Architectures for Big Data

Structured data management on top
of massively parallel platforms

loana Manolescu

ioana.manolescu@inria.fr
http://pages.saclay.inria.fr/ioana.manolescu/

mailto:Ioana.manolescu@inria.Fr
http://pages.saclay.inria.fr/ioana.manolescu/

From databases to Big Data

Disaggregated

Main-memory architectures
databases Distributed
1 main-memory /
databases Cloud Databases
b (or data services)

Data stored

in memory
> Distribute
S Database
acrdmany -+ hosted and.operatf-:d
- by commercial provider
Distributed
Relational DBMS: Mediator transactions
i. Data stored on disk) systems
ii. Single server Distributed
iii. Company server databases P2P
systems

TPT-DATAIA921 Architectures for Big Data loana Manolescu 2

Outline

MapReduce and other massively parallel platforms are
becoming the norm for large-scale computing

How to build Big Data management architectures based
on such architectures ?

We will see:
— Improving data access performance
— Implementing algebraic operations on MapReduce
— Query optimization revisited for MapReduce (also multi-
qguery optimization)
— A few visible Big Data platforms implemented on top of
MapReduce clusters
— Some open problems in this area

Recall: Map/Reduce outline

e e T e e

N mapper |
| <[>
| {map |~ I RV YRR ==
| sorted key-value pairs | |
‘m " mapper
| | g
a —» [k v] I v | v kVI:§3->f
i sorted key-value pairs | |
T mapper || !
i f
i | sorted key-value pairs | i
2 mapper\ || !
e 3
' | ——{map .V k|iv|k]|v ==
| sorted key-value pairs ! |
Input Map Sort Shuffle

function

TPT-DATAIA921 Architectures for Big Data

loana Manolescu

.I V|IV| V]|V ;
Cn i

reduce

reducer'

——

reducer

N o e e e e e e e e e e e e e e e e e e

K
k 7kvvv
K|v
Merge Reduce
g function

Data management based on
M a p Red u Ce Query (e.g. SQL)

How can a DBMS architecture 1st logical query plan
be established on top of a
distributed computing

ery optimizer Recall:
platform? Query optimiz .
classical
e Store (distribute) the data query
in a distributed file system Chosen physical plan| ~Processing
— How to split it? @ pipeline
— How to store it? na
o _ _ database
* Process queries in a parallel Execution engine
fashion based on i
MapReduce
P Data storage (e.g. relational)

— How to evaluate operators?

— How to optimize queries -r----
-

TPT-DATAIA921 Architectures for Big Data loana Manolescu 5

IMPROVING DATA ACCESS
PERFORMANCE IN A DISTRIBUTED FILE

SYSTEM

Data access in Hadoop

: Data Load
* Basic model: read all the data i
— If the tasks are selective, we don't really Map()
need to! :
Local sort
* Database indexes? But: J
: M it
— Map/Reduce works on top of a file P ATE
system (e.g. Hadoop file system, HDFS) ﬁlﬁ
— Data is stored only once Merge
— Hard to foresee all future processing v
" " Reduce
e "Exploratory nature" of Hadoop i
Final write

Accelerating data access in Hadoop

e |[deal

— Add
data
attri

— Moc

: Hadop++ [JQD2011]

header information to each
split, summarizing split
pute values

ify the RecordReader of HDFS,

used by the Map().
Make it prune irrelevant splits

/

Data Load

¥

Map()

¥

Local sort

¥

Map write

i

Merge

¥

Reduce

¥

Final write

Accelerating data access in Hadoop

* Idea 2: HAIL [DQRSJS12]

— Each storage node builds an
in-memory, clustered index of the
data in its split

— There are three copies of each
split for reliability =
Build three different indexes!

— Customize RecordReader

/

Data Load

¥

Map()

¥

Local sort

¥

Map write

i

Merge

¥

Reduce

¥

Final write

Accelerating data access in a Hadoop-

N W
N -
) o
o o

1500

750

RR Runtime [ms]

TPT-DATAIA921

like distributed file system

B Hadoop W Hadoop++

Data Load

¥

M HAIL

L16

da

1885

b
Syn-Q1
MapReduce Jobs

Architectures for Big Data

C

1652 1615 1610

a b
Syn-Q2

loana Manolescu

Map()

v

Local sort

v

Map write

Merge

¥

Reduce

¥

Final write

STRUCTURED BIG DATA MANAGEMENT

THROUGH THE MAPREDUCE
FRAMEWORK

First idea: write a MapReduce program for each
query

Query (e.g. SQL)
Database -

management 1st |ogical query plan
system

h
Query optimizer

<

Chosen physical plan

{

Execution engine

i

Data storage (e.g. relational) —
e

TPT-DATAIA92 Architectures for Big Data

Query (e.g. SQL) MapReduce

cluster

MapReduce program

Parallel execution engine
* 1 master
* N slaves

¥

Data storage: HDFS

loana Manolescu 12

First idea: write a MapReduce program
for every query

Examples:

e SELECT MONTH(c.start_date), COUNT(*)
FROM customer
GROUP BY MONTH(c.start_date)

e SELECT c.name, o.total
FROM customer c, order o
WHERE c.id=o.cid

e SELECT c.name, SUM(o.total)
FROM customer c, order o
WHERE c.id=o.cid
GROUP BY c.name

Users did less work when using a DBMS!

How to regain this for Big Data?
SQL l:> select... from driver, car, accident where... Query language

Trdnver name,

SE|€Ct drlve r.name (L_drlveraddress

H date="1/11/13’
from driver, car X 1st logical query plan

where [><]/\
driver.ID=car.driver drfer Baracoidet Tlarivername,
4 | driver adrass vV
an Query optimizer)N\ Chosen logical plan

car.license=‘123AB’

/\date 111113

drlver car ac |dent

—

Chosen physical plan

h 4

=

Chosen physical plan

Execution engine

4}
Dr|ver
MIEI mm

Julie ‘123AB’
Damien 2 2 171KZ’ \ 4
‘I— Results

TPT-DATAIA921 Architectures forBig Data loana Manolescy 14

Second idea: new architecture for
structured DM on top of MapReduce

Data management
task specified in

dedicated language

————————————————————————
————————————————————————

- Hadoop Oo - Results
MapReduce

TPT-DATAIA921 Architectures for Big Data loana Manolescu 15

i

T
B

Il

Database

management 1st logical query plan

system

TPT-DATAIAS92

Use a MapReduce program for every
physical operator

Query (e.g. SQL)
h 2

h 4

Query optimizer

<

Chosen physical plan

{

Execution engine

"

Data storage (e.g. relational) —
e

Architectures for Big Data

Query (e.g. SQL)

1st logical query plan MapReduce
setting

Query optimizer for MR

L

Chosen MR-based physical plan

{

Parallel execution engine
* 1 master
* N slaves

¥

Data storage: HDFS

loana Manolescu 16

Implementing physical operators on
MapReduce

To avoid writing code for each query!

If each operator is a (small) MapReduce program, we
can evaluate queries by composing such small
programs

The optimizer can then chose the best MR physical
operators and their orders (just like in the traditional

setting)
Translate:

— Unary operators (o and 7t)

— Binary operators (mostly: P><]on equality, i.e. equijoin)
— N-ary operators (complex join expressions)

Implementing unary operators on
MapReduce

e Selection (Gpred (R)):
— Split the R input tuples over all the nodes
— Map:
foreach t which satisfies pred in the input
partition
e Output (hn(t.toString()), t); // hn fonction de hash

— Reduce:
e Concatenate all the inputs

What values should hn take?

Implementing unary operators on
MapReduce

* Projection (1t .,<(R)):
— Split R tuples across all nodes
— Map:
foreach t
output (hn(t), T(t))
— Reduce:

e Concatenate all the inputs

e Betteridea?

Recall: physical operators for binary
joins (classical DBMS scenario)

Example: equi-join (R.a=S.b)

Nested loops join: Merge join: // requires sorted inputs
foreach t1 in R{ repeat{ O(|R|+|S])
foreach t2in S { while (!aligned) { advance Ror S };
if t1.a = t2.b then output (t1 || t2) while (aligned) { copy R into topR, S into topS };
} output topR x topS;

}

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory Also:

While (!endOf(R)) { t € R.next; put(hash(t.a), t); } Block nested loops join

While (!endOf(S)) { t € S.next; Index nested loops join
matchingR = get(hash(S.b)); Hybrid hash join

output(matchingR x t); Hash groups / teams

O(RI+ISD

TPT-DATAIA921 Architectures for Big Data loana Manolescu 20

Implementing equi-joins on MapReduce (1)

Repartition join [Blanas 2010] (~symetric hash)
R.a=S.b

N
R > Mapper:

* Qutput (t.a, («R», t)) for each tin R
* Qutput (t.b, («S», t)) for each tin S
Reducer:

* Foreach input key k

— Res, = set of all R tuples on k x
set of all S tuples on k

* Output Res,

Implementing equi-joins on MapReduce (1)
Repartition join
e R(rID, rVal) join(rID = SID) S(sID, sVal)

Tagging origins
A
e ™
Mapper 1
R
Key | Value Key | Value
1 | RI — 1 | ‘RRI1 —}
2 | R2 »EH 2 | ‘R'R2
3 R3 3 ‘R’,R3
4 R4 4 ‘R',R4
Mapper 2
S
Key | Value Key | Value
1 | s1 - 1 | ‘g8l —}
2 S2 * g h 2 ‘S,S2
3 S3 3 | ‘9,83
4 S4 4 ‘S’,54
N g

TDT NATAIAQD1

~

I)\/IgP Phase

tArtiirac fAr Ria NAatA

Partitioning by key (Round Robin)

Grouping by keys Local join
A A
e ™ g
Reducer 1
Key @ Tuple
‘R’,R1 @ Result
1 3]
| S,S1_mmp =) Ri|S1
3 ‘R’,R3 = R3 | S3
‘S’,S3
Reducer 2
' Key | Tuple
9 ‘R’,R2 = Result
5,52 mmlp| 2w R2 | 52
4 RBR4 2 R4 | S4
‘S’,54
N
—
Reduce Phase

lnana NMannlacrn

29

Implementing equi-joins on MapReduce (2)

* Semijoin-based MapReduce join
* Recall: semijoin optimization technique:

— Rjoin S = (R semijoin S) join S

Ya¥ ya¥

| > /\ Or more /\ S
.a=S.b D< S exactly: D<
RN\ "\ N
R S R” &(S.b)
— Useful in distributed settings to reduce transfers: if the
distinct S.b values are smaller than the non-matching R

tuples

— Symetrical alternative: R join S = R join (S semijoin R)

Implementing equi-joins on MapReduce (2)

Semijoin-based MapReduce join

Extracting join keys
AN

.A»-w»-‘z':
B

TPT-DATAIA921

T

Job 1
Full MapReduce job

=)
B
MapReduce

Aoab—ﬂg‘

Broadcasting keys of R to all the
splits of S and join S with keys of R
AN\

~
~

Architectures for Big Data

Mapper 1
{Key|1|3]4 [|
S a Key | Value
Key | Value £ 1 S1
1 sl mp
2 S2
\ Mapper 2
(Key|1]3[4jmp[]
S . Key ’ Value
Key Value g » 3 S3
3 33 4 | S4
4 S4
N =
N
Job 2
Map-only job

loana Manolescu

Broadcasting the results of the
previous job (S') to all the splits

of R, and locally joining R with S

AN
- N
Mapper 1
S
Key Value
—_ 1 81]
) i‘""“w} 3 S8 ’
- 4 54 Result
R g* R1 | SI
R2 S3
Key Value
1 | R mp
3 R2 T
l { Mapper 2 J
o ~ A
Job 3
Map-only job
24

Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join [Blanas2010]
If |[R| << |S|, broadcast R to all nodes!

R.a=S.b
R N\ S + Example:Sis alog data collection (e.g. log table)

 Ris areference table e.g. with user names,
countries, age, ...

* Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.

Reduce: nothing (« map-only join »)

Implementing equi-joins on
MapReduce (4)

* Trojan Join [Dittrich 2010]

A Map task is sufficient for the join if relations are already co-
partitioned by the join key

— The slice of R with a given join key is already next to the slice of S with the

same join key

— This can be achieved by a MapReduce job similar to repartition join but

which builds co-partitions at the end

Co-partitioned split

Co-group

HR | DR | HS | DS

Co-group

HR | DR

HS

DS

Co-partitioned split

Co-group
HR | DR | HS | DS

— Useful when the joins can be known in advance (e.g. keys — foreign keys)

Implementing binary equi-joins in
MapReduce

Repartition Join Most general Not always the most
efficient

Semijoin-based Join Efficient when semijoin is Requires several jobs, one

selective (has small results) must first do the semi-join

Broadcast Join Map-only One table must be very
small

Trojan Join Map-only The relations should be co-
partitioned

TPT-DATAIA921 Architectures for Big Data loana Manolescu 27

Implementing n-ary (« multiway »)
join expressions in MapReduce

R(RID, C) join T(RID, SID, O) join S(SID, L)
« Mega » operator for the whole join expression?...

Three relations, two join attributes (RID and SID)

Split the SIDs into Ns groups and the RIDs in Nr groups.
Assume Nr x Ns reducers available.

Hash T tuples according to a composite key made of the
two attributes. Each T tuple goes to one reducer.

Hash R and S tuples on partial keys (RID, null) and (null,
SID)

Distribute R and S tuples to each reducer where the non-
null component matches (potentially multiple times!)

Implementing multi-way joins in MR: replicated joins

Joining the three

Generating keys and tagging origins
A

e N
Mapper 1
R
' Rid | Value = ~ Key | Value
1 a 1, null | ‘C,C1
2 C2 2,null | ‘C’,C2
4 h
Mapper 2
T
Rid | Sid | Value | Key Value
1 1 L1 =3 1,1 ‘L,L1
1 2 L2 E 1,2 ‘LL2
2 2 L3 | 22 ‘UL3
Mapper 3
S
Sid | Value a Key | Value
1 01 null,l | ‘0’01
2 02 null,2 ‘O0’,02
N ~ 7
Map Phase
TPT-DATAIA921 Architectures for Big Data

loana Manolescu

tables locally
o
Reducer 1
RID=1 SID=1
Key | Value
» 1null | ‘C,C1 Result
11 | T,Ll q C1,L1,01
g null,1 | ‘O, 01
g L J
25| [Reducer2 |
B RID=1 SID=2
f‘; a Key | Value
B2 » Loull | ‘C’,C1 q Result
8% 12 | T,L2 C1,12,02
g null,2 | ‘O’, 02
a
!s :-S - J
> - \
< g
Reducer 3
&9 RID=2 SID=1
_§ @ » Key | Value
.ﬁ a 2,null | ‘C’, C2 Result
53 null,l | O, 01
o, to
% Reducer 4
e RID=2 SID=2
Key | Value 5
#)| 2nul | C,C2 g Result
2,2 ‘T, L3 "§ C2,L3,02
null,2 ‘O’, 02
. — ”
Reduce Phase

Particular case of multi-way joins:
star joins on MapReduce

 Same join attribute in all relations:

R(x, y) join S(x, z) join T(x, u) 5 3
y

Yy at

[T(U, X)

* If N reducers are available, it suffices to
partition the space of x valuesin N

* Then co-partition R, S, T = map-only join

QUERY OPTIMIZATION FOR
MAPREDUCE

Query optimization for MapReduce

* Given a query over relations R1, R2, ..., Rn, how
to translate it into a MapReduce program?

— Use one replicated join. Pbm: the space of
composite join keys (Attl|Att2]...| Attk) is limited
by the number of reducers 2
may shuffle some tuples to many reducers.

— Use n-1 binary joins

— Use n-ary (multiway) joins only

What is the full space of alternatives?
How to explore it?

RDF query optimization for
MapReduce

How can we
manage large
volumes of Linked
Open Data (RDF)
based on
MapReduce?

TPT-DATAIA921 Architectures for Big Data

Data management

task specified in

dedicated language

=

<

Hadoop
MapReduce

Q

1 1 0

@@ | M ‘() R(‘j AN &ci /‘\‘Y POOL I’AU BLISHE R‘S
Cloud-Based RDF
Data Management

Zoi Kaoudi

1

: Ioana Manolescu

1 Stamatis Zampetakis
-

- Results

loana Manolescu 33

RDF query optimization for
MapReduce

e Standard query language for RDF: SPARQL
* Relational vs. RDF data modeling:

— Relational: 2 atoms
Person(id, name, birthdate), Address(pID, street, city, zipcode, country)

— RDF: 7 atoms
triple(plD, hasName, ?name), triple(pID, bornOn, ?birthDate), triple(pID,
hasAddress, ?alD), triple(?alD, hasStreet, ?street), triple(?alD, hasCity,

?city), triple(?alD, hasZip, ?zipCode), triple(?alD, hasCountry, ?country)
w name street % < zipcode
: hasAddress ne
pid > alDj
OrnOn birthdate city hasCity

— SPARQL query optimization is a stress test for MapReduce platforms

Query:

SELECT ?x ?y

WHERE {

T1l: ?w:propl<Cl>.
T2: ?w :prop2<C2>.
T3: ?w:prop3 ?x.
T4: ?x:propd <C3>.
T5: ?x:prop5 <C4>.
T6: ?x:propb ?z.
T7: ?z:prop7?f.

T8: ?f:prop8?y.
T9: ?f:prop9

T10: <C5> :propl0
T11: ?y :propll <C6> .}

Left deep plans with binary joins: 4
[Olston08][Rohloff10][Schatzle11] N/\

TPT-DATAIA921

Architectures for Big Data

N\

1T T2

loana Manolescu

Query plans on MapReduce

0T=3Y3I13H

35

Query plans on MapReduce
— Left deep plans with binary joins

[Olston08][Rohloff10][Schatzle11]
— Left deep plans with n-ary joins:

[Papailioul3] M4
PN
M 112
VAN
M 111
/\\ -
AN =
M 18 T10 °§-
/\ o
AL |8

TPT-DATAIA921 Architectures for Big Data oana Manolescu

Query plans on MapReduce

— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]

— Left deep plans with n-ary joins
[Papailioul3]

— Bushy plans with binary joins: X
[Neumann10][Tsialiamanis12][Gubichev14] [xl/>1
X X

M X M X
2 N2 N ANEIVAN

TI T2 T3 T4 T57T6

T7

T8

WY319H

S

Query plans on MapReduce

— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]

— Left deep plans with n-ary joins
[Papailioul3]

— Bushy plans with binary joins
[Neumann10][Tsialiamanis12][Gubichev14]

— Bushy plans with n-ary joins only at leaves: /N\
[Wull][Kim11][Huangl1][Ravindrall][Leel3] 5
T1
/\ 1
/N\ A
X X M 110

TN NN T~

TM T2 T3 T4 T1T5T6 T7 T8 T9

v

W319H

1%

Query plans on MapReduce

— Left deep plans with binary joins
[Olston08][Rohloff10][Schatzle11]

— Left deep plans with n-ary joins
[Papailioul3]

— Bushy plans with binary joins
[Neumann10][Tsialiamanis12][Gubichev14]

— Bushy plans with n-ary joins only at leaves
[Wull][Kim11][Huangl1][Ravindrall][Leel3]

— Bushy plans with n-ary joins: -
[Husainll][Goasdoué2015][Wu2017])
/\ og-.

/I\ /\ /\ /\ /\ |

T T2 T3 T4T5T6 T7 T8 T10 T9 Ti1

Query plans on MapReduce

X

/\

M Tt
PN

T10

9

7™z

T8

A

0T=1Y319H

Usua
trans

paral

ly, each join layer is
ated into a set of
el MR jobs

The plan height = the
number of successive jobs

Impacts execution time!

X L
/\ 9
X N 5
P N N
I
X M N X X w

TT T2 T3 T4 T5T6 T7 T8 T10 T9 Til

Query plans in CliqueSquare LIQHEZ

[Goasdouée2015]

* Goal: build flat plans for RDF queries by exploiting
n-ary (star) equality joins.

* |dea: identify cliques = subsets of n >= 2 triples sharing a common
variable, use an n-ary join to combine them

* Then find another clique and similarly join them, etc.

e Until all triples have been joined

GFLinue?

CligueSquare algorithm:

Variable Graphs

Represent queries and intermediary results

SELECT ?x ?y

WHERE {

T1l: ?x takesCourse ?y.
T2: ?x member ?z.
T3: ?w advisor ?x.

T4: ?w name ?u .}

Query

Variable graph

Nodes are connected with an edge if they share a variable

States

CligueSquare: optimization with n-ary joins

Each node of a graph corresponds to a clique of
nodes of the previous graph.

A join operator corresponds to the "collapsing”
of one cligue (triples that all join on the same
variables) into a single node

N/\

X

SN TN

M M M M N
/I\/\/\/\

Tl T3 T4 T5T6 T7 T8 Ti1 T9 T10

G LInUE?
Logical plan = Physical plan

N/N\N
/\ /l\

o o MS o o MS MS MS o MS ©
/ \.IM1l [\ [te] [T71 [T8] | [19] |

MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]

» Reading the triples from HDFS requires a Map Scan (MS) operator

G LInUE?
Logical plan = Physical plan

FF mMs FF Ms MS Ms MS F
/ N\\m1 | \ [[T71 [78] | [ro] |
MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]

» Logical selections (o) are translated to physical selections (F)

GLINLE®
Logical plan = Physical plan

|
X

/\

M M

MINM MIN MJ X MJ g M

AN AN A NV ANA

F F MS F F MS MS MS F MS F
S/ Nm | \ ma m gy | M
MS MS MS MS MS MS

[T1] [T2] [T4] [T5] [T11] [T10]

» First level joins are translated to Map side joins (MJ) taking advantage of the
data partitioning (triples stored three times, hashed by subject, property, object)

TPT-DATAIA921 Architectures for Big Data loana Manolescu

G LInuE?
Logical plan = Physical plan

|
X

/\

RJ M RJ

MINM MIN MJ X MJ g M

AN AN A NV ANA

F F MS F F MS MS MS F MS F
S/ Nm | \ ma m gy | M
MS MS MS MS MS MS

[T1] [T2] [T4] [T5] [T11] [T10]

» All subsequent joins are translated to Reduce side joins (RJ)

TPT-DATAIA921 Architectures for Big Data loana Manolescu

47

G LInUE?
Physical plan = MapReduce jobs

R 10

MS R MS N

RJ RI M

N e

MJ I MJ M MJ M MJ MJ

~7\N /N A AN /A

F Fwms F F ms mMms ms F MSF
| | 3 | | re] [T17] ms] | L

MS MS MS MS MS MS

[T1] [T2] [T4] [T5] [T11] [T10]

» Group the physical operators into Map/Reduce tasks and jobs

TPT-DATAIA921 Architectures for Big Data loana Manolescu

GLIDUE |
Physical plan = MapReduce jobs

Tt
R) |1
/\\
MST MS N
RJ M R] K
/\

FIFIms [FIIF] ms ms wms|F | MSF
| | |3 | | 6] [17] ms1 | | 1y |
MS || MS MS || MS MS MS
m | 2 ra] || 175 [T11] [T10]

—

» Selections (F) and projections () belong to the same task as their child operator

TPT-DATAIA921 Architectures for Big Data loana Manolescu

LII@%IIJﬁEysicaI plan > MapReduce jobs

1
R
LN
MST MS N
}N\ RJ [>|<1
e M) (v MIpg (MM

7\ /NN A AN

F o F ms|| F F [[ms ms|[ms F || MS F

| | 3l | | 6] [17] ms] | L
MS MS MS MS MS MS
T1] [T2] [Ta] [T5] [T11] [T10]

\§ VAN VAN AN J\ y,

» Map joins (MJ) along with all their descendants are executed in the same task

TPT-DATAIA921 Architectures for Big Data loana Manolescu

&Lgﬁysical plan = MapReduce jobs

1

R

//\
< Fv

A N
:RJ/DQ ‘ RI M)
—X .
AT RICTIVR (T

7\ | /N || \ /\

F o F ms|| F F [[ms ms|[ms F || MS F

| | 3l | | 6] [17] ms] | L
MS MS MS MS MS MS
T1] [T2] [Ta] [T5] [T11] [T10]

\§ VAN VAN AN J\ y,

» Any other operator (RJ or VIS) is executed in a separate task

@LI
e %’%ysmal plan % MapReduce jobs

» Tasks are grouped into jobs in a bottom-up traversal

JOB 2
JOB 1
FF wms|| F mMs Ms|[ms F [[MS F
| | 31 | | [re] [T17] ms] | L
MS MS MS MS MS MS
T1] [72] [Ta] [T5] [T11] [T10]
_ AN VAN y, y, J

Structured DM on top of MapReduce

e We have seen:

— Techniques for improving data access selectivity in a
distributed file system (headers; multiple indexes)

— Algorithms for implementing operators: select,
project, join
— Query optimization for massively parallel, n-ary joins

* Next:

— A few highly visible systems

— Some of their mechanisms for consistency in a
distributed setting

Apache projects around Hadoop

~ Hive: relational-like interface on top of
BIVE" Hadoop

* HiveQL language:
CREATE table pokes (foo INT, bar STRING);
SELECT a.foo FROM invites a WHERE a.ds='2008-08-15’;

FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar)
INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo,
t2.foo;

+ possibility to plug own Map or Reduce function when
needed...

Apache projects around Hadoop

HBASE
 HBASE: very large tables on top of HDFS («goal: billions of
rows x millions of columns »), based on « sharding »

* Apache version of Google’s BigTable [CDG+06] (used for
Google Earth, Web indexing etc.)

* Main strong points:
— Fast access to individual rows

— read/write consistency
— Selection push-down (~ Hadoop++)

 Does not have: column types, query language, ...

TPT-DATAIA921 Architectures for Big Data loana Manolescu 55

Apache projects around Hadoop

~ PIG: rich dataflow (« SQL + PL/SQL » style) language on
top of Hadoop

Suited for many-step data transformations (« extract-
transform-load »)

A = LOAD 'student' USING PigStorage() @ [7777~°
AS (name:chararray, age:int, gpa:float); I name

B = FOREACH A GENERATE name; | ====-

DB 2 student

* Flexible data model (~ nested relations)
* Some nesting in the language (< 2 FOREACH ©)

Apache projects around Hadoop

\.*_ PIG: rich dataflow (« SQL + PL/SQL » style) language
G4l on top of Hadoop

A = LOAD 'data’ AS (f1:int,f2:int,f3:int);
DUMP A;

(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
B=GROUPABYf2;, [TTT7"

DUMP B: count(*)
(1,{(1,2,3)}) (4,{(4,2,1),(4,3,3)}) (7,{(7,2,5)}4) |-----
(8,{(8,3,4),(8,4,3)}) [e1
X = FOREACH B GENERATE COUNT(A): oo
DUMP X; it

(1L) (20) (1L) (2L)

PigLatin: repeated execution of some
computations

'users' AS (name, address);

'page views' AS (user, www, time);

S1

A:

B=

C = JOIN A BY

D = FOREACH C
D INTO

E = JOIN A BY

E INTO

name, B BY user;

GENERATE name, address, time;
'Slout';

name LEFT, B BY user;

'S2out';

So

'users' AS (name, address);
'page views' AS (user, www,

A
B
time);

C = JOIN A BY name LEFT, B BY user;
C INTO 'S3out';

PigLatin: repeated execution of some
computations

OQw P
I

JOIN A BY name,
FOREACH C GENERATE name, address,

'users' AS (name, address);

'page views' AS (user, www, time);
B BY user;

time;

=

D INTO 'Slout';
JOIN A BY name LEFT, B BY user;
E INTO 'S2out';

HOQmp
I

COGROUP A BY name,
FOREACH C GENERATE flatten(AdA),
FOREACH D GENERATE name,

S2

A = 'users' AS (name, address);
B = 'page views' AS (user, www,
time);

C = JOIN A BY name LEFT, B BY user;

C INTO 'S3out';

~_=

'users' AS (name, address);
'page views' AS (user, www, time);
B BY user;

address, time;

E INTO 'Slout';

Hj
I

TPT-DATAIA921

FOREACH C GENERATE flatten(A),
F INTO 'S2out'’
F INTO 'S3out'’

flatten(B);

flatten (isEmpty(B) ? {(null,null,null)} :

B)

.
14
.
14

[45% of the original s; + s, execution time]

Architectures for Big Data

loana Manolescu

59

14

PigLatin: repeated execution of some
computations

S1 S2

A = 'users' AS (name, address); A = 'users' AS (name, address);

B = 'page views' AS (user, www, time); B = 'page_views' AS (user, www,

C = JOIN A BY name, B BY user; time);

D = FOREACH C GENERATE name, address, time; C = JOIN A BY name LEFT, B BY user;
D INTO 'Slout’; C INTO 'S3out’;

E = JOIN A BY name LEFT, B BY user;

E INTO 'S2out’';

~_=

r
A = 'users' AS (name, address); Join

rb = COGROUP A BY name, B BY user; I
ID = FOREACH C GENERATE flatten(A), flatten(B); I

“FOREACH D GENERATE name, address, time; =~ or-=s==========="
E INTO 'Slout';

FOREACH C GENERATE flatten(A), flatten (isEmpty(B) ? {(null,null,null)} : B);
F INTO 'S2out'’
F INTO 'S3out'’

ress, time;

F

.
14
.
14

[45% of the original s; + s, execution time]

TPT-DATAIA921 Architectures for Big Data loana Manolescu 60

PigLatin: repeated execution of some
computations

S1 S2

A = 'users' AS (name, address); A = 'users' AS (name, address);

B = 'page_views' AS (user, www, time); B = 'page views' AS (user, www,

C = JOIN A BY name, B BY user; time);

D = FOREACH C GENERATE name, address, time; C = JOIN A BY name LEFT, B BY user;
D INTO 'Slout’; C INTO 'S3out’;

E = JOIN A BY name LEFT, B BY user;

E INTO 'S2out’';

~ =

'users' AS (name, address); Join
'page views' AS (user, www, time);
I - | = B B BN 8 3§ B | L N N N N B N B _§N | L N N B N BN N &N N &N N §B N N §N B B &N § §N |} -----1

.EOGROUP A BY name, B BY user; I
FOREACH C GENERATE flatten(A), flatten(B); I

?ﬁﬁi&?ﬁ?ﬁmﬁﬁﬁfﬁﬁgfaﬁﬁéﬁf?ﬁ@?"""""""""Lﬁ“mm”dn
E INTO 'Slout’;

e e e e e e e e e e e e ———————

F = FOREACH C GENERATE flatten(A), flatten (isEmpty(B)

:U o-lw g

? {(null,null,null)} : B);,

F INTO 'SZout ;
F INTO 'S3out';

[45% of the original s; + s, execution time]

TPT-DATAIA921 Architectures for Big Data loana Manolescu 61

Reuse-based optimizer within Pig [CCH+16]
Sc;iplj chp‘j...?rr,iplj Optimizer:

* Translates Piglatin
programs into
nested relational
algebra for bags

* Applies equivalence
laws to identify
repeated
subexpressions

* Replaces all but one
of the
subexpressions,
reuses the result of

Hadoop O I the last
- MapReduce - - Results « Reduced execution

time by x4

NG

|
ll

1

TPT-DATAIA921 Architectures for Big Data loana Manolescu 62

References

[BPERST10] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita and Y. Tian, “A
Comparison of Join Algorithms for Log Processing in MapReduce,” in SIGMOD
2010.

[LMDMcGS11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and
Prashant Shenoy. "A Platform for Scalable One-Pass Analytics using
MapReduce", ACM SIGMOD 2011

[DQRSIS] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, Jorg Schad. "Only Aggressive Elephants are Fast Elephants", VLDB
2012

[Goasdoué2015] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz and S.
Zampetakis. "CliqueSquare: Flat plans for massively parallel RDF Queries", |CDE
2015

[JQD11] A.Jindal, J.-A.Quiané-Ruiz and J.Dittrich. "Trojan Data Layouts: Right
Shoes for a Running Elephant" SOCC, 2011

[MW19] N. Makrynioti and V. Vassalos. "Declarative Data Analytics: A Survey",
2019

[Wu2017] Buwen Wu ; Yongluan Zhou ; Hai Jin ; Amol Deshpande. "Parallel
SPARQL Query Optimization", ICDE 2017

