
SQL crash course

Louis Jachiet

Louis JACHIET 1 / 48

SQL Motivation

The problem with programming languages

Express what you want and not how to get it

I want the directors of movies with “Greta Gerwig” as actress

VS

List movies, if “Greta Gerwig” appears in the list of actors, output

movie director.

Louis JACHIET 2 / 48

The problem with programming languages

Abstract away the way the data is stored

logical representation of data

easy to update the representation

easy to add features (persistence, concurrency, etc.)

easy to add optimization

Louis JACHIET 3 / 48

Before database systems

Each application maintaining data would have to deal with:

Structure

Persistence

Efficiency

Update without breaking constraints

Concurrency

. . .

Louis JACHIET 4 / 48

The first database systems

In the first database systems the application would access the data

through an API.

Typically like a key-value store

Structure ∼OK

Persistence OK

Efficiency NO

Update without breaking constraints meh

Concurrency meh

. . .

Louis JACHIET 5 / 48

The first database systems

In the first database systems the application would access the data

through an API.

Typically like a key-value store

Structure ∼OK

Persistence OK

Efficiency NO

Update without breaking constraints meh

Concurrency meh

. . .

Louis JACHIET 5 / 48

Arrival of SQL

In 1970, Ted Codd proposes the Relational Model and

Relational Algebra.

In Ted proposal the user of a database only specifies what

data it wants and not how to get it.

Louis JACHIET 6 / 48

Generalities

The Structured Query Language (SQL) was introduced in

1974 after the work of Ted Codd.

It became an official standard in 1986

new version of the standard in 89, 92, 99, 03, 08, 11, etc.

Very well supported with some variations. . .

Oracle, DB2, SQL Server, SQLlite, Postgres,

MySQL/MariaDB

Louis JACHIET 7 / 48

Generalities

The Structured Query Language (SQL) was introduced in

1974 after the work of Ted Codd.

It became an official standard in 1986

new version of the standard in 89, 92, 99, 03, 08, 11, etc.

Very well supported with some variations. . .

Oracle, DB2, SQL Server, SQLlite, Postgres,

MySQL/MariaDB

Louis JACHIET 7 / 48

Generalities

The Structured Query Language (SQL) was introduced in

1974 after the work of Ted Codd.

It became an official standard in 1986

new version of the standard in 89, 92, 99, 03, 08, 11, etc.

Very well supported with some variations. . .

Oracle, DB2, SQL Server, SQLlite, Postgres,

MySQL/MariaDB

Louis JACHIET 7 / 48

Data model

An example

Theaters

Name Address nbRooms

“La Nef” “bd Édouard Rey” 7

“Le Mélies” “caserne de Bonne” 3

“Le Club” “rue Phalanstère” 3

Casting

Movie Person Role

“Inception” “Ellen Page” Actor

“Inception” “Leonardo DiCaprio” Actor

“Inception” “Christopher Nolan” Director

“Toy Story 3” “Tom Hanks” Voice Actor

“Mamma Mia” “Meryl Streep” Actor

“Mamma Mia” “ Phyllida Lloyd” Director

Projection

Title Date Theater

“Inception” 12/08/2010 20h “Le Mélies”

“Toy Story 3” 13/08/2010 17h “Le Club”

“Toy Story 3” 13/08/2010 20h “Le Club”

“Toy Story 3” 10/08/2010 17h “Le Mélies”

“Akmareul boatda” 10/08/2010 16h “Le Club”

“How to train your dragon” 12/03/2010 18h “Pathé Chavant”

Louis JACHIET 8 / 48

The relational model

A Schema is composed of:

Several tables or relations.

Each relation has several columns or attributes.

Each column has a type (INTEGER, BIGINT, VARCHAR, . . .)

The data is stored as records or tuples into this table.

Louis JACHIET 9 / 48

The relational model

A Schema is composed of:

Several tables or relations.

Each relation has several columns or attributes.

Each column has a type (INTEGER, BIGINT, VARCHAR, . . .)

The data is stored as records or tuples into this table.

Louis JACHIET 9 / 48

The relational model

A Schema is composed of:

Several tables or relations.

Each relation has several columns or attributes.

Each column has a type (INTEGER, BIGINT, VARCHAR, . . .)

The data is stored as records or tuples into this table.

Louis JACHIET 9 / 48

An example

Theaters

Name Address nbRooms

“La Nef” “bd Édouard Rey” 7

“Le Mélies” “caserne de Bonne” 3

“Le Club” “rue Phalanstère” 3

Casting

Movie Person Role

“Inception” “Ellen Page” Actor

“Inception” “Leonardo DiCaprio” Actor

“Inception” “Christopher Nolan” Director

“Toy Story 3” “Tom Hanks” Voice Actor

“Mamma Mia” “Meryl Streep” Actor

“Mamma Mia” “ Phyllida Lloyd” Director

Projection

Title Date Theater

“Inception” 12/08/2010 20h “Le Mélies”

“Toy Story 3” 13/08/2010 17h “Le Club”

“Toy Story 3” 13/08/2010 20h “Le Club”

“Toy Story 3” 10/08/2010 17h “Le Mélies”

“Akmareul boatda” 10/08/2010 16h “Le Club”

“How to train your dragon” 12/03/2010 18h “Pathé Chavant”

Louis JACHIET 10 / 48

Query

Different types of queries

SQL queries allows to:

Retrieve data

SELECT

Add data

INSERT

Delete data

DELETE

Update data

UPDATE

And many other things (e.g. modify schema)

ALTER / CREATE TABLE / ...

Louis JACHIET 11 / 48

SELECT queries

SELECT base

SELECT col1 as myFancyCol, col2, col3

FROM myTable

Louis JACHIET 12 / 48

SELECT base, alternative

SELECT *

FROM myTable

Louis JACHIET 13 / 48

SELECT base with expression

SELECT myCol*3, myCol/someOtherCol, "hello"

FROM myTable

Louis JACHIET 14 / 48

SELECT base with condition

SELECT *

FROM myTable

WHERE myIntCol > 42

Louis JACHIET 15 / 48

SELECT base with condition

SELECT *

FROM myTable

WHERE myIntCol > 42

AND myStringCol LIKE '%hello%'

Louis JACHIET 16 / 48

SELECT base several tables

SELECT *

FROM myTable, mySecondTable

Louis JACHIET 17 / 48

SELECT base several tables with conditions

SELECT *

FROM myTable, mySecondTable

WHERE myTable.someCol = mySecondTable.someCol

SELECT *

FROM myTable

INNER JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Louis JACHIET 18 / 48

SELECT base several tables with conditions

SELECT *

FROM myTable, mySecondTable

WHERE myTable.someCol = mySecondTable.someCol

SELECT *

FROM myTable

INNER JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Louis JACHIET 18 / 48

SELECT base with group

SELECT someOtherCol, Max(yetAnotherCol), COUNT(*)

FROM myTable

WHERE myTable.someCol = ``some value''

GROUP BY someOtherCol

The “GROUP BY” needs to contain all columns selected!

When aggregates appears on the columns selected an implicit

“GROUP BY 1” is added.

Louis JACHIET 19 / 48

SELECT base with group

SELECT someOtherCol, Max(yetAnotherCol), COUNT(*)

FROM myTable

WHERE myTable.someCol = ``some value''

GROUP BY someOtherCol

The “GROUP BY” needs to contain all columns selected!

When aggregates appears on the columns selected an implicit

“GROUP BY 1” is added.

Louis JACHIET 19 / 48

SELECT base with group

SELECT someOtherCol, Max(yetAnotherCol), COUNT(*)

FROM myTable

WHERE myTable.someCol = ``some value''

GROUP BY someOtherCol

The “GROUP BY” needs to contain all columns selected!

When aggregates appears on the columns selected an implicit

“GROUP BY 1” is added.

Louis JACHIET 19 / 48

Detour: a restricted list of useful aggregates

SUM, AVG, MIN, MAX, STDEV, VAR

COUNT

COUNT DISTINCT

STRING AGG / GROUP CONCAT / . . .

Louis JACHIET 20 / 48

SELECT base with group and conditions on groups

SELECT someOtherCol, max(yetAnotherCol), COUNT(*)

FROM myTable

WHERE myTable.someCol = ``some value''

GROUP BY someOtherCol

HAVING sum(someColInt) > 42

Louis JACHIET 21 / 48

SELECT base with order

SELECT *

FROM myTable

ORDER BY col, DESC(someCol)

Louis JACHIET 22 / 48

SELECT base with limit

SELECT *

FROM myTable

ORDER BY col, DESC(someCol)

LIMIT 10

Louis JACHIET 23 / 48

SELECT base with limit and offsets

SELECT *

FROM myTable

ORDER BY col, DESC(someCol)

LIMIT 10

OFFSET 10

Louis JACHIET 24 / 48

General SELECT

SELECT cols

FROM tables

WHERE condition

GROUP BY cols2

HAVING condition2

Louis JACHIET 25 / 48

Nested SELECT (can be used to replace HAVING)

SELECT cols FROM

(

SELECT *

FROM tables

WHERE condition

GROUP BY cols2

) as t

WHERE condition2

Louis JACHIET 26 / 48

A few special SQL constructs

NULL

NULL is a special SQL value to designate a missing value.

Because it designates a missing value, it is not equal or comparable

to anything.

In particular, it will not join with anything

Louis JACHIET 27 / 48

NULL

NULL is a special SQL value to designate a missing value.

Because it designates a missing value, it is not equal or comparable

to anything.

In particular, it will not join with anything

Louis JACHIET 27 / 48

NULL

NULL is a special SQL value to designate a missing value.

Because it designates a missing value, it is not equal or comparable

to anything.

In particular, it will not join with anything

Louis JACHIET 27 / 48

What (SELECT * FROM myTable WHERE ((NULL=NULL)

IS NULL) = NULL) returns?

A) myTable

B) nothing

Louis JACHIET 28 / 48

Dealing with NULL

COALESCE(a, b, . . .)

Return the first non NULL value of the list (or NULL).

v ISNULL

Return a boolean determining whether v is NULL

The logic in SQL is three-valued True, False, and NULL.

Louis JACHIET 29 / 48

Dealing with NULL

COALESCE(a, b, . . .)

Return the first non NULL value of the list (or NULL).

v ISNULL

Return a boolean determining whether v is NULL

The logic in SQL is three-valued True, False, and NULL.

Louis JACHIET 29 / 48

Dealing with NULL

COALESCE(a, b, . . .)

Return the first non NULL value of the list (or NULL).

v ISNULL

Return a boolean determining whether v is NULL

The logic in SQL is three-valued True, False, and NULL.

Louis JACHIET 29 / 48

WHERE ... IN

Useful to test values within a set of values

SELECT * FROM table

WHERE someCol IN (1,23,565,3)

Louis JACHIET 30 / 48

WHERE EXISTS / WHERE NOT EXISTS

Useful to test conditions over tables

SELECT * FROM table t1

WHERE NOT EXISTS (

SELECT *

FROM otherTable t2

WHERE t2.someCol == t1.otherCol

)

Louis JACHIET 31 / 48

Exercises

A - Average score for each movie

B - Ids of the movies with an average over 4

C - List of Ids of movies ordered by average score

D - Ids of movies with a rating but no title

E - Titles of the 10 best movies

F - Titles of the 10 to 20 best movies (20 best ones minus the 10

best)

G - Titles of the 10 best movies according to the score:∑
votes

nb(votes) + 1

Louis JACHIET 32 / 48

Evaluation and optimization of SQL

queries

Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓
The query is executed

Louis JACHIET 33 / 48

Optimization pipeline

Query is translated into a logical representation

⇓

We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓
The query is executed

Louis JACHIET 33 / 48

Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓
The query is executed

Louis JACHIET 33 / 48

Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓

A cost estimator finds the best way to execute the query

⇓
The query is executed

Louis JACHIET 33 / 48

Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓
The query is executed

Louis JACHIET 33 / 48

Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓

The query is executed

Louis JACHIET 33 / 48

Optimization pipeline

Query is translated into a logical representation

⇓
We find alternative representations for the query

⇓
A cost estimator finds the best way to execute the query

⇓
The query is executed

Louis JACHIET 33 / 48

Evaluation of SQL queries 1/2

SELECT * FROM movies WHERE userId = 0;

pguser=> EXPLAIN SELECT * FROM ratings WHERE userId = 0 ;

QUERY PLAN

--

Seq Scan on ratings (cost=0.00..1903.45 rows=79 width=24)

Filter: (userid = 0)

(2 rows)

Louis JACHIET 34 / 48

Evaluation of SQL queries 2/2

SELECT * FROM movies WHERE title LIKE ’Jumanji%’;

pguser=> EXPLAIN

SELECT * FROM movies

WHERE title LIKE 'Jumanji%' ;

QUERY PLAN

Seq Scan on movies (cost=0.00..218.76 rows=1 width=48)

Filter: (title ~~ 'Juman%'::text)

(2 rows)

Louis JACHIET 35 / 48

Index

Optimization of SQL queries

One of the great advantage of using SQL is to let the query engine

optimize the queries.

To really optimize the queries, the engine needs indexes!

Louis JACHIET 36 / 48

Optimization of SQL queries

One of the great advantage of using SQL is to let the query engine

optimize the queries.

To really optimize the queries, the engine needs indexes!

Louis JACHIET 36 / 48

Different types of indexes

Default: btree

Retrieves efficiently by value or order

Hash

Retrieves efficiently by value

GiST / SP-GiST

Retrieves efficiently geographical data

Louis JACHIET 37 / 48

Different types of indexes

Default: btree

Retrieves efficiently by value or order

Hash

Retrieves efficiently by value

GiST / SP-GiST

Retrieves efficiently geographical data

Louis JACHIET 37 / 48

Different types of indexes

Default: btree

Retrieves efficiently by value or order

Hash

Retrieves efficiently by value

GiST / SP-GiST

Retrieves efficiently geographical data

Louis JACHIET 37 / 48

Different types of indexes

Default: btree

Retrieves efficiently by value or order

Hash

Retrieves efficiently by value

GiST / SP-GiST

Retrieves efficiently geographical data

Louis JACHIET 37 / 48

Example of index

Source https://en.wikipedia.org/wiki/Architecture_of_Btrieve

Louis JACHIET 38 / 48

https://en.wikipedia.org/wiki/Architecture_of_Btrieve

Indexes on ratings

Table "public.ratings"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

---------+------------------+-----------+----------+---------+---------+--------------+-------------

userid | integer | | | | plain | |

movieid | integer | | | | plain | |

rating | double precision | | | | plain | |

time | bigint | | | | plain | |

Indexes:

"ratings_movieid_idx" btree (movieid)

Table "public.movies"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description

--------+---------+-----------+----------+---------+----------+--------------+-------------

id | integer | | | | plain | |

title | text | | | | extended | |

genre | text | | | | extended | |

Indexes:

"titleIdx" btree (title)

"titleIdxTxt" btree (title text_pattern_ops)

"movies_id_idx" btree (id)

Louis JACHIET 39 / 48

Evaluation of SQL queries

SELECT * FROM movies WHERE movieId = 0;

pguser=> EXPLAIN SELECT * FROM ratings WHERE movieId = 0 ;

QUERY PLAN

--

Bitmap Heap Scan on ratings (cost=4.39..51.01 rows=13 width=24)

Recheck Cond: (movieid = 0)

-> Bitmap Index Scan on ratings_movieid_idx

(cost=0.00..4.39 rows=13 width=0)

Index Cond: (movieid = 0)

(4 rows)

Louis JACHIET 40 / 48

Evaluation of SQL queries

SELECT * FROM movies WHERE title LIKE ’Jumanji%’;

pguser=> EXPLAIN SELECT * FROM movies WHERE title LIKE 'Jumanji%' ;

QUERY PLAN

--

Index Scan using titleIdxTxt on movies (cost=0.29..8.31 rows=1 width=48)

Index Cond: ((title ~>=~ 'Jumanji'::text) AND (title ~<~ 'Jumanjj'::text))

Filter: (title ~~ 'Jumanji%'::text)

(3 rows)

Louis JACHIET 41 / 48

Join

INNER JOIN

SELECT *

FROM myTable, mySecondTable

WHERE myTable.someCol = mySecondTable.someCol

SELECT *

FROM myTable

INNER JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

A B

Louis JACHIET 42 / 48

LEFT JOIN

SELECT *

FROM myTable

LEFT JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Includes the INNER JOIN + all elements from myTable with no

match in mySecondTable.

A B

Louis JACHIET 43 / 48

RIGHT JOIN

SELECT *

FROM myTable

LEFT JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Includes the INNER JOIN + all elements from myTable with no

match in mySecondTable.

A B

Louis JACHIET 44 / 48

FULL JOIN

SELECT *

FROM myTable

FULL JOIN mySecondTable

ON myTable.someCol = mySecondTable.someCol

Includes the INNER JOIN + all elements with no match.

A B

Louis JACHIET 45 / 48

NATURAL JOIN

SELECT *

FROM myTable

NATURAL JOIN mySecondTable

The INNER JOIN with condition on default columns.

A B

Louis JACHIET 46 / 48

UNION / UNION ALL

SELECT *

FROM myTable

UNION

SELECT *

FROM mySecondTable

UNION in the set sense!

SELECT *

FROM myTable

UNION ALL

SELECT *

FROM mySecondTable

UNION in the multiset sense!

Louis JACHIET 47 / 48

UNION / UNION ALL

SELECT *

FROM myTable

UNION

SELECT *

FROM mySecondTable

UNION in the set sense!

SELECT *

FROM myTable

UNION ALL

SELECT *

FROM mySecondTable

UNION in the multiset sense!
Louis JACHIET 47 / 48

MINUS / EXPECT

SELECT *

FROM myTable

EXCEPT

SELECT *

FROM mySecondTable

Difference

A B

Louis JACHIET 48 / 48

	SQL Motivation
	Data model
	Query
	SELECT queries
	A few special SQL constructs
	Evaluation and optimization of SQL queries
	Index
	Join

