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SQL Motivation



The problem with programming languages

Express what you want and not how to get it

I want the directors of movies with “Greta Gerwig” as actress

VS

List movies, if “Greta Gerwig” appears in the list of actors, output

movie director.

Louis JACHIET 2 / 48



The problem with programming languages

Abstract away the way the data is stored

logical representation of data

easy to update the representation

easy to add features (persistence, concurrency, etc.)

easy to add optimization
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Before database systems

Each application maintaining data would have to deal with:

Structure

Persistence

Efficiency

Update without breaking constraints

Concurrency

. . .
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The first database systems

In the first database systems the application would access the data

through an API.

Typically like a key-value store

Structure ∼OK

Persistence OK

Efficiency NO

Update without breaking constraints meh

Concurrency meh

. . .
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Arrival of SQL

In 1970, Ted Codd proposes the Relational Model and

Relational Algebra.

In Ted proposal the user of a database only specifies what

data it wants and not how to get it.

Louis JACHIET 6 / 48



Generalities

The Structured Query Language (SQL) was introduced in

1974 after the work of Ted Codd.

It became an official standard in 1986

new version of the standard in 89, 92, 99, 03, 08, 11, etc.

Very well supported with some variations. . .

Oracle, DB2, SQL Server, SQLlite, Postgres,

MySQL/MariaDB
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Data model



An example

Theaters

Name Address nbRooms

“La Nef” “bd Édouard Rey” 7

“Le Mélies” “caserne de Bonne” 3

“Le Club” “rue Phalanstère” 3

Casting

Movie Person Role

“Inception” “Ellen Page” Actor

“Inception” “Leonardo DiCaprio” Actor

“Inception” “Christopher Nolan” Director

“Toy Story 3” “Tom Hanks” Voice Actor

“Mamma Mia” “Meryl Streep” Actor

“Mamma Mia” “ Phyllida Lloyd” Director

Projection

Title Date Theater

“Inception” 12/08/2010 20h “Le Mélies”

“Toy Story 3” 13/08/2010 17h “Le Club”

“Toy Story 3” 13/08/2010 20h “Le Club”

“Toy Story 3” 10/08/2010 17h “Le Mélies”

“Akmareul boatda” 10/08/2010 16h “Le Club”

“How to train your dragon” 12/03/2010 18h “Pathé Chavant”

Louis JACHIET 8 / 48



The relational model

A Schema is composed of:

Several tables or relations.

Each relation has several columns or attributes.

Each column has a type (INTEGER, BIGINT, VARCHAR, . . . )

The data is stored as records or tuples into this table.
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Query



Different types of queries

SQL queries allows to:

Retrieve data

SELECT

Add data

INSERT

Delete data

DELETE

Update data

UPDATE

And many other things (e.g. modify schema)

ALTER / CREATE TABLE / ...
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SELECT queries



SELECT base

SELECT col1 as myFancyCol, col2, col3

FROM myTable
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SELECT base, alternative

SELECT *

FROM myTable

Louis JACHIET 13 / 48



SELECT base with expression

SELECT myCol*3, myCol/someOtherCol, "hello"

FROM myTable
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SELECT base with condition

SELECT *

FROM myTable

WHERE myIntCol > 42
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SELECT base with condition

SELECT *

FROM myTable

WHERE myIntCol > 42

AND myStringCol LIKE '%hello%'
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SELECT base several tables

SELECT *

FROM myTable, mySecondTable
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SELECT base several tables with conditions

SELECT *

FROM myTable, mySecondTable

WHERE myTable.someCol = mySecondTable.someCol

SELECT *

FROM myTable

INNER JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol
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SELECT base with group

SELECT someOtherCol, Max(yetAnotherCol), COUNT(*)

FROM myTable

WHERE myTable.someCol = ``some value''

GROUP BY someOtherCol

The “GROUP BY” needs to contain all columns selected!

When aggregates appears on the columns selected an implicit

“GROUP BY 1” is added.
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Detour: a restricted list of useful aggregates

SUM, AVG, MIN, MAX, STDEV, VAR

COUNT

COUNT DISTINCT

STRING AGG / GROUP CONCAT / . . .
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SELECT base with group and conditions on groups

SELECT someOtherCol, max(yetAnotherCol), COUNT(*)

FROM myTable

WHERE myTable.someCol = ``some value''

GROUP BY someOtherCol

HAVING sum(someColInt) > 42
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SELECT base with order

SELECT *

FROM myTable

ORDER BY col, DESC(someCol)
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SELECT base with limit

SELECT *

FROM myTable

ORDER BY col, DESC(someCol)

LIMIT 10
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SELECT base with limit and offsets

SELECT *

FROM myTable

ORDER BY col, DESC(someCol)

LIMIT 10

OFFSET 10
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General SELECT

SELECT cols

FROM tables

WHERE condition

GROUP BY cols2

HAVING condition2
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Nested SELECT (can be used to replace HAVING)

SELECT cols FROM

(

SELECT *

FROM tables

WHERE condition

GROUP BY cols2

) as t

WHERE condition2
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A few special SQL constructs



NULL

NULL is a special SQL value to designate a missing value.

Because it designates a missing value, it is not equal or comparable

to anything.

In particular, it will not join with anything
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What (SELECT * FROM myTable WHERE ((NULL=NULL)

IS NULL) = NULL) returns?

A) myTable

B) nothing
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Dealing with NULL

COALESCE(a, b, . . . )

Return the first non NULL value of the list (or NULL).

v ISNULL

Return a boolean determining whether v is NULL

The logic in SQL is three-valued True, False, and NULL.
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WHERE ... IN

Useful to test values within a set of values

SELECT * FROM table

WHERE someCol IN (1,23,565,3)
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WHERE EXISTS / WHERE NOT EXISTS

Useful to test conditions over tables

SELECT * FROM table t1

WHERE NOT EXISTS (

SELECT *

FROM otherTable t2

WHERE t2.someCol == t1.otherCol

)
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Exercises

A - Average score for each movie

B - Ids of the movies with an average over 4

C - List of Ids of movies ordered by average score

D - Ids of movies with a rating but no title

E - Titles of the 10 best movies

F - Titles of the 10 to 20 best movies (20 best ones minus the 10

best)

G - Titles of the 10 best movies according to the score:∑
votes

nb(votes) + 1
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Evaluation and optimization of SQL

queries



Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓
The query is executed
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Evaluation of SQL queries 1/2

SELECT * FROM movies WHERE userId = 0;

pguser=> EXPLAIN SELECT * FROM ratings WHERE userId = 0 ;

QUERY PLAN

------------------------------------------------------------

Seq Scan on ratings (cost=0.00..1903.45 rows=79 width=24)

Filter: (userid = 0)

(2 rows)
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Evaluation of SQL queries 2/2

SELECT * FROM movies WHERE title LIKE ’Jumanji%’;

pguser=> EXPLAIN

SELECT * FROM movies

WHERE title LIKE 'Jumanji%' ;

QUERY PLAN

---------------------------------------------------------

Seq Scan on movies (cost=0.00..218.76 rows=1 width=48)

Filter: (title ~~ 'Juman%'::text)

(2 rows)
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Index



Optimization of SQL queries

One of the great advantage of using SQL is to let the query engine

optimize the queries.

To really optimize the queries, the engine needs indexes!
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Different types of indexes

Default: btree

Retrieves efficiently by value or order

Hash

Retrieves efficiently by value

GiST / SP-GiST

Retrieves efficiently geographical data
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Example of index

Source https://en.wikipedia.org/wiki/Architecture_of_Btrieve
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Indexes on ratings

Table "public.ratings"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

---------+------------------+-----------+----------+---------+---------+--------------+-------------

userid | integer | | | | plain | |

movieid | integer | | | | plain | |

rating | double precision | | | | plain | |

time | bigint | | | | plain | |

Indexes:

"ratings_movieid_idx" btree (movieid)

Table "public.movies"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

--------+---------+-----------+----------+---------+----------+--------------+-------------

id | integer | | | | plain | |

title | text | | | | extended | |

genre | text | | | | extended | |

Indexes:

"titleIdx" btree (title)

"titleIdxTxt" btree (title text_pattern_ops)

"movies_id_idx" btree (id)
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Evaluation of SQL queries

SELECT * FROM movies WHERE movieId = 0;

pguser=> EXPLAIN SELECT * FROM ratings WHERE movieId = 0 ;

QUERY PLAN

--------------------------------------------------------------------

Bitmap Heap Scan on ratings (cost=4.39..51.01 rows=13 width=24)

Recheck Cond: (movieid = 0)

-> Bitmap Index Scan on ratings_movieid_idx

(cost=0.00..4.39 rows=13 width=0)

Index Cond: (movieid = 0)

(4 rows)
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Evaluation of SQL queries

SELECT * FROM movies WHERE title LIKE ’Jumanji%’;

pguser=> EXPLAIN SELECT * FROM movies WHERE title LIKE 'Jumanji%' ;

QUERY PLAN

------------------------------------------------------------------------------

Index Scan using titleIdxTxt on movies (cost=0.29..8.31 rows=1 width=48)

Index Cond: ((title ~>=~ 'Jumanji'::text) AND (title ~<~ 'Jumanjj'::text))

Filter: (title ~~ 'Jumanji%'::text)

(3 rows)
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Join



INNER JOIN

SELECT *

FROM myTable, mySecondTable

WHERE myTable.someCol = mySecondTable.someCol

SELECT *

FROM myTable

INNER JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

A B
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LEFT JOIN

SELECT *

FROM myTable

LEFT JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Includes the INNER JOIN + all elements from myTable with no

match in mySecondTable.

A B
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RIGHT JOIN

SELECT *

FROM myTable

LEFT JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Includes the INNER JOIN + all elements from myTable with no

match in mySecondTable.

A B
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FULL JOIN

SELECT *

FROM myTable

FULL JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Includes the INNER JOIN + all elements with no match.

A B
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NATURAL JOIN

SELECT *

FROM myTable

NATURAL JOIN mySecondTable

The INNER JOIN with condition on default columns.

A B
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UNION / UNION ALL

SELECT *

FROM myTable

UNION

SELECT *

FROM mySecondTable

UNION in the set sense!

SELECT *

FROM myTable

UNION ALL

SELECT *

FROM mySecondTable

UNION in the multiset sense!
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MINUS / EXPECT

SELECT *

FROM myTable

EXCEPT

SELECT *

FROM mySecondTable

Difference

A B
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