Exercises in MIPS

1 Hello world

Exercice 1. In this exercise you need to write a mips program that prints "Hello World !" and a newline using the syscall 4 (print string).

Exercice 2. This second exercise is the same as the first except that you should only use the syscall 11 (print char).

Exercice 3. Now, write a mips program that reads an integer n and then prints $2 * n$.

2 Simple loops

Exercice 4. Here you need to read an integer n and then print n times the character \# followed by a newline. For instance on the input 5 you should print :

```
#####
```

Exercice 5. Here you need to read an integer n and then print a triangle made of the character \#. For instance on the input 5 you should print :

```
#####
####
###
##
#
```

Exercice 6. Here you need to read an integer n and then print F_{n} with F_{n} being the sequence such that $F_{0}=0$, $F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$. For this simple exercise you need to use the following algorithm (shown in C) :

```
int cur = 0;
int nxt = 1;
while(n>0) {
        int nxtnxt = cur+nxt ;
        cur = nxt ;
        nxt = nxtnxt ;
        n--;
}
// cur holds the result
```

For reference, $F_{10}=55$ and $F_{20}=6765$.

3 More complicated loops

Exercice 7. Given an integer n, we define syracuse (n) as the number $n / 2$ when n is even and $3 n+1$ otherwise. The goal is to repetitively print n and then replace n with $\operatorname{syracuse}(n)$ until n reaches 1 . For instance here is the output for $n=20$ (note that n is the input and also part of the output).

20
10
5
16
8
4
2
1
Exercice 8. Consider the infinite computation $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots$. We consider P_{k} its truncation at the k-th terms, i.e. $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}$ for $k=5$.

The goal is to print $4 \times P_{k}$ for all k (starting from 1 , then 2 , etc.; yes, this is an infinite loop).
Hint : the float functions are mostly the same as the integer ones but with . s.

4 Recursion

Exercice 9. Compute n ! using recursion. Reminder : $n!=n \times(n-1) \times \cdots \times 2 \times 1$.
Exercice 10. Compute F_{n} (see above) using recursion. Do not try to memoize.
Exercice 11. Read three integers, a, b and c and then print $a^{c} \bmod b$ computed using a fast exponentiation algorithm.

Exercice 12. We define T_{1} the Sierpinski triangle of size 1 as the single character \# and $T_{2 N}$, the Sierpinski triangle of size $2 N$ as the combination of one T_{N} above the concatenation of two T_{N}. Below are the triangles $T_{1}, T_{2}, T_{4}, T_{8}, T_{16}$, it should make it clearer. You probably want to use the RAM to store the triangle before printing it...

```
N=1
#
N=2
#
##
N=4
#
##
# #
####
```

```
N=8
#
##
# #
####
# #
## ##
# # # #
########
```

$N=16$
\#
\#\#
\# \#
\#\#\#\#
\# \#
\#\# \#\#
\# \# \# \#
\#\#\#\#\#\#\#
\# \#
\#\# \#\#
\# \# \# \#
\#\#\#\# \#\#\#\#
\# \# \# \#
\#\# \#\# \#\# \#\#
\# \# \# \# \# \# \# \#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

