A sf is consistent with both sf and f

but sf is more general than f

Truth tables for 6-valued logic

At £ s st osfou v it £ s st st u =
t | t f s st sf u t |t t t t t t | T
f | f £ £ £ £ f f |t £ s st sf u f |t
s | s f sf sf st sf s |t s st st st st S | s
st [st T sf u sf u st [t st st st st st st | sf
sf | sf f sf sf sf sf sf [t sf st st u u sf | st
u|lu f sf u st u ult u st st u u u | u

Not yet: these truth tables break distributivity and idempotence

And database optimizers need them (for elimination of
redundant subexpressions and operations)

sf =sA(svs) #F(sas)v(sas)=u

The propositional answer

The only maximal sublogic of the 6-valued logic that

(a) has truth value t
(b) A and v are idempotent and distributive

is SQL’s 3-valued Kleene’s logic

So it appears ISO JTC1 SC32 WG3 was right after all?
Wait a bit...

Reminder

select C.cust id from Customer C
where not exists

(select * from Orders O, Pay P
where |C.cust id=P.cust_id and P.order=0.order _id

or not(O.date = $today))
\ Propositional

Predicate Logic Logic

Core SQL = First-Order Predicate Logic
over....

What are nulls?

+ SQL has a single null value — NULL

- |n applications (OBDA, data integration, etc) one uses

11, Lo, L3, ...

How to interpret atoms?

t faeR
:R(a)={f ifa¢R

f ifa,b #NULL and a#b

t ifa,b# NULL and a=b
> (a=b) =
u ifaorbis NULL

t faeR
R(a) = {f If does not unify with any b € R
u if a € R and a unifies with some b € R

Let’s look at SQL first...

- Asingle null value
» 2-valued semantics for R(a), SQL semantics for (a=b)

- ... and imagine we can rewrite history

A logician’'s approach

» First Order Logic (FO)

- domain has usual values and NULL

equality: NULL = NULL but NULL # 1 etc

- Boolean logic rules for A, v, —

- Quantifiers: V is conjunction, 3 is disjunction

- Why would one even think of anything else??

What did SQL do?

- 3-valued FO (a textbook version)
- domain has usual values and NULL

- comparisons with NULL result in unknown

+ Kleene logic rules for A, v, —

- Quantifiers: V is conjunction, 3 is disjunction

- Seemingly more expressive.

-+ But does it correspond to reality?

SQL logic is 2-valued or 3-valued:
It's a mix

+ Conditions in WHERE are evaluated under 3-valued
logic. But then only those evaluated to true matter.

- Studied before for propositional logic:

-+ In 1939, Russian logician Bochvar wanted to give a
formal treatment of logical paradoxes. To assert that
something is true, he introduced a new connective:
Tp means that p is true.

- Amazingly, 40 years later SQL adopted the same idea.

What did SQL really do?

- 3-valued FO with 1:

- As textbook version but with the extra connective 1

L, ifogist
¢ = f, foisforu

What /s the logic of SQL?

- We have:
» logician’s 2-valued FO
-+ 3-valued FO (Kleene logic)
»+ 3-valued FO + Bochvar’s assertion (SQL logic)

- AND THEY ARE ALL THE SAME!

Collapse to Boolean FO

» There is a much more general result

- Any set of nulls: SQL, marked...

- Any propositional many-valued logic £

- Any semantics — Boolean, SQL, unification, can
mix and use different ones for different atoms

« First-Order predicate logic based on £ collapses
to the usual Boolean FO predicate logic

2-valued SQL

|ldea — 3 simultaneous translations:

- conditions P - Pt and P!

- Queries Q - Q’

Ptand P! are Boolean conditions: Pt/ Pfis true
iff P under 3-valued logic is true / false.

In Q" we simply replace P by Pt

2-valued SQL: translation

f

Pt = P(¥) P(t1,...,ty)" = NOT P(t1,...,t;) AND { IS NOT NULL
(Ex1sTS Q)* = EXISTS Q' (ex1sTs Q)' = NoT EX1isSTS Q'
(01 A 62)Y = 67 A6 (01 A 62)F = 0f v ol
01V 05)F = 6% v 65 (01 Vv 02)" = 0] A 64
(~0)° = 6" (~0)f = 6°
(t Is NuLL)® = ¢ 1S NULL (t s NuLL)" = ¢ Is NOT NULL
TNnQ) = tInQ ((t1,...,tn) IN Q)f — NOT EXISTS (SELECT » FROM Q' AS N(Au,..., A,) WHERE

(t1 IS NULL OR A; IS NULLOR t; = N.A;) AND - --
+++ AND ({n IS NULL OR A, IS NULL OR t, = N.A,))

ldea of the translation

- When does (A=B) evaluate to false in SQL?
- When A, B are not nulls and A# B

- Hence translation (A IS NOT NULL) AND
(B IS NOT NULL) AND NOT (A=B)

- Bottom line: case analysis with IS NULL and IS

NOT NULL makes it possible to eliminate 3VL.

Predicate logic answer

* No, they did not need to use many-valued logic!

- But what now?

- We can’t change the way SQL is: too much
legacy code, issues with optimization

- But new languages are being designed, and
they do not need to follow the SQL path

More on nulls in SQL

- SQL: not marked nulls

- A single NULL for all purposes

- Unknown value

+ Value inapplicable (e.g., in outerjoins)
» No information null

- Still uses 3-valued logic

Basic rules for nulls

- Any comparison involving NULLSs results in
unknown

- 5 <NULL, NULL > NULL, even NULL=NULL
- Any operation involving NULLSs results in NULL
- 5+NULL = NULL, NULL || ‘abc’ = NULL

- BUT: the condition 5+NULL = NULL evaluates
to unknown

Nulls as Booleans

What is the output of these queries if S={1}?

SELECT 1 FROM S

WHERE (null = ((null =
((null = ((null = null) is null))
is null)) is null)) 1is null

SELECT 1 FROM S

WHERE (null = ((null =
((null = ((null = null) is null))
is null)) 1is null))

NULLs as Booleans

- As a Boolean value, NULL is viewed as unknown

» null=null Is unknown, hence null

* (null=null) is null is hence true

* ((null=null) is null)=null is unknown hence null etc

NULLs and Aggregation

- Remember the rule: NULLs in operations result in
NULL as result

» 1+2+NULL is thus NULL, but:

SELECT SUM(A)
FROM (VALUES (1), (2), (NULL)) AS R(A)

- which adds 1, 2, and NULL gives 3

- SQL rule for aggregates: ignore NULLs and then
apply the aggregate (except COUNT(*))

Some systems do weird things...ls empty
string equal to itself?

SELECT *
FROM R
WHERE ="

|

» Usually it is, but not in Oracle: the above query always returns
the empty table.

* Because Oracle implements NULL as *

* Madness? Yes. With a string operation that produces “ you
deal with 3-valued logic before you realize it!

Last topic: almost certain
answers

- Do we really need to insist on certainty?

- Often, “sufficiently close” is good enough. Certainly
better than what SQL can give you.

- Does it make finding answers to queries over
iIncomplete data easier?

Naive Evaluation

* Treat nulls as new constants
- Evaluate query using standard techniques
- Heavily used: data integration/exchange, OBDA etc

Orders

ORDER_ID TITLE PRICE

Ord| “Big Data” 30
Ord2 “SQL”’ 35
Ord3 “Logic” 50

Unpaid orders:

select O.order _id
from Orders O
where O.order _id not in
(select order from Pay P)

Answer: Ord2, Ord3.

Pay Customer
CUST _ID @ ORDER CUST_ID N M=
cl Ord| cl John

c2 L c2 Mary

Customers without an order:

select C.cust _id from Customer C

where not exists
(select * from Orders O, Pay P
where C.cust_id=P.cust_id
and P.order=0.order_id)

Answer: c2.

How bad are bad answers?

What if the real value of L is an order different from Ord1,
Ord2, Ord3?

 Then naive evaluation actually produces correct answers!

e |f we know nothing about L this isn’t an unreasonable
assumption: there could be many orders.

But what if we know L € {Ord1,0rd2,0rd3}?

 Then answer to the first query is Ord2 with 50% chance and
Ord3 with 50% chance. Answer to the second query is
empty.

Questions

¢ |s naive evaluation always good without constraints on
nulls, or we just got lucky?

e Yes, it always is
e Can we get the second type of answers, with constraints?
e Yes, but with more work

e Now revisit certain answers, and connect them with a well
know subject in logic and probability

Incomplete data and certain answers

\

D, Incomplete database D represents
many complete databases D4, D>, ...
D>

Tuple a is certain answer to query Qin D
& ais an answer to Q in every D;

Zero-One Laws

A formula o over graphs; = true; red = false

3% I]

o Is almost surely valid: true in almost all graphs

- pick a graph G at random
- calculate the probability (o) that o is true in G

- () = 1& « is almost surely valid
Examples:
- p(has an isolated node) = 0

- u(is a tree)=0
- p(connected) = 1
- p(has diameter at most 2) = 1

Zero-One Laws

Fagin 1976:

if o is first-order, then p(o) is O or 1

o is valid (true in all graphs) - undecidable.
o Is almost surely valid (p(a) = 1) - easy to decide.

Extended to many other logics: Fixed-point, Infinitary logics,
Fragments of second-order logic; Other distributions too

A very active subject in logic/combinatorics

Certainty and Zero-One Laws

\

b For query Q:
D

i - pick a complete database D;at random

. 1(Q,D,a): probability that a € Q(D))
n(Q,D,a) =1 =
a= answertoQinD

D: Questions
5 1. When is n(Q,D,a) =1?

i+1

2. How easy is it to compute?
3. Can an answer be 50% true?
4. Is one tuple a better answer than another?

Certain Answers

A tuple of constants c is a certain answer:
c € Q(v(D)) for each valuation v

An arbitrary tuple a is a certain answer:
v(a) € Q(v(D)) for each valuation v

Support of a:

Supp(Q,D,a) = {valuations v | v(a) € Q(v(D)) }

Certain Answers

Support of a: Supp(Q,D,a) = {valuations v | v(a) € Q(v(D)) }

Answer a is & every valuation v is in Supp(Q,D,a)

Idea: answer a is almost certainly true
& a randomly chosen valuation v is in Supp(Q,D,a)

A small problem: there are infinitely many valuations.
But techniques from zero-one laws help: look at finite
approximations.

Measuring Certainty

Constants (non-nulls) = {cy, ¢, c3,..... }

Valuationk = set of valuations with range € {cy, ...,ck }

Supp«(Q,D,a) = Supp(Q,D,a) N Valuationk

w(Q,D,a) = 1SuPP«(Q,D,a)|
|Valuation|

(a number in [0,1])

: Probability that a randomly chosen valuation
with range in {c, ...,ck } withesses that a is an answer to Q

Measuring Certainty

H(QJDJa) = liMk-e Mk(Q;Dya)

: Probability that a randomly chosen valuation
witnesses that a is an answer to Q

: the value p(Q,D,a) does not depend on a particular
enumeration of {cy, ¢, C3,..... }

Zero-One Law

e Q: any reasonable query

e definable in a query language such as relational
algebra, datalog, second-order logic etc - formally,

e Theorem: u(Q,D,a) is either 0 or 1

 every answer Is either almost certainly
true or almost certainly false

Zero-One Law and Naive Evaluation

e 1(Q,D,a) =1 & ais returned by the
of Q

 thus almost certainly true answers are much
easier to compute than certain answers

* and naive evaluation is justified as being very
close to certainty

Naive evaluation: treat nulls as values
- 1 1, 1 1y

2 1,
2 1, 2 L1 2 12

Certain answer is empty because of valuations L; 1, —c

If the range of nulls is infinite, such valuations are unlikely.
Returned tuples are aimost certainly true answers - but not certain.

In general, naive evaluation # certain answers as we have seen,
except

- unions of conjunctive queries
 their extension with Q = R where R is a relation

Proof idea

- Let L1, 1,.enumerate all nulls in database D

- Consider all km mappings f: {L;1, L.} — {1,....k}. For how many f(1)=1(j)

for some 1,7

+ Choose 1,); select value of 1(1); find an arbitrary mapping on the remaining m-2

nulls:
« Choose(m,2) - k - km2 = O(m? - km-1)
« (m2-kml)y/km - 0 when k — oo

+ Thus most mappings assign distinct values to nulls, and hence we use naive

evaluation

Naive evaluation: treat nulls as values
- 1 1s 1 1

2 1,
2 1, 2 L1 2 12

What if:

1. We have a functional dependency A—B, forcing_.,=.1,, or
2. there is a restriction on the range of B?

The reasoning that valuations L; 1, —c are unlikely no
longer works

This is due to the presence of constraints.

Certainty with constraints

e Only interested in databases satisfying integrity
constraints X - for example, keys or foreign keys

o Standard approach: find certain answers to X — Q

* Not very successful: if we have Q from a good class
(certain answers can be computed efficiently) and X from

a common class of constraints, the syntactic shape of
> — Q makes existing results on finding certain answers

inapplicable.

Certainty with constraints

- |In addition, this approach is not very informative

- X2 QisXvAQ
. ifp(=Z,D) =0, thenpu(X— Q,D,a) =1

- ifp(X,D)=1, then p(X — Q,D,a) = n(Q,D,a)

Certainty with constraints

e A better idea: use n(Q| %, D, a)

 probability that a randomly chosen valuation that
satisfies X also withesses that a is an answer to Q

o Still defined as a limit since there are infinitely many
valuations

Measuring certainty with constraints

Suppk(Q,D,a) = {valuations v < Valuation« [v(a) « Q(v(D)) }

[Supp«(Q A X, D, a)|
[Supp«(Z,D,a)|

m(Q | %, D, a) =

: Probability that a randomly chosen valuation
with range in {c1, ...,ck } that withesses constraints X also

witnesses that a is an answer to Q

Measuring certainty with constraints

n(Q | 2, D, a) - limk- e L Q | 2, D, a)

: Probability that a randomly chosen valuation
that withesses constraints X also withesses that a is an

answer to Q

: the value p(Q | X, D, a) does not depend on
a particular enumeration of {cy, ¢, Cc3,..... }

Zero-One Law fails with
constraints

e Database D: R={1}, S={1}, U={1,2}
e Constraint: R c U
e QueryQ:isRcS?

e p(Q|Z%,D)=0.5

What if zero-one fails?

The best next thing: convergence

Consider, for example, graphs.

Zero-one law fails: p(edge between the smallest and
the largest element) = 0.5

But (o) exists for every first-order o

e and is a rational of the form n/2m (Lynch 1980)

Convergence with constraints

e Q: any reasonable query, X: any reasonable
constraints (both)

e Theorem: p(Q | X, D, a) always exists

e n(Q|x, D, a) is a rational number between 0 and 1

 Every rational number in [0,1] can appear as
n(Q| X, D, a) for a conjunctive query Q and an inclusion

constraint X

Computing p(Q | =, D, a)

A rational number - need a function complexity class

* |t can be computed In FP#P

* functions computable in polynomial time with access to a
#P oracle

* #P: counting solutions to NP problems
* How many satisfying assignments does a formula have?

e How many 3-colorings a graph has? etc

Constraints and zero-one laws

Zero-one law still holds for some constraints, e.g.,

>: a set of functional dependencies.

certain answers under X : Answers true in every
database satisfying *

We can compute them easily for conjunctive queries
using the Chase procedure

What is Chase?

-+ A procedure often used in databases to enforce
integrity constraints or to check their implication.

- A—->B andB —-> C
* 1 1y 13 1 1y L3

— — 1 11 13 —
1 1, 4 1 14 14 T L 13 2 1, 1
2 1y 1 2 1y 13 2 1y 14
B—C eliminate
A—B B duplicate
11=12 13=14 rows

Result: chase(D,X)

Constraints and zero-one laws

e If Qis a conjunctive query, then

e certain answers under X = Q(chase(D,))

e |f Qis an arbitrary query, then
almost certainly true answers under X = Q(chase(D,))

e n(Q|Z, D, a)=p(Q, chase(D, X), a)

Qualitative Measures

 We can also use supports Supp(Q,D,a) to define
qualitative measures:

* ais as b, to query Q if
Supp(Q,D,b) € Supp(Q,D,a)

e aisa than b, to query Q if
Supp(Q,D,b) < Supp(Q,D,a)

e ais abest answer to Q if there is no better answer

Qualitative measure: example
BT e

2 J_l I 1 i)

2 J_Q 2 J—1

* No certain answers

- Naive evaluation gives (1, 1) and (2, L,)

- (2, L,) is a better answer than (1, L)

- Best answer = (2, 1))

Unlike certain answers, best answers always exist

Qualitative measures: complexity

 Fix a query Q of relational algebra/calculus

 |nput: database D, tuples aand b

Is a as b? coNP-complete
Is a than b? DP-complete

Identify the set of best answers PNPllog nl-complete

 For unions of conjunctive queries, all in PTIME.

 Does not go via naive evaluation; the algorithm is of very
different nature

Measuring complexity

Question CERTAIN ANSWER BEST ANSWER
iiven a tuple ,; CONP-complete PNPllog nl-complete
igiven a Set ’? DP-complete PNPllog nl-complete

Giveig a family of s??ts ’ PNPllog nl-complete PNPllog nl-complete

BIG open questions

- How to handle aggregation

- How to handle bag semantics

- How to handle more complex constraints

+ How to implement these algorithms inside DBMSs

- How to convince designers of new languages to drop

SQL’s approach

- and crucially: WHAT DO USERS ACTUALLY WANT

FROM NULL?

