
Incomplete Information



What this is about
• Incomplete information in general 

• Its handling in SQL in particular 

• Why? 

• Because SQL remains the main tool for handling incomplete 
information 

• Because incomplete information is everywhere  

• And because we know surprisingly little about providing 
correct answers when all data isn’t there 

• Not in practice, and theory is largely lacking



The problematic NULL



could create lots of trouble for people:



What do they say about it?

“fundamentally at odds with the way 
the world behaves”

“cannot be explained”

Textbooks

“wrong answers to your queries”
“all results become suspect”

“can never trust the answers”

Books for database professionals

News headlines

“Leeds children's heart surgery halted by 'incomplete' data”

“non-existent bills because the companies have incomplete information” 

And when nulls appear, things go bad



And they are taught it is equivalent to :

select R.A from R                                                                               
where not exists (select S.A from S where S.A=R.A)

select R.A from R where R.A not in (select S.A from S)

Every student will write:

and that they can do it directly in SQL:

select * from r  except  select * from s

A

1
null

A

null

R S
TASK: Relations R(A), S(A) 
Compute R - S.

A

A

1
null

A

1

Outputs:



What we have now

THEORY:

correctness, 
but at a huge 

cost

PRACTICE:

efficiency, but 
correctness 
sacrificed

Correctness: certain answers Just run queries and  
hope for the best….

to be defined soon… even more than “just run”:  
use a many-valued logic…



Theoretical 
Approaches



Incomplete data and certain answers

Incomplete database D represents 
many complete databases D1, D2, … 

D

D1

D2

Di

Di+1

This is done by interpreting  
incompleteness 

For example, by assigning values  
to every null that occurs in D



Incomplete data and certain answers

D

D1

D2

Tuple a is certain answer to query Q in D   
⇔ a is an answer to Q in every Di 

Certainty is hard computationally:  
coNP-hard for relational algebra          

(first-order logic) queries 

Di

Di+1



The model
Marked nulls - common in data integration, exchange, OBDA, generalize SQL nulls 

A B C

1 ⟂1 ⟂2
2 ⟂2 3

3 ⟂3 ⟂1

A B C

1 1 2

2 2 3

3 3 1

⟂1 ➜1

⟂2➜2

⟂3➜3

⟂1 ➜5

⟂2➜4

⟂3➜7

A B C

1 5 4

2 4 3

3 7 5

.......

D

Valuations v: Nulls ➔ Constants



Valuations are homomorphisms
• Database elements come from two sets: 

• constants (numbers, strings, etc) 

• nulls, denoted by ⟂1  ⟂2  ⟂3 ….. 

• Homomorphisms  

• h(c)=c for constants, h(⟂) is a constant or null 

• valuations v: in addition, v(⟂) is always a constant 

• ⟦D⟧ = {v(D) | v is a valuation}



Certain Answers

For queries returning tuples, for tuples of constants:                           
c is a certain answer ⇔ c ∈ Q(v(D)) for each valuation v

An arbitrary tuple a is a certain answer ⇔ 
v(a) ∈ Q(v(D)) for each valuation v

For Boolean queries: Q is certainly true in D ⇔                                     
Q is true in ⟦D⟧ - that is, true in v(D) for each valuation v



A bit on the history of certain answers

• The definition for constant tuples is often given as 
∩{Q(v(D)) | v is a valuation} 

• Issues: let Q that return R (a relation). If all tuples in 
R have nulls, big intersection is empty. But 
intuitively the answer should be R itself. 

• The third definition, sometimes called certain 
answers with nulls, proposed in Lipski 1984, but 
then forgotten for decades in favour of the second 
(from Lipski 1979)



Certain answers are coNP-
complete for first-order queries

• Boolean Q. Certainty is in coNP: Guess a valuation 
v so that Q is false in v(D).  

• Hardness for unions of CQ with negation. Take a 
graph G with nodes N and edges E.  

• For each node n ∈ N, create a new null ⊥n. For an 
edge (n,n’), put (⊥n,⊥n’) in E. 

• Query Q: ∃x E(x,x) ∨ ∃x,y,z,u (x,y,z,u are different) 

• Q is certainly true iff the graph is not 3-colorable



A side remark: open world assumption

• The semantics is defined as   

• ⟦D⟧owa = {v(D)∪ D’ | v is a valuation, D’ has no nulls} 

• Alternatively, D’ ∈ ⟦D⟧owa  ⇔ D’ is complete and there is 

a homomorphism from D to D’ 

• Then certainty becomes validity, hence undecidable for 
first-order queries  

• validity over infinite structures is not r.e.



Homomorphism preservation
• For simplicity, look at Boolean queries  

• Q is preserved under homomorphisms if D ⊨ Q and h: D → D’ 
imply D’ ⊨ Q 

• Evaluate Q naively in D (as if nulls were constants). If it is 
false, then certain answer to Q is false  

• If it is true, then it is true in every D’∈ ⟦D⟧ because we have a 
homomorphism D → D’, and certain answer is true. 

• For queries preserved under homomorphisms, naive 
evaluation gives certain answers. 

• For non-Boolean queries, it gives certain answers with nulls. 



Queries preserved under 
homomorphisms

• Rossman’s Theorem: a first-order (FO) query is 
preserved under homomorphism iff it is equivalent to a 
union of conjunctive queries 

• Hence, for UCQs, naive evaluation gives certain 
answers. 

• Under open world assumption, converse is true: if naive 
evaluation gives certain answers for an FO query, then is 
equivalent to a UCQ. 



But generally we can do better

• Recall ⟦D⟧ = {v(D) | v is a valuation} 

• We have special homomorphisms: D → v(D) 

• They are called strong onto homomorphisms in 
logic and model theory 

• Theorem: If Q is preserved under strong onto 
homomorphisms, then naive evaluation produces 
certain answers with nulls



Preservation under strong onto 
homomorphisms

• In logic (FO), an extension of the positive fragment 
(without negation) 

• closure of atoms R(x) and x=y under ∨ ∧ ∃ ∀ and the 
rule ∀x (R(x) → 𝜶(x,y)) 

• In relational algebra (RA) 

• selection, projection, cartesian product, union, and 
division by a relation (Q ÷ R) 

• Division queries: “find students that take all courses”



But what do we do with 
more complex queries?

• First, let’s see a bit what happens in everyday 
practice…



Query

Unpaid orders

num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 ord2

Answer

ord3



num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 NULL

?Unpaid orders

Query



num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 value1

Incomplete databases

num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 NULL

num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 value2

num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 value3

D

D1 D2 D3 Dn· · ·
Possible worlds 

represented by D



Querying incomplete databases
Certain answers:

Answers that are true in all possible worlds

Query

Unpaid orders

num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 NULL

Certain answers

?



Querying incomplete databases

num amount

ord1 100

ord2 150

ord3 135

Orders Payments
pid ord

pay1 ord1

pay2 NULL

ord2, ord3

Certain answers
6=Query

Unpaid orders
SQL SQL

SELECT O.num FROM Orders O WHERE NOT EXISTS (
  SELECT * FROM Payments P WHERE P.ord = O.num )Unpaid orders:



Are wrong answers common in SQL?
Experiment on the TPC-H Benchmark: 
models a business scenario with associated decision support queries

Wrong answers: Lots of them

Horizontal axis: null rate (probability that a null occurs
in an attribute not declared as NOT NULL)

Vertical axis: lower bound on the percentage of wrong answers
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ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Unpaid orders:
select O.order_id 
from Orders O 
where O.order_id not in  
          (select order from Pay P)

Customers without an order:
select C.cust_id from Customer C 
where not exists  
          (select * from Orders O, Pay P 
           where C.cust_id=P.cust_id 
           and P.order=O.order_id)

Answer: Ord3.                        Answer: none. 

In the real world, information is often missing

CUST_ID ORDER

c1 Ord1

c2 null

Old Answer: Ord3    New: NONE!         Old answer: none   New: c2!

Orders Pay Customer



What’s the deal with nulls?
• Back in the 1980s, when SQL was standardized, it 

chose a 3-valued logic for handling nulls 

• truth values: t, f, u     u for unknown 

• conditions such as 1 = null evaluate to u 

• propagated using Kleene’s logic:

1996); hence we use this model. Incomplete databases are
populated by two types of elements: constants and nulls,
that come from countably infinite sets denoted by Const and
Null, respectively. We use the symbol ? to denote nulls.

A relational schema (vocabulary) is a set of relation
names with associated arities. To each k-ary relation sym-
bol S from the vocabulary, an incomplete relational instance
(database) D assigns a k-ary relation SD over Const[Null,
that is, a finite subset of (Const[Null)k. When the instance
is clear from the context we shall write S, rather than SD,
for the relation itself as well. The sets of constants and nulls
that occur in D are denoted by Const(D) and Null(D), re-
spectively. If Null(D) is empty, we refer to D as complete;
that is, complete databases are those without nulls. The ac-

tive domain of D is adom(D) = Const(D) [ Null(D).
A valuation v : Null(D) ! Const is a map that assigns a

constant value to each null in a database. The notion natu-
rally extends to databases, by replacing each ? with v(?) in
every place where ? occurs. We denote the resulting data-
base by v(D), and use valuations to define the semantics of
incomplete databases:

JDK = {v(D) | v is a valuation } . (2)
Intuitively, JDK is the set of possible complete databases that
D can represent.

Note that (2) defines a semantics where databases are not
open to adding new facts. By analogy with the closed-world

assumption (Reiter 1977), it is called the CWA semantics
in database literature (Imielinski and Lipski 1984). It dif-
fers from the open-world (OWA) semantics; here we just re-
store the missing information already present in the data-
base (whence “closedness”). In the study of incompleteness
in databases, the closed-world semantics is more common
(Abiteboul, Hull, and Vianu 1995; Abiteboul, Kanellakis,
and Grahne 1991; Imielinski and Lipski 1984); it is better
behaved, as query answering under the open-world seman-
tics is undecidable for relational calculus queries even in
data complexity. Various applications mix OWA and CWA se-
mantics; for instance, both occur in integration and exchange
applications, and while ontology-based data access tends to
use OWA, recent studies showed the important role of CWA
in that setting (Lutz, Seylan, and Wolter 2015). In this pa-
per we look at input databases interpreted under CWA; see
Section 7 for additional discussion on OWA.

Valuations are a special case of homomorphisms. For two
databases D and D0 of the same schema, a homomorphism

from D to D0 is a map h : adom(D) ! adom(D0
) such that

h(c) = c for every c 2 Const(D), and for every relation
symbol S, if a tuple ū is in the relation S in D, the tuple
h(ū) is in the relation S in D0. By h(D) we denote the image
of D, that is, the database such that S

�
h(ū)

�
is in h(D) iff

S(ū) is in D. A valuation is simply a homomorphism such
that h(x) is a constant for every x 2 adom(D).

First-Order Logic (FO) As our basic query language we
consider FO (often referred to as relational calculus in the
database context), whose formulae include relational atoms
R(x̄), equality atoms x = y and are closed under conjunc-
tion ^, disjunction _, negation ¬, existential quantifiers 9

and universal quantifiers 8. We write '(x̄) to indicate that
x̄ is the list of free variables of formula ', and we write
|x̄| for the length of x̄. For complete databases, the notion
of D |= '(ā), where ā is a tuple of elements of adom(D)

interpreting x̄, is defined in the standard way. The result of
the query is then the set of all tuples ā over adom(D) such
that D |= '(ā). If |x̄| = k, we speak of a k-ary query.
Over incomplete databases, there are many alternative ways
of defining semantics that will be discussed in Section 3.

Certain Answers Traditionally, certain answers to a query
Q on an incomplete database D are defined as ⇤(Q,D) =T
{Q(D0

) | D0 2 JDK}. This definition is restrictive in a va-
riety of ways (Libkin 2016a); in particular it does not allow
for tuples with nulls. The concrete semantics of query an-
swering considered here will use a slight modification (Lip-
ski 1984) that overcomes this deficiency. Note that ⇤(Q,D)

consists of tuples ū over Const such that, for every valuation
v, the tuple v(ū) is in Q

�
v(D)

�
. The notion of certain an-

swers with nulls (borrowing the name from Libkin 2016b)
simply drops the requirement that tuples be constant. For a
k-ary query Q, they are defined as

⇤?(Q,D) =
�
ū 2 adom(D)

k | v(ū) 2 Q
�
v(D)

�

for every valuation v
 
.

In particular, ⇤(Q,D) is the set of constant tuples in ⇤?(Q,
D). To see why this notion is better to use, consider a data-
base D with a relation {(1, 2), (3,?)} and a query Q return-
ing that relation. Then, ⇤(Q,D) only keeps the tuple (1, 2),
losing information about a tuple with the first component 3,
which is in the answer with certainty. On the other hand,
⇤?(Q,D) returns both tuples (1, 2) and (3,?).

It is well known (Abiteboul, Kanellakis, and Grahne
1991) that the data complexity of certain answers (with
nulls) is CONP-complete, and thus completely out of reach,
given typical sizes of databases. This explains the need for
efficient approximation procedures.

Many-Valued Logics A many-valued logic L is given
by its set of truth values T = {⌧0, . . . , ⌧n}, a set ⌦ of
propositional connectives (e.g., ^,_,¬) with their arities,
and an interpretation of each k-ary connective ! as a map
!L : T

k ! T. We usually omit L when it is clear from the
context. We shall use the convention here that ⌧ and � range
over truth values of many-valued logics.

Logics come equipped with a knowledge ordering 4 on
their values, indicating when a truth value carries more in-
formation (Belnap 1977; Ginsberg 1988). We shall assume
that the value ⌧0 is the least among those in T, indicating ‘no
information whatsoever’, that is, ⌧0 4 ⌧i for every i  n.

For the 3VL used by relational DBMS (also known as the
Kleene logic), its truth tables and knowledge ordering are:

¬
t f

f t

u u

^ t f u

t t f u

f f f f

u u f u

_ t f u

t t t t

f t f u

u t u u

t f

u



Types of errors

• False negatives: miss some of the correct answers

• False positives: return answers that are false

• False positives are worse: blatant lie vs hiding some of 
the truth

• Correct answers: those that are certain

• don’t depend on the interpretation of missing data

• SQL gives both types of errors



Avoiding wrong answers

• Nothing prevents us from finding an efficient query 
evaluation that avoids false positives

• Surprisingly not known until very recently

• Idea: translate query Q into queries Qt that returns 
certainly true answers and Qf that returns certainly 
false answers. 

• Underapproximates certainly true/false answers, 
overapproximates unknown  



A tuple is certainly in Q1 − Q2 if it is 
certainly in Q1 and certainly not in Q2

The Qt translation

Relational algebra translations: Qt

Libkin, “SQLs 3-valued logic and certain answers”, ICDT’15

For a relation R: Rt = R

For op 2 {\ , [ , ⇥ }: (Q1 opQ2)t = Qt
1 opQ

t
2

For projection: ⇡↵(Q)t = ⇡↵(Qt)

For di↵erence: (Q1 �Q2)t = Qt
1 \Qf

2

For selection: �✓(Q)t = �✓⇤(Qt)

where (A = B)⇤ = (A = B)

(A 6= B)⇤ = (A 6= B) ^ not null(A) ^ not null(B)

(✓1 op ✓2)⇤ = ✓⇤1 op ✓
⇤
2 for op 2 {^ , _ }
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R t = R
�
�✓(Q)

�t
= �✓⇤

�
Qt

�

�
⇡↵(Q)

�t
= ⇡↵

�
Qt

�

�
Q1 ⇥Q2

�t
= Qt

1 ⇥Qt
2

�
Q1 [Q2

�t
= Qt

1 [Qt
2

�
Q1 \Q2

�t
= Qt

1 \Qt
2

�
Q1 �Q2

�t
= Qt

1 \Qf
2



The problematic Qf translation
Problematic translations
Need an extra operation of left unification (anti)semijoin

R !u S =
{

r̄ ∈ R | ∃ s̄ ∈ S : r̄ unifies with s̄
}

R !u S = R − R !u S

Inefficient translations:

Rfff = adomarity(R)
!u R

(σθ(Q))fff = Qfff ∪ σ(¬θ)∗(adomarity(Q))

(Q1 × Q2)
fff = Qfff

1 × adomarity(Q2) ∪ adomarity(Q1) × Qfff
2

(πααα(Q))fff = πααα(Qfff ) − πααα(adomarity(Q) − Qfff )

La Sapienza, April 2016 sql and incompleteness: feasibility 22/51

Has no chance of working in practice



A different perspective

�
Q1 �Q2

�t
= Qt

1 \Qf
2

A tuple is certainly in Q1 − Q2 if it is 
certainly in Q1 and certainly not in Q2

But this is not the only possibility

A tuple is certainly in Q1 − Q2 if 
• it is certainly in Q1 and 

• it does not match any tuple that could be in Q2



Improved translation

• Q+ approximates certain answers 
• Q? represents possible answers 
• Both queries have AC0 data complexity

Translate Q into ( Q+, Q? ) where
New translation

Translate Q into
�
Q+, Q?

�
where:

I Q+ approximates certain answers

I Q?
represents possible answers

cert(Q,D)

Q?(D)Q+(D)

(Q1 �Q2)
+ = Q+

1 nu Q
?
2

R? = R

(Q1 [Q2)
? = Q?

1 [Q?
2

(Q1 \Q2)
? = Q?

1 nu Q
?
2

(Q1 �Q2)
? = Q?

1 �Q+
2

�
�✓(Q)

�?
= �¬(¬✓)⇤

�
Q?

�

(Q1 ⇥Q2)
? = Q?

1 ⇥Q?
2

�
⇡↵(Q)

�?
= ⇡↵

�
Q?

�
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The + / ? approximation scheme

Q ↦ ( Q+, Q? )

Certain answers to Q

Answers to Q+

Answers to Q?



The + / ? approximation scheme

R ? = R
�
�✓(Q)

�?
= �¬(¬✓)⇤

�
Q?

�

�
⇡↵(Q)

�?
= ⇡↵

�
Q?

�

�
Q1 ⇥Q2

�?
= Q?

1 ⇥Q?
2

�
Q1 [Q2

�?
= Q?

1 [Q?
2

�
Q1 \Q2

�?
= Q?

1 nu Q
?
2

�
Q1 �Q2

�?
= Q?

1 �Q+
2

R+ = R
�
�✓(Q)

�+
= �✓⇤

�
Q+

�

�
⇡↵(Q)

�+
= ⇡↵

�
Q+

�

�
Q1 ⇥Q2

�+
= Q+

1 ⇥Q+
2

�
Q1 [Q2

�+
= Q+

1 [Q+
2

�
Q1 \Q2

�+
= Q+

1 \Q+
2

�
Q1 �Q2

�+
= Q+

1 nu Q
?
2



• Normally one would not expect to outperform native SQL that 
does not care about correctness.  

• We observed 3 types of behaviour: 

• most commonly, a small overhead (3-4%), very acceptable 

• sometimes it outperforms SQL significantly (when the 
original query spends all the time looking for wrong 
answers) 

• Sometimes it lags behind. Reason: case analysis, what is 
null and what is not, and this leads to disjunction in queries. 
SQL’s well-kept secret: it does not optimize disjunctions. 

The + / ? approximation: 
performance



SQL and 3VL (3-valued logic)

• Constant source of confusion for programmers 

• Committee design, just to handle nulls 

• Heavily criticized ever since  

• But was the right many-valued logic chosen? 

• First one more example of confusion.



A

1

2

A

2R S

A

1

A

1

A

1

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q1

SELECT R.A FROM R
WHERE  R.A NOT IN (
  SELECT S.A FROM S )

Q2

SELECT R.A FROM R
WHERE  NOT EXISTS (
  SELECT S.A FROM S
  WHERE  S.A=R.A )

Q3

Answer

Compute R − S



A

1

NULL

A

NULLR S

A

1

A

1

NULL

A

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

Q1

SELECT R.A FROM R
WHERE  R.A NOT IN (
  SELECT S.A FROM S )

Q2

SELECT R.A FROM R
WHERE  NOT EXISTS (
  SELECT S.A FROM S
  WHERE  S.A=R.A )

Q3

Answer

Compute R − S



Why this happens
• EXCEPT treats NULL syntactically: this is the usual set 

difference, hence {1,NULL} EXCEPT {NULL} = {1} 

• NOT IN uses 3VL:                                                                 
1 NOT IN {NULL} = NOT (1 IN {NULL}) = NOT (1=NULL) = 
NOT(UNKNOWN) = UNKNOWN                                          
and hence 1 is not selected.  

• NOT EXISTS: mix of 2VL and 3VL. First,                 
(SELECT A FROM S WHERE A=1)  =                        
(SELECT A FROM S WHERE NULL=1)                      
returns empty table as NULL=1 is UNKNOWN.       Then            
NOT EXISTS (SELECT A FROM S WHERE A=1) returns 
true and 1 is selected.  



Questions about SQL’s 3VL

• Did they choose the right many-valued logic? 

• Did they really have to use a many-valued logic? 

• people prefer to think — and write programs — with 
just true and false



Which logic we are talking about?

select C.cust_id from Customer C 
where not exists  
          (select  *  from Orders O, Pay P 
           where   C.cust_id=P.cust_id and P.order=O.order_id 
                        or not( O.date = $today) )

Propositional  
LogicPredicate Logic

not exists: ¬∃ (or ∀)     select = ∃

Core SQL = First-Order Predicate Logic 
Conditions in Queries = Propositional Logic



Choosing Propositional Logic: 
Idea

• An incomplete database can represent many 
completions — possible worlds 

• Let’s look at what can be known about an atomic 
proposition 𝜶 in those worlds 



W — set of possible worlds

𝜶

T - worlds where  
𝜶 is true

¬𝜶

F - worlds where  
𝜶 is false

no knowledge

(W, T, F) — describes what we know about 𝜶



This idea was used before

• Work on bilattice-based many-valued logics 

• Each such description is treated as truth value 

• Too many values that convey the same information  

• A better idea: a truth value is the epistemic theory of a 
description (W, T, F) 

• maximally consistent theory



  

𝜶

K¬𝜶

K𝜶⊧

⊧     ¬𝜶

𝜶 ⊧

⊧

P𝜶

P¬𝜶

Building Blocks
KNOWLEDGE POSSIBILITY

¬𝜶



Truth Values

    

    

    

    

    

K𝜶,¬K¬𝜶,P𝜶,¬P¬𝜶

¬K𝜶,K¬𝜶,¬P𝜶,P¬𝜶

¬K𝜶,¬K¬𝜶,¬P𝜶,¬P¬𝜶

¬K𝜶,¬K¬𝜶,P𝜶,¬P¬𝜶

¬K𝜶,¬K¬𝜶,¬P𝜶,P¬𝜶

¬K𝜶,¬K¬𝜶,P𝜶,P¬𝜶

t

u

f

st

sf

s

true sometimes
true

false sometimes
false

unknown sometimes



Truth tables
• Th(𝝉,𝜶) - the maximally consistent theory for truth value 𝝉 

and proposition 𝜶  

• If 𝛔 = ω(𝝉,𝝉’), then                                                                   

Th(𝝉,𝜶) ∧Th(𝝉’,β) ∧Th(𝛔,ω(𝜶,β))                                   

must be consistent for all 𝜶 and β. 

• Such 𝛔 is not unique 

• but we need the most general one



More general truth value:   sf ∧ sf

¬β ¬𝜶 ¬β¬𝜶

𝜶 ∧ β  : sf 𝜶 ∧ β  : f

sf ∧ sf is consistent with both sf and f 

    but sf is more general than f

𝜶 : sf        β  : sf



Truth tables for 6-valued logic

Not yet: these truth tables break distributivity and idempotence 

And database optimizers need them (for elimination of 
redundant subexpressions and operations) 

               sf  = s ∧ (s ∨ s)  ≠  (s ∧ s) ∨ (s ∧ s) = u 

Do SQL programmers need to memorize this now?



The propositional answer

The only maximal sublogic of the 6-valued logic that 

(a)  has truth value t 
(b)  ∧ and ∨ are idempotent and distributive

is SQL’s 3-valued Kleene’s logic

So it appears ISO JTC1 SC32 WG3 was right after all?  
Wait a bit…



Reminder
select C.cust_id from Customer C 
where not exists  
          (select  *  from Orders O, Pay P 
           where   C.cust_id=P.cust_id and P.order=O.order_id 
                        or not( O.date = $today) )

Propositional  
LogicPredicate Logic

Core SQL = First-Order Predicate Logic
over….



What are nulls?

• SQL has a single null value — NULL 

• In applications (OBDA, data integration, etc) one uses 
marked nulls ⊥1, ⊥2, ⊥3, …



How to interpret atoms?
t   if a ∈ R 
f   if a ∉ RStandard 2-valued semantics: R(a) = {

SQL semantics: (a=b)
t   if a,b ≠ NULL and a=b 
f   if a,b ≠ NULL and a≠b 
u  if a or b is NULL  {=

Unification semantics
t   if a ∈ R 
f   if does not unify with any b ∈ R 
u  if  a ∉ R and a unifies with some b ∈ R 

R(a) = {



Let’s look at SQL first…

• A single null value 

• 2-valued semantics for R(a), SQL semantics for (a=b) 

• … and imagine we can rewrite history



A logician’s approach
• First Order Logic (FO) 

• domain has usual values and NULL 

• Syntactic equality: NULL = NULL but NULL ≠ 1 etc 

• Boolean logic rules for ∧, ∨, ￢ 

• Quantifiers: ∀ is conjunction, ∃ is disjunction 

• Why would one even think of anything else??



What did SQL do?
• 3-valued FO (a textbook version) 

• domain has usual values and NULL 

• comparisons with NULL result in unknown 

• Kleene logic rules for ∧, ∨, ￢ 

• Quantifiers: ∀ is conjunction, ∃ is disjunction 

• Seemingly more expressive.  

• But does it correspond to reality? 



SQL logic is NOT 2-valued or 3-valued: 
it’s a mix

• Conditions in WHERE are evaluated under 3-valued 
logic. But then only those evaluated to true matter. 

• Studied before for propositional logic: 

• In 1939, Russian logician Bochvar wanted to give a 
formal treatment of logical paradoxes. To assert that 
something is true, he introduced a new connective:          
↑p means that p is true. 

• Amazingly, 40 years later SQL adopted the same idea.



What did SQL really do?

• 3-valued FO with ↑: 

• As textbook version but with the extra connective ↑ 

t,   if φ is t 
f,   if φ is f or u↑φ  = {



What is the logic of SQL?

• We have: 

• logician’s 2-valued FO 

• 3-valued FO (Kleene logic) 

• 3-valued FO + Bochvar’s assertion (SQL logic) 

• AND THEY ARE ALL THE SAME!



Collapse to Boolean FO
• There is a much more general result 

• Any set of nulls: SQL, marked… 

• Any propositional many-valued logic ℒ 

• Any semantics — Boolean, SQL, unification, can 
mix and use different ones for different atoms 

• First-Order predicate logic based on ℒ collapses 
to the usual Boolean FO predicate logic



2-valued SQL
Idea — 3 simultaneous translations: 

• conditions P          Pt  and  Pf  

• Queries Q         Q’

Pt and  Pf  are Boolean conditions: Pt / Pf is true 
iff P under 3-valued logic is true / false.

In Q’ we simply replace P by  Pt  



2-valued SQL: translation
P (t̄)t = P (t̄) P (t1, . . . , tk)

f = NOT P (t1, . . . , tk) AND t̄ IS NOT NULL

(EXISTS Q)t = EXISTS Q0 (EXISTS Q)f = NOT EXISTS Q0

(✓1 ^ ✓2)
t = ✓t1 ^ ✓t2 (✓1 ^ ✓2)

f = ✓f1 _ ✓f2

(✓1 _ ✓2)
t = ✓t1 _ ✓t2 (✓1 _ ✓2)

f = ✓f1 ^ ✓f2

(¬✓)t = ✓f (¬✓)f = ✓t

(t IS NULL)t = t IS NULL (t IS NULL)f = t IS NOT NULL

(t̄ IN Q)t = t̄ IN Q0 �
(t1, . . . , tn) IN Q

�f
= NOT EXISTS

�
SELECT * FROM Q0 AS N(A1, . . . , An) WHERE

(t1 IS NULL OR A1 IS NULL OR t1 = N.A1) AND · · ·
· · · AND (tn IS NULL OR An IS NULL OR tn = N.An)

�

Figure 10: Translations of conditions for the Q 7! Q0
translation

This extension of RA to bags is equivalent to comprehension-
based languages that share many features with SQL [16,
23]. While such languages were used to study the expressive
power of SQL, they are not SQL; rather, they are theoreti-
cal reconstructions of it that allow one to prove equivalence
results but di↵er significantly from the real language, in par-
ticular w.r.t. handling nulls and variable bindings.

A di↵erent line of work attempted to provide a formal se-
mantics of SQL directly, but all such attempts have fallen
short of the real language. An early paper [29] looked only
at set semantics, and the more recent and rigorous formal-
ization [8, 9] – designed to prove equivalences of queries with
the help of a proof assistant – did not include null values and
used a reconstruction of the language, thus not accounting
for some of the trickier aspects of variable binding. Other
attempts were made in the programming languages commu-
nity [24, 37] but they too restricted the language signifi-
cantly: for example, [24] works essentially with RA, rather
than SQL, under set semantics, while [37] disallows nested
subqueries in both FROM and WHERE and uses list semantics.

We remark that none of the above mentioned works made
any e↵ort to justify, neither experimentally nor by any other
means, the semantics they proposed. So there is no evidence
that these semantics reflect the real behavior of SQL, even if
we take into account the specific restrictions they imposed.

On the logic side, to the best of our knowledge, the only
approach to combine 3VL with Boolean logic along the lines
of SQL is external Bochvar logic, which has a special connec-
tive conflating false and unknown. However, this has mainly
been the subject of study of philosophical logic [25, 34] and
therefore restricted to the propositional case. A two-valued
logic for nulls based on collapsing u and f was also consid-
ered in [5] for a fragment of SQL, but no comparison of its
expressiveness with the standard semantics was made.

8. CONCLUSION
We have produced a formal semantics of a basic fragment

of SQL that behaves like the real-life SQL does, as opposed
to its theoretical reconstructions with their many simplifica-
tions. We verified its behavior experimentally on a very large
number of queries. Using this formal semantics, we provided
two applications. We formally proved the equivalence of the
basic fragment with relational algebra (something that had
only been done in the past under significant simplifications

that do not reflect the real behavior of the language). We
also formally showed that 3VL is not required to achieve the
full expressiveness of this fragment of SQL, and somewhat
surprisingly the familiar two-valued logic does the job.
From a practical point of view, our formal semantics could

be a useful tool for both users and implementers in under-
standing the behavior of SQL queries. It is much more con-
cise than the natural language specification of the Standard,
as well as being very easy to implement and modify. In fact,
we advocate that our formal semantics (or a variant of it, if
necessary) should be an integral part of the Standard and
serve as the basis for a reference implementation endorsed
by ISO. The compliance of a DBMS with the Standard could
then be verified against this implementation, for example by
means of an appropriate suite of test cases like the Technol-
ogy Compatibility Kit developed by the openCypher initia-
tive in the context of graph databases [30].

Future work. A first natural direction for future work is
to extend the formal semantics, and its experimental valida-
tion, to include more features of the language, especially ag-
gregation and grouping, but also capabilities that go beyond
queries, such as schema definition, constraints and updates.
Some of the restricted SQL semantics [9, 24, 37] were de-

fined for verifying the correctness of SQL optimization rules.
They could only do so under the restrictions they imposed;
thus it would be interesting to see what such verification
techniques would yield without restrictions on the language.
The equivalence between two-valued and three-valued se-

mantics of SQL raises some interesting questions too: would
two-valued queries be natural for a common user to write?
We do believe that people tend to think in terms of true and
false only, rather than three truth values. But of course this
conjecture should be confirmed (or disproved) by a proper
usability study.
Yet another line for future work is the extension of recent

attempts [17] to restore correctness of SQL query evaluation
with incomplete data. Due to the lack of a formal semantics
for query evaluation with SQL nulls, so far this has only been
done for databases with marked nulls. Now we have the for-
mal tools to extend the notions of certainty and possibility
to handle SQL’s nulls.

Acknowledgements. The authors would like to thank the
anonymous referees for their comments. Work partially sup-
ported by EPSRC grants N023056 and M025268.



Idea of the translation

• When does  (A=B)  evaluate to false in SQL? 

• When A, B are not nulls and A ≠ B 

• Hence translation (A IS NOT NULL) AND               
(B IS NOT NULL)  AND  NOT (A=B)  

• Bottom line: case analysis with IS NULL and IS 
NOT NULL makes it possible to eliminate 3VL. 



Predicate logic answer

• No, they did not need to use many-valued logic! 

• But what now? 

• We can’t change the way SQL is: too much 
legacy code, issues with optimization 

• But new languages are being designed, and 
they do not need to follow the SQL path



More on nulls in SQL
• SQL: not marked nulls 

• A single NULL for all purposes 

• Unknown value  

• Value inapplicable (e.g., in outerjoins) 

• No information null 

• Still uses 3-valued logic



Basic rules for nulls
• Any comparison involving NULLs results in 

unknown 

• 5 < NULL, NULL > NULL, even NULL=NULL 

• Any operation involving NULLs results in NULL 

• 5+NULL = NULL,  NULL || ‘abc’ = NULL 

• BUT:  the condition 5+NULL = NULL evaluates 
to unknown



Nulls as Booleans
What is the output of these queries if S={1}?

SELECT 1 FROM S  
WHERE (null = ((null =  
      ((null = ((null = null) is null))  
       is null)) is null)) is null

SELECT 1 FROM S 
WHERE (null = ((null =  
      ((null = ((null = null) is null))  
       is null)) is null)) 

1

∅



NULLs as Booleans

• As a Boolean value, NULL is viewed as unknown 

• null=null is unknown, hence null 

• (null=null) is null is hence true 

• ((null=null) is null)=null is unknown hence null etc



NULLs and Aggregation
• Remember the rule: NULLs in operations result in 

NULL as result 

• 1+2+NULL is thus NULL,  but: 

•   

• which adds 1, 2, and NULL gives 3 

• SQL rule for aggregates: ignore NULLs and then 
apply the aggregate (except COUNT(*))

SELECT SUM(A)  
FROM  ( VALUES  (1), (2), (NULL))   AS  R(A)



Some systems do weird things…Is empty 
string equal to itself?

SELECT *  
FROM     R  
WHERE  ‘’=‘’

• Usually it is, but not in Oracle: the above query always returns 
the empty table. 

• Because Oracle implements NULL as ‘’ 

• Madness? Yes. With a string operation that produces ‘’ you 
deal with 3-valued logic before you realize it! 



Last topic: almost certain 
answers

• Do we really need to insist on certainty? 

• Often, “sufficiently close” is good enough. Certainly 
better than what SQL can give you. 

• Does it make finding answers to queries over 
incomplete data easier?



ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID NAME

c1 John

c2 Mary

Unpaid orders:
select O.order_id 
from Orders O 
where O.order_id not in  
          (select order from Pay P)

Customers without an order:
select C.cust_id from Customer C 
where not exists  
          (select * from Orders O, Pay P 
           where C.cust_id=P.cust_id 
           and P.order=O.order_id)

Answer: Ord2, Ord3.                        Answer: c2. 

CUST_ID ORDER

c1 Ord1

c2 ⊥

Orders
Pay Customer

Naive Evaluation
• Treat nulls as new constants 
• Evaluate query using standard techniques 
• Heavily used: data integration/exchange, OBDA etc



How bad are bad answers?

• What if the real value of ⊥ is an order different from Ord1, 
Ord2, Ord3?


• Then naive evaluation actually produces correct answers!


• If we know nothing about ⊥ this isn’t an unreasonable 
assumption: there could be many orders.


• But what if we know  ⊥ ∈ {Ord1,Ord2,Ord3}?


• Then answer to the first query is Ord2 with 50% chance and 
Ord3 with 50% chance. Answer to the second query is 
empty.



Questions
• Is naive evaluation always good without constraints on 

nulls, or we just got lucky? 

• Yes, it always is 

• Can we get the second type of answers, with constraints? 

• Yes, but with more work 

• Now revisit certain answers, and connect them with a well 
know subject in logic and probability



Incomplete data and certain answers

D

D1

D2

Tuple a is certain answer to query Q in D   
⇔ a is an answer to Q in every Di 

Di

Di+1

Incomplete database D represents 
many complete databases D1, D2, … 



Zero-One Laws
A formula 𝛂 over graphs; green = true;  red = false

…..

𝛂 is almost surely valid: true in almost all graphs

• pick a graph G at random 
• calculate the probability 𝛍(𝛂) that 𝛂 is true in G 
• 𝛍(𝛂) = 1⇔ 𝛂 is almost surely valid

…..

Examples:  
• 𝛍(has an isolated node) = 0 
• 𝛍(is a tree)=0 
• 𝛍(connected) = 1 
• 𝛍(has diameter at most 2) = 1



Zero-One Laws

𝛂 is valid (true in all graphs) - undecidable.  
𝛂 is almost surely valid (𝛍(𝛂) = 1) - easy to decide.

Fagin 1976: 
if 𝛂 is first-order, then 𝛍(𝛂) is 0 or 1

Extended to many other logics: Fixed-point,  Infinitary logics, 
Fragments of second-order logic; Other distributions too 

A very active subject in logic/combinatorics



Certainty and Zero-One Laws

D

D1

D2

For query Q: 

• pick a complete database Di at random 
• 𝛍(Q,D,a): probability that a ∈ Q(Di)  

𝛍(Q,D,a) =1 ⇒ 

a = almost certainly true answer to Q in D   
Questions 

1. When is 𝛍(Q,D,a) =1?  
2. How easy is it to compute? 
3. Can an answer be 50% true? 
4. Is one tuple a better answer than another?

Di

Di+1



Certain Answers
A tuple of constants c is a certain answer:  

c ∈ Q(v(D)) for each valuation v

Support of a:   

Supp(Q,D,a)  =  {valuations v | v(a) ∈ Q(v(D)) }  

An arbitrary tuple a is a certain answer:  
v(a) ∈ Q(v(D)) for each valuation v



Certain Answers
Support of a:  Supp(Q,D,a) = {valuations v | v(a) ∈ Q(v(D)) }  

Answer a is certain ⇔ every valuation v is in Supp(Q,D,a)

Idea: answer a is almost certainly true  
⇔ a randomly chosen valuation v is in Supp(Q,D,a)

A small problem: there are infinitely many valuations.  
But techniques from zero-one laws help: look at finite 

approximations.



Measuring Certainty
Constants (non-nulls) = {c1, c2, c3,….. } 

Valuationk = finite set of valuations with range ⊆ {c1, …,ck } 

Suppk(Q,D,a) = Supp(Q,D,a) ∩ Valuationk 

Interpretation: Probability that a randomly chosen valuation 
with range in {c1, …,ck } witnesses that a is an answer to Q 

𝛍k(Q,D,a)  =  |Suppk(Q,D,a)|
|Valuationk|

(a number in [0,1])



Measuring Certainty

𝛍(Q,D,a)  =  limk➞∞ 𝛍k(Q,D,a)

Interpretation: Probability that a randomly chosen valuation 
witnesses that a is an answer to Q 

Observation: the value 𝛍(Q,D,a) does not depend on a particular 
enumeration of {c1, c2, c3,….. } 



Zero-One Law
• Q: any reasonable query  

• definable in a query language such as relational 
algebra, datalog, second-order logic etc - formally, 
generic 

• Theorem: 𝛍(Q,D,a) is either 0 or 1 

• every answer is either almost certainly 
true or almost certainly false



Zero-One Law and Naive Evaluation

• 𝛍(Q,D,a) = 1 ⇔ a is returned by the naive 

evaluation of Q 

• thus almost certainly true answers are much 
easier to compute than certain answers  

• and naive evaluation is justified as being very 
close to certainty



Naive evaluation: treat nulls as values
A B

1 ⟂1

2 ⟂1

2 ⟂2

A B

1 ⟂2

2 ⟂1

A B

1 ⟂1

2 ⟂2
- =

Certain answer is empty because of valuations ⟂1 ,⟂2 ➞c 

If the range of nulls is infinite,  such valuations are unlikely. 
Returned tuples are almost certainly true answers - but not certain.  

In general, naive evaluation ≠ certain answers as we have seen, 
except  

• unions of conjunctive queries 
• their extension with Q ÷ R where R is a relation



Proof idea
• Let ⟂1⟂2 ….. ⟂m enumerate all nulls in database D  

• Consider all km mappings  f: {⟂1⟂2 ….. ⟂m} → {1,…,k}. For how many  f(i)=f(j) 
for some i,j? 

• Choose i,j;  select value of f(i);  find an arbitrary mapping on the remaining m-2 
nulls: 

• Choose(m,2) ⋅ k ⋅ km-2  = O(m2 ⋅ km-1)   

• (m2 ⋅ km-1) / km  → 0 when k → ∞ 

• Thus most mappings assign distinct values to nulls, and hence we use naive 
evaluation



Naive evaluation: treat nulls as values
A B

1 ⟂1

2 ⟂1

2 ⟂2

A B

1 ⟂2

2 ⟂1

A B

1 ⟂1

2 ⟂2
- =

What if:  

1. We have a functional dependency A→B, forcing⟂1 =⟂2, or   
2. there is a restriction on the range of B? 

The reasoning that valuations ⟂1 ,⟂2 ➞c are unlikely no 
longer works 

This is due to the presence of constraints.



Certainty with constraints

• Only interested in databases satisfying integrity 
constraints 𝚺 - for example, keys or foreign keys 

• Standard approach: find certain answers to 𝚺 ➞ Q 

• Not very successful: if we have Q from a good class 
(certain answers can be computed efficiently) and 𝚺 from 
a common class of constraints, the syntactic shape of    
𝚺 ➞ Q makes existing results on finding certain answers 
inapplicable. 



Certainty with constraints

• In addition, this approach is not very informative  

•  𝚺 ➞ Q is ¬𝚺 ∨ Q 

• if 𝛍(𝚺,D) = 0, then 𝛍(𝚺 ➞ Q,D,a) = 1 

• if 𝛍(𝚺,D) = 1, then 𝛍(𝚺 ➞ Q,D,a) = 𝛍(Q,D,a) 



Certainty with constraints

• A better idea: use conditional probability 𝛍(Q | 𝚺, D, a) 

• probability that a randomly chosen valuation that 
satisfies 𝚺 also witnesses that a is an answer to Q 

• Still defined as a limit since there are infinitely many 
valuations



Measuring certainty with constraints

Suppk(Q,D,a) = {valuations v ∊ Valuationk | v(a) ∊ Q(v(D)) }

Interpretation: Probability that a randomly chosen valuation 
with range in {c1, …,ck } that witnesses constraints 𝚺 also 
witnesses that a is an answer to Q 

𝛍k(Q | 𝚺, D, a)  =
|Suppk(Q ⋀ 𝚺, D, a)|

|Suppk(𝚺,D,a)|



Measuring certainty with constraints

𝛍(Q | 𝚺, D, a)  =  limk➞∞ 𝛍k(Q | 𝚺, D, a)

Interpretation: Probability that a randomly chosen valuation 
that witnesses constraints 𝚺 also witnesses that a is an 
answer to Q

Observation: the value 𝛍(Q | 𝚺, D, a) does not depend on  
a particular enumeration of {c1, c2, c3,….. } 



Zero-One Law fails with 
constraints

• Database D:   R = {⊥},  S = {1},  U = {1,2} 

• Constraint: R ⊆ U 

• Query Q: is R ⊆ S ? 

• 𝛍(Q | 𝚺, D) = 0.5



What if zero-one fails?
• The best next thing: convergence 

• Consider, for example, ordered graphs. 

• Zero-one law fails:  𝛍( edge between the smallest and 
the largest element) = 0.5 

• But 𝛍(𝛂) exists for every first-order 𝛂 

• and is a rational of the form n/2m (Lynch 1980)



Convergence with constraints

• Q: any reasonable query, 𝚺: any reasonable 
constraints (both generic) 

• Theorem: 𝛍(Q | 𝚺, D, a) always exists 

• 𝛍(Q | 𝚺, D, a) is a rational number between 0 and 1 

• Every rational number in [0,1] can appear as                 
𝛍(Q | 𝚺, D, a)  for a conjunctive query Q and an inclusion 
constraint 𝚺



Computing 𝛍(Q | 𝚺, D, a) 
• A rational number - need a function complexity class 

• It can be computed in FP#P 

• functions computable in polynomial time with access to a 
#P oracle 


• #P: counting solutions to NP problems 

• How many satisfying assignments does a formula have?


• How many 3-colorings a graph has? etc



Constraints and zero-one laws

• Zero-one law still holds for some constraints, e.g., 
functional dependencies 

• 𝚺: a set of functional dependencies. 

• certain answers under 𝚺 : Answers true in every 
database satisfying 𝚺 

• We can compute them easily for conjunctive queries 
using the Chase procedure



What is Chase?
• A procedure often used in databases to enforce 

integrity constraints or to check their implication. 

• A → B  and B → C  

•
A B C
1 ⟂1 ⟂3

1 ⟂2 ⟂4

2 ⟂1 ⟂2

A B C
1 ⟂1 ⟂3

1 ⟂1 ⟂4

2 ⟂1 ⟂1

A B C
1 ⟂1 ⟂3

1 ⟂1 ⟂3

2 ⟂1 ⟂1

A B C
1 ⟂1 ⟂3

2 ⟂1 ⟂1

→→→

A→B 
⊥1=⊥2 

B→C 
⊥3=⊥4 

eliminate  
duplicate  

rows

Result: chase(D,𝚺)



Constraints and zero-one laws

• If Q is a conjunctive query, then                        

• certain answers under 𝚺 = Q(chase(D,𝚺)) 

• If Q is an arbitrary query, then                                     
almost certainly true answers under 𝚺 = Q(chase(D,𝚺)) 

• 𝛍(Q | 𝚺, D, a) = 𝛍(Q, chase(D, 𝚺), a)



Qualitative Measures

• We can also use supports Supp(Q,D,a) to define 
qualitative measures: 

• a is at least as good an answer as b, to query Q if 
Supp(Q,D,b) ⊆ Supp(Q,D,a) 

• a is a better answer than b, to query Q if                 
Supp(Q,D,b)  ⊊ Supp(Q,D,a) 

• a is a best answer to Q if there is no better answer



Qualitative measure: example
A B

1 ⟂1

2 ⟂1

2 ⟂2

A B

1 ⟂2

2 ⟂1

-
• No certain answers 

• Naive evaluation gives (1, ⟂1) and (2, ⟂2) 

• (2, ⟂2) is a better answer than (1, ⟂1) 

• Best answer = (2, ⟂2)

Unlike certain answers, best answers always exist



Qualitative measures: complexity

• Fix a query Q of relational algebra/calculus 

• Input: database D, tuples a and b 

• For unions of conjunctive queries, all in PTIME.  

• Does not go via naive evaluation; the algorithm is of very 
different nature

Is a at least as good as b? coNP-complete

Is a better than b? DP-complete

Identify the set of best answers PNP[log n]-complete



Measuring complexity

Question CERTAIN ANSWER BEST ANSWER

Given a tuple a,  
is a ∈ Answer ? coNP-complete PNP[log n]-complete

Given a set X, 
 is X = Answer ? DP-complete PNP[log n]-complete

Given a family of sets F,  
is Answer  ∈ F ? PNP[log n]-complete PNP[log n]-complete



BIG open questions
• How to handle aggregation 

• How to handle bag semantics 

• How to handle more complex constraints  

• How to implement these algorithms inside DBMSs 

• How to convince designers of new languages to drop 
SQL’s approach 

• and crucially: WHAT DO USERS ACTUALLY WANT 
FROM NULL?


