Exercises in MIPS

1 Hello world

Exercice 1. In this exercise you need to write a mips program that prints "Hello World!" and a newline using the syscall 4 (print string).

Exercice 2. This second exercise is the same as the first except that you should only use the syscall 11 (print char).

Exercice 3. Now, write a mips program that reads an integer n and then prints 2 * n.

2 Simple loops

Exercice 4. Here you need to read an integer n and then print n times the character # followed by a newline. For instance on the input 5 you should print :

####

Exercice 5. Here you need to read an integer n and then print a triangle made of the character #. For instance on the input 5 you should print :

```
# # # # #
# # # #
# # #
# #
#
```

Exercice 6. Here you need to read an integer n and then print F_n with F_n being the sequence such that $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$. For this simple exercise you need to use the following algorithm (shown in C) :

```
int cur = 0;
int nxt = 1;
while(n>0) {
    int nxtnxt = cur+nxt ;
    cur = nxt ;
    nxt = nxtnxt ;
    n--;
}
// cur holds the result
```

For reference, $F_{10} = 55$ and $F_{20} = 6765$.

3 More complicated loops

Exercice 7. Given an integer n, we define synacuse(n) as the number n/2 when n is even and 3n+1 otherwise. The goal is to repetitively print n and then replace n with syracuse(n) until n reaches 1. For instance here is the output for n = 20 (note that n is the input and also part of the output).

Exercice 8. Consider the infinite computation $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$ We consider P_k its truncation at the *k*-th terms, *i.e.* $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9}$ for k = 5. The goal is to print $4 \times P_k$ for all k (starting from 1, then 2, etc.; yes, this is an infinite loop).

Hint : the float functions are mostly the same as the integer ones but with .s.

4 Recursion

Exercice 9. Compute n! using recursion. Reminder : $n! = n \times (n-1) \times \cdots \times 2 \times 1$.

Exercice 10. Compute F_n (see above) using recursion. Do not try to memoize.

Exercice 11. Read three integers, a, b and c and then print $a^c \mod b$ computed using a fast exponentiation algorithm.

Exercice 12. We define T_1 the Sierpinski triangle of size 1 as the single character # and T_{2N} , the Sierpinski triangle of size 2N as the combination of one T_N above the concatenation of two T_N . Below are the triangles $T_1, T_2, T_4, T_8, T_{16}$, it should make it clearer. You probably want to use the RAM to store the triangle before printing it...

N=1# N=2# ## N=4# ## # # ####

N=8	
#	
# #	
# #	
# # # #	
# #	
## ##	
# # # #	
########	
ппппппп	
N_16	
N=16	
#	
##	
# #	
# # # #	
# #	
## ##	
# # # #	
########	:
#	#
##	##
# #	# #
####	####
# #	# #
#####	
# # # #	
########	########