INF108: Compilation

Louis Jachiet

Conventions for compilation

When *compiling* it is important to follow strict conventions:

- bugs are hard to track
- bugs can be hard to trigger
- for compatibility with other tools, it is required

Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression e is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)

Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression *e* is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)

Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression *e* is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)

Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression e is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)

Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression e is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)

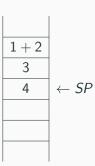
Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression *e* is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)



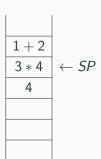
Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x

The effect of an expression *e* is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)



Convention 1

- Each expression is stored on the stack
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x
- Each sub-expression can only modify data below SP

The effect of an expression e is therefore:

- SP is decreased by 4
- the value of e is stored in O(SP)

For instance for (1+2)-(3*4)

(1+2)-(3*4)	\leftarrow SF
3 * 4	
4	

What about let-in?

Whats is the semantics of a let-in construct?

Whats is a semantics?

Let us note $[e]_v$ the value given to e when evaluated in the environment v.

where $v[x \to y]$ denotes the function $I \to \begin{cases} y & \text{when } x = I \\ v(I) & \text{otherwise} \end{cases}$

Convention 1

- Each expression is stored on the stack
- SP moves by exactly 4
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x
- Each sub-expression can only modify data below SP

Where to find our local variables?

Convention 1

- Each expression is stored on the stack
- SP moves by exactly 4
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x
- Each sub-expression can only modify data below SP

Convention 2

Convention 1 + maintain the offset for each variable when compiling

Convention 1

- Each expression is stored on the stack
- SP moves by exactly 4
- Each expression moves SP by exactly 4
- Each global variable x is stored in data at label var_x
- Each sub-expression can only modify data below SP

Convention 2

Convention 1 + maintain the offset for each variable when compiling

kind of tedious...

Convention 3, we do not move SP but use an offset

- Each expression is stored on the stack
- SP does not move
- Each expression is given an offset O
- Each global variable x is stored in data at label var_x
- Each local variable is stored in data at some reserved space at an offset O'>O
- Each sub-expression can only modify data below SP+offset

We maintain the offset for local variables recursively

What about functions?

Semantics for functions

$$\begin{split} & \llbracket a \text{ op } b \rrbracket_v = \llbracket a \rrbracket_v \text{ op } \llbracket b \rrbracket_v \\ & \llbracket \text{let } x = a \text{ in } b \rrbracket_v = \llbracket b \rrbracket_{v[x \to \llbracket a \rrbracket_v]} \\ & \llbracket \text{f}(e) \rrbracket_v = \llbracket \text{let } x = e \text{ in } \text{def}(\textbf{f}) \rrbracket_v \end{split}$$

Semantics for functions

$$\begin{split} & \llbracket a \text{ op } b \rrbracket_v = \llbracket a \rrbracket_v \text{ op } \llbracket b \rrbracket_v \\ & \llbracket \text{let } x = a \text{ in } b \rrbracket_v = \llbracket b \rrbracket_{v[x \to \llbracket a \rrbracket_v]} \\ & \llbracket \text{f}(e) \rrbracket_v = \llbracket \text{let } x = e \text{ in } \text{def}(f) \rrbracket_v \end{split}$$

Really?

Semantics for functions

$$\begin{split} & \left[\!\left[a \text{ op } b \right]\!\right]_{v_{loc} \cup v_{glob}} = \left[\!\left[a \right]\!\right]_{v_{loc} \cup v_{glob}} \text{ op } \left[\!\left[b \right]\!\right]_{v_{loc} \cup v_{glob}} \\ & \left[\!\left[\text{let } x = a \text{ in } b \right]\!\right]_{v_{loc} \cup v_{glob}} = \left[\!\left[b \right]\!\right]_{v_{loc} \left[x \to \left[\!\left[a \right]\!\right]_{v_{loc} \cup v_{glob}} \right] \cup v_{glob}} \\ & \left[\!\left[f(e) \right]\!\right]_{v_{loc} \cup v_{glob}} = \left[\!\left[f \right]\!\right]_{\left[x \to y \right] \cup v_{glob}} \text{ with } y = \left[\!\left[e \right]\!\right]_{v_{loc} \cup v_{glob}} \end{aligned}$$

Convention 3

- Each expression is stored on the stack
- SP does not move
- Each expression is given an offset O
- Each global variable x is stored in data at label var_x
- Each local variable is stored in data at some reserved space at an offset O' > O
- ullet Each sub-expression / sub-function can only modify data below SP+O

Can we make this work with functions?

Convention 3

- Each expression is stored on the stack
- SP does not move
- Each expression is given an offset O
- Each global variable x is stored in data at label var_x
- Each local variable is stored in data at some reserved space at an offset O'>O
- ullet Each sub-expression / sub-function can only modify data below SP+O

Can we make this work with functions?

YES, we just need to move SP when calling functions!

Convention 4

- Each expression is stored on the stack
- SP moves only for function calls
- Each expression is given an offset O
- Each global variable x is stored in data at label var_x
- Each local variable is stored in data at some reserved space at an offset O' > O
- ullet Each sub-expression / sub-function can only modify data below SP+O
- Each function stores RA at O-4(SP) and its argument at O(SP)

That is not very optimized...

Yes but:

• It is better to be correct than optimized

That is not very optimized...

Yes but:

- It is better to be correct than optimized
- We can adapt it a little

Convention 5

- Each expression result is stored on the V0
- SP moves only for function calls
- Each expression is given an offset O
- Each global variable x is stored in data at label var_x
- ullet Each local variable is stored in data at some reserved space at an offset O'>O
- Each sub-expression can only modify data below SP + O
- ullet Each function stores RA at O-4(SP) and its argument at O(SP)

Convention 5

- Each expression result is stored on the V0
- SP moves only for function calls
- Each expression is given an offset O
- Each global variable x is stored in data at label var_x
- Each local variable is stored in data at some reserved space at an offset O'>O
- Each sub-expression can only modify data below SP + O
- Each function stores RA at O-4(SP) and its argument at O(SP)

Warning When doing $binop(e_1, e_2)$, we **need** to store the result of e_1 on the stack!

How to be sure to be correct?

Semantics for the input

We have seen:

- $[a \text{ op } b]_{V_{loc} \cup V_{glob}} = [a]_{V_{loc} \cup V_{glob}} \text{ op } [b]_{V_{loc} \cup V_{glob}}$
- $\bullet \ \ \llbracket \mathsf{let} \ x = \mathsf{a} \ \mathsf{in} \ \mathsf{b} \rrbracket_{\mathsf{v}_{loc} \cup \mathsf{v}_{\mathsf{glob}}} = \llbracket \mathsf{b} \rrbracket_{\mathsf{v}_{loc} [\mathsf{x} \to \llbracket \mathsf{a} \rrbracket_{\mathsf{v}_{loc} \cup \mathsf{v}_{\mathsf{glob}}}] \cup \mathsf{v}_{\mathsf{glob}}} \rrbracket_{\mathsf{v}_{\mathsf{glob}}}$
- $\bullet \ \, [\![\mathsf{f}(e)]\!]_{\mathit{V_{loc}} \cup \mathit{V_{glob}}} = [\![\mathsf{f}]\!]_{[\mathsf{x} \to y] \cup \mathit{V_{glob}}} \text{ with } y = [\![e]\!]_{\mathit{V_{loc}} \cup \mathit{V_{glob}}}$

Semantics for the input

We have seen:

- $[a \text{ op } b]_{V_{loc} \cup V_{glob}} = [a]_{V_{loc} \cup V_{glob}} \text{ op } [b]_{V_{loc} \cup V_{glob}}$
- $\bullet \ \ \llbracket \mathsf{let} \ x = \mathsf{a} \ \mathsf{in} \ \mathsf{b} \rrbracket_{\mathsf{v}_{loc} \cup \mathsf{v}_{\mathsf{glob}}} = \llbracket \mathsf{b} \rrbracket_{\mathsf{v}_{loc} [\mathsf{x} \to \llbracket \mathsf{a} \rrbracket_{\mathsf{v}_{loc} \cup \mathsf{v}_{\mathsf{glob}}}] \cup \mathsf{v}_{\mathsf{glob}}} \rrbracket_{\mathsf{v}_{\mathsf{glob}}}$
- $\bullet \ \, [\![\mathsf{f}(e)]\!]_{\mathit{V_{loc}} \cup \mathit{V_{glob}}} = [\![\mathsf{f}]\!]_{[\mathsf{x} \to y] \cup \mathit{V_{glob}}} \text{ with } y = [\![e]\!]_{\mathit{V_{loc}} \cup \mathit{V_{glob}}}$

• How to deal with read?

Semantics for the input

We have seen:

- $[a \text{ op } b]_{V_{loc} \cup V_{glob}} = [a]_{V_{loc} \cup V_{glob}} \text{ op } [b]_{V_{loc} \cup V_{glob}}$
- $\bullet \ \ \llbracket \mathsf{let} \ \mathsf{x} = \mathsf{a} \ \mathsf{in} \ \mathsf{b} \rrbracket_{\mathsf{v}_{loc} \cup \mathsf{v}_{\mathsf{glob}}} = \llbracket \mathsf{b} \rrbracket_{\mathsf{v}_{loc} \llbracket \mathsf{x} \to \llbracket \mathsf{a} \rrbracket_{\mathsf{v}_{loc} \cup \mathsf{v}_{\mathsf{glob}}} \rrbracket \cup \mathsf{v}_{\mathsf{glob}}} \rrbracket_{\mathsf{v}_{\mathsf{gloc}} \cup \mathsf{v}_{\mathsf{glob}}} \rrbracket_{\mathsf{v}_{\mathsf{gloc}} \cup \mathsf{v}_{\mathsf{glob}}} \rrbracket_{\mathsf{v}_{\mathsf{gloc}} \cup \mathsf{v}_{\mathsf{glob}}} = \mathbb{I}_{\mathsf{v}_{\mathsf{gloc}} \cup \mathsf{v}_{\mathsf{glob}}} = \mathbb{I}_{\mathsf{v}_{\mathsf{glob}}} = \mathbb{I}_{\mathsf{v}_{\mathsf{gl$
- $[\![f(e)]\!]_{V_{loc} \cup V_{glob}} = [\![f]\!]_{[x \to y] \cup V_{glob}}$ with $y = [\![e]\!]_{V_{loc} \cup V_{glob}}$
- How to deal with read?
- How to deal with print?

We can make $[e]_v$ return a value and a state.

- for read: $[read x]_{state} = (state[x \rightarrow read()])$
- for print: $[print e]_{state} = (state + out(v_e))$ with $(v_e, state_e) = [e]_{state}$

We can make $[e]_v$ return a value and a state.

For expression not much changes:

• $[a \text{ op } b]_{\text{state}} = [a]_{\text{state}} \circ_{\text{op}} [b]_{\text{state}}$ where $(v_1, \text{state}_1) \circ_{\text{op}} (v_1, \text{state}_2) = (v_1 \text{ op } v_2, \text{state}_1)$

Proofs

We can make $[e]_v$ return a value and a state.

For expression not much changes:

- $[a \text{ op } b]_{\text{state}} = [a]_{\text{state}} \circ_{\text{op}} [b]_{\text{state}}$ where $(v_1, \text{state}_1) \circ_{\text{op}} (v_1, \text{state}_2) = (v_1 \text{ op } v_2, \text{state}_1)$
- $[[\text{let } x = a \text{ in } b]]_{\text{state}} = (v_b, \text{state}_1) \text{ where}$ $(v_b, \text{state}_2) = [[b]]_{\text{state}[x \to v_a]} \text{ and } (v_a, \text{state}_1) = [[a]]_{\text{state}}$

Louis JACHIET 15 / 21

Proofs

We can make $[e]_v$ return a value and a state.

For expression not much changes:

- $[a \text{ op } b]_{\text{state}} = [a]_{\text{state}} \circ_{\text{op}} [b]_{\text{state}}$ where $(v_1, \text{state}_1) \circ_{\text{op}} (v_1, \text{state}_2) = (v_1 \text{ op } v_2, \text{state}_1)$
- $[[\text{let } x = a \text{ in } b]]_{\text{state}} = (v_b, \text{state}_1) \text{ where}$ $(v_b, \text{state}_2) = [\![b]\!]_{\text{state}[x \to v_a]} \text{ and } (v_a, \text{state}_1) = [\![a]\!]_{\text{state}}$
- $[\![f(e)]\!]_{state} = (v_f, state)$ where $(v_f, state_f) = [\![f]\!]_{state[x \to y]}$ and $(v_e, state_e) = [\![e]\!]_{state}$

Louis JACHIET 15 / 21

We can make $[e]_v$ return a value and a state.

For expression not much changes:

- $[a \text{ op } b]_{\text{state}} = [a]_{\text{state}} \circ_{\text{op}} [b]_{\text{state}}$ where $(v_1, \text{state}_1) \circ_{\text{op}} (v_1, \text{state}_2) = (v_1 \text{ op } v_2, \text{state}_1)$
- $[[\text{let } x = a \text{ in } b]]_{\text{state}} = (v_b, \text{state}_1) \text{ where}$ $(v_b, \text{state}_2) = [\![b]\!]_{\text{state}[x \to v_a]} \text{ and } (v_a, \text{state}_1) = [\![a]\!]_{\text{state}}$
- $[\![f(e)]\!]_{state} = (v_f, state)$ where $(v_f, state_f) = [\![f]\!]_{state[x \to y]}$ and $(v_e, state_e) = [\![e]\!]_{state}$

Except if we want to take exceptions into account...

Louis JACHIET 15 / 21

Proofs

We can make $[e]_v$ return a value and a state.

• with $(v_a, \text{state}_a) = \llbracket a \rrbracket_{\text{state}}$ and $(v_b, \text{state}_b) = \llbracket b \rrbracket_{\text{state}}$ then either $\llbracket a \text{ op } b \rrbracket_{\text{state}} = (v_a \circ_{\text{op}} v_b, \text{state})$ or $\llbracket a \text{ op } b \rrbracket_{\text{state}} = \bot$ when $(v_a, \text{state}_a) = \bot$ or $(v_b, \text{state}_b) = \bot$

Louis JACHIET 16 / 21

Proofs

We can make $[e]_v$ return a value and a state.

• with $(v_a, \text{state}_a) = \llbracket a \rrbracket_{\text{state}}$ and $(v_b, \text{state}_b) = \llbracket b \rrbracket_{\text{state}}$ then either $\llbracket a \text{ op } b \rrbracket_{\text{state}} = (v_a \circ_{\text{op}} v_b, \text{state})$ or $\llbracket a \text{ op } b \rrbracket_{\text{state}} = \bot$ when $(v_a, \text{state}_a) = \bot$ or $(v_b, \text{state}_b) = \bot$

We can continue a long time like this...

Louis JACHIET 16 / 21

Denotational semantics

Denotational semantics is a way of formalizing the semantics of a AST by giving domains representation what programs do and composition rules.

Louis JACHIET 17 / 21

Denotational semantics

Denotational semantics is a way of formalizing the semantics of a AST by giving domains representation what programs do and composition rules.

The $[e]_v$ notation is typically a denotational semantics.

Louis JACHIET 17 / 21

 $\mathit{Cst}(i), \sigma_{\mathit{I}}, \sigma_{\mathsf{g}} \rightarrow i, \sigma_{\mathsf{g}}$

Louis JACHIET 18 / 2

$$Cst(i), \sigma_I, \sigma_g \rightarrow i, \sigma_g$$

$$Var(x), \sigma_I, \sigma_g \rightarrow \sigma(x), \sigma_g$$

Louis JACHIET 18 / 21

$$extstyle extstyle ext$$

$$\frac{e_1,\sigma_I,\sigma_g \rightarrow v_1,\sigma_g}{e_1 \text{ op } e_2,\sigma_I,\sigma_g \rightarrow v_1 \text{ op}_{\text{int}} \ v_2,\sigma_g}$$

Louis JACHIET 18 / 21

$$extstyle extstyle ext$$

$$\frac{e_1,\sigma_{\mathit{I}},\sigma_{\mathit{g}} \rightarrow v_1,\sigma_{\mathit{g}}}{e_1 \text{ op } e_2,\sigma_{\mathit{I}},\sigma_{\mathit{g}} \rightarrow v_1 \text{ op}_{\mathsf{int}} \ v_2,\sigma_{\mathit{g}}}$$

$$\frac{e_1, \sigma_I, \sigma_g \to v_1, \sigma_g}{\text{let } x = e_1 \text{ in } e_2, \sigma_I[x/v_1], \sigma_g \to v_2, \sigma_g}$$

Louis JACHIET 18 / 21

$$extstyle extstyle ext$$

$$\frac{e_1,\sigma_I,\sigma_g \rightarrow v_1,\sigma_g}{e_1 \text{ op } e_2,\sigma_I,\sigma_g \rightarrow v_1 \text{ op}_{\text{int}} \ v_2,\sigma_g}$$

$$\frac{e_1, \sigma_I, \sigma_g \to v_1, \sigma_g}{\text{let } x = e_1 \text{ in } e_2, \sigma_I[x/v_1], \sigma_g \to v_2, \sigma_g}$$

$$\frac{e, \sigma_I, \sigma_g \to v, \sigma_g \quad \mathsf{body}(f), \{x \to v\}, \sigma_g \to v', \sigma_g}{f(e), \sigma_I, \sigma_g \to v', \sigma_g}$$

Louis JACHIET 18 / 21

read $x, \sigma_g, a :: t, Out \rightarrow \sigma_g[x/a], t, Out$

Louis JACHIET 19 / 21

read
$$x$$
, σ_g , a :: t , $Out \rightarrow \sigma_g[x/a]$, t , Out

$$\begin{array}{c} \textbf{e}, \emptyset, \sigma_{\textbf{g}} \rightarrow \textbf{v}, \sigma_{\textbf{g}} \\ \hline \textbf{print } \textbf{e}, \sigma_{\textbf{g}}, \textbf{In}, \textbf{Out} \rightarrow \sigma_{\textbf{g}}, \textbf{In}, \textbf{v} :: \textbf{Out} \end{array}$$

Louis JACHIET 19 / 21

read
$$x, \sigma_g, a :: t, Out \rightarrow \sigma_g[x/a], t, Out$$

$$\frac{\mathsf{e}, \emptyset, \sigma_{\mathsf{g}} \to \mathsf{v}, \sigma_{\mathsf{g}}}{\mathsf{print}\; \mathsf{e}, \sigma_{\mathsf{g}}, \mathsf{In}, \mathsf{Out} \to \sigma_{\mathsf{g}}, \mathsf{In}, \mathsf{v} :: \mathsf{Out}}$$

$$\frac{\textit{stmt}, \sigma_{\textit{g}}, \textit{ln}, \textit{Out} \rightarrow \sigma_{\textit{g}}^{1}, \textit{ln}_{1}, \textit{Out}_{1} \qquad \textit{prog}, \sigma_{\textit{g}}^{1}, \textit{ln}_{1}, \textit{Out}_{1} \rightarrow \sigma_{\textit{g}}^{2}, \textit{ln}_{2}, \textit{Out}_{2}}{\textit{stmt} :: \textit{prog}, \sigma, \textit{ln}, \textit{Out} \rightarrow \sigma_{2}, \textit{ln}_{2}, \textit{Out}_{2}}$$

Louis JACHIET 19 / 21

$$\frac{e_1, \sigma_I, \sigma_g \to v_1, \sigma_g \qquad e_2, \sigma_I, \sigma_g \to 0, \sigma_g}{e_1/e_2, \sigma \to E(\mathsf{DivByZero})}$$

$$\frac{e_1, \sigma_I, \sigma_g \rightarrow v_1, \sigma_g}{e_1/e_2, \sigma \rightarrow E(\mathsf{DivByZero})}$$

$$\frac{e_1, \sigma_I, \sigma_g \to E(v) \qquad e_2, \sigma_I, \sigma_g \to v_2, \sigma_g}{e_1 \text{ op } e_2, \sigma_I, \sigma_g \to E(v)}$$

$$\frac{e_1, \sigma_I, \sigma_g \rightarrow v_1, \sigma_g}{e_1/e_2, \sigma \rightarrow E(\mathsf{DivByZero})}$$

$$\frac{e_1, \sigma_I, \sigma_g \to E(v) \qquad e_2, \sigma_I, \sigma_g \to v_2, \sigma_g}{e_1 \text{ op } e_2, \sigma_I, \sigma_g \to E(v)}$$

$$\frac{e_1,\sigma_I,\sigma_g \to v_1,\sigma_g}{e_1 \text{ op } e_2,\sigma_I,\sigma_g \to E(v)}$$

$$\frac{e_1,\sigma_I,\sigma_g \to v_1,\sigma_g}{e_1/e_2,\sigma \to E(\mathsf{DivByZero})}$$

$$\frac{e_1, \sigma_I, \sigma_g \to E(v) \qquad e_2, \sigma_I, \sigma_g \to v_2, \sigma_g}{e_1 \text{ op } e_2, \sigma_I, \sigma_g \to E(v)}$$

$$\frac{e_1, \sigma_I, \sigma_g \rightarrow v_1, \sigma_g}{e_1 \text{ op } e_2, \sigma_I, \sigma_g \rightarrow E(v)}$$

$$\frac{e_1, \sigma_I, \sigma_g \to (v_1, \sigma) \qquad e_2, \sigma_I, \sigma_g \to E(v)}{\text{let } x = e_1 \text{ in } e_2, \sigma_I, \sigma_g \to E(v)}$$

$$\frac{e_1,\sigma_I,\sigma_g \to v_1,\sigma_g}{e_1/e_2,\sigma \to E(\mathsf{DivByZero})}$$

$$\frac{e_1, \sigma_I, \sigma_g \to E(v) \qquad e_2, \sigma_I, \sigma_g \to v_2, \sigma_g}{e_1 \text{ op } e_2, \sigma_I, \sigma_g \to E(v)}$$

$$\frac{e_1, \sigma_I, \sigma_g \rightarrow v_1, \sigma_g \qquad e_2, \sigma_I, \sigma_g \rightarrow E(v)}{e_1 \text{ op } e_2, \sigma_I, \sigma_g \rightarrow E(v)}$$

$$\frac{e_1, \sigma_I, \sigma_g \to (v_1, \sigma) \qquad e_2, \sigma_I, \sigma_g \to E(v)}{\text{let } x = e_1 \text{ in } e_2, \sigma_I, \sigma_g \to E(v)}$$

We can continue a long time like this...

This kind of semantics is called natural or big-step semantics.

This kind of semantics is called natural or big-step semantics.

Another kind of semantics is the small-step semantics.

$$Cst(i), \sigma \rightarrow (i, \sigma)$$

$$Cst(i), \sigma \rightarrow (i, \sigma)$$

$$Var(x), \sigma \rightarrow (\sigma(x), \sigma)$$

$$Cst(i), \sigma \rightarrow (i, \sigma)$$

$$Var(x), \sigma \rightarrow (\sigma(x), \sigma)$$

$$egin{aligned} e_1, \sigma &
ightarrow e_1', \sigma \ \hline e_1 ext{ op } e_2, \sigma &
ightarrow e_1' ext{ op } e_2, \sigma \end{aligned}$$

$$Cst(i), \sigma \rightarrow (i, \sigma)$$

$$Var(x), \sigma \rightarrow (\sigma(x), \sigma)$$

$$rac{e_1, \sigma
ightarrow e_1', \sigma}{e_1 ext{ op } e_2, \sigma
ightarrow e_1' ext{ op } e_2, \sigma}$$

$$e_2, \sigma \to e_2', \sigma$$
 $n \text{ op } e_2, \sigma \to n \text{ op } e_2', \sigma$

$$Cst(i), \sigma \rightarrow (i, \sigma)$$

$$Var(x), \sigma \rightarrow (\sigma(x), \sigma)$$

$$\frac{\textit{e}_1, \sigma \rightarrow \textit{e}_1', \sigma}{\textit{e}_1 \; \mathsf{op} \; \textit{e}_2, \sigma \rightarrow \textit{e}_1' \; \mathsf{op} \; \textit{e}_2, \sigma}$$

$$\frac{\mathsf{e}_2,\sigma\to\mathsf{e}_2',\sigma}{\mathsf{n}\;\mathsf{op}\;\mathsf{e}_2,\sigma\to\mathsf{n}\;\mathsf{op}\;\mathsf{e}_2',\sigma}$$

with
$$n' = n_1 \text{ op}_{int} n_2$$

$$n_1 \text{ op } n_2, \sigma \to n', \sigma$$

with
$$n' = n_1$$
 op_{int} n_2 $e, \sigma \rightarrow e', \sigma$ n_1 op $n_2, \sigma \rightarrow n', \sigma$ let $x = e$ in $e_2, \sigma \rightarrow$ let $x = e'$ in e_2, σ

let x = n in $e_2, \sigma \to e_2[x/n], \sigma$

Big-step semantics for arithmetics

$$Cst(i) \rightarrow (i)$$

$$\frac{e_1 \rightarrow \textit{v}_1 \quad e_2 \rightarrow \textit{v}_2}{e_1 \text{ op } e_2 \rightarrow \left(\textit{v}_1 \text{ op}_{\mathsf{int}} \ \textit{v}_2\right)}$$

Can we prove that our compilation is correct?

Our target language

With two variables and a stack:

- push(i) for $i \in \mathbb{N}$
- push(a op int b)
- a=pop()
- b=pop()
- stmt₁; stmt₂

Semantics of our language

$$\mathsf{push}(i), s, v_a, v_b \to i :: s, v_a, v_b$$

$$\mathsf{push}(a \mathsf{op}_{int} b), s, v_a, v_b \to (v_a \mathsf{op}_{int} v_b) :: s, v_a, v_b$$

$$a = \mathsf{pop}(), i :: s, v_a, v_b \rightarrow s, i, v_b$$

$$b = pop(), i :: s, v_a, v_b \rightarrow s, v_a, i$$

$$\frac{\mathsf{stmt}_1, s, v_a, v_b \to s', v_a', v_b'}{\mathsf{stmt}_1; \mathsf{stmt}_2, s, v_a, v_b \to s'', v_a'', v_b''}$$

Our compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) =$
 - *Compil*(*e*₁);
 - *Compil(e2)*;
 - b = pop();
 - a = pop();
 - push(a op_{int} b)

Our compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) =$
 - *Compil*(*e*₁);
 - *Compil(e₂)*;
 - b = pop();
 - a = pop();
 - push(a op_{int} b)

We want to prove:

 $e \rightarrow i$ \Rightarrow $Compil(e), [], 0, 0 \rightarrow [i], v_a, v_b$

Our compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) =$
 - *Compil(e₁)*;
 - *Compil(e₂)*;
 - b = pop();
 - a = pop();
 - push(a op_{int} b)

We want to prove:

Proving the correctness of our compiler

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1)$; $Compil(e_2)$; b = pop(); a = pop(); $push(a \text{ op}_{int} b)$

We will proceed by induction on the expressions.

Proving the correctness of our compiler

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1)$; $Compil(e_2)$; b = pop(); a = pop(); $push(a \text{ op}_{int} b)$

We will proceed by induction on the expressions. For constants:

Proving the correctness of our compiler

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1)$; $Compil(e_2)$; b = pop(); a = pop(); $push(a \text{ op}_{int} b)$

We will proceed by induction on the expressions. For constants:

$$Cst(i) \rightarrow i$$
 \Rightarrow
$$Compil(Cst(i)), s, v_a, v_b \rightarrow i :: s, v'_a, v'_b$$

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1)$; $Compil(e_2)$; b = pop(); a = pop(); $push(a \text{ op}_{int} b)$

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1); Compil(e_2); b = pop(); a = pop(); push(a op_{int} b)$

$$\begin{array}{c|c} \underline{e_1 \rightarrow v_1 \quad e_2 \rightarrow v_2} \\ \hline e_1 \text{ op } e_2 \rightarrow (v_1 \text{ op}_{\text{int}} \ v_2) \end{array} \Rightarrow \begin{array}{c} \hline \textit{Compil}(e_1), s, v_a, v_b \rightarrow v_1 :: s, v_a', v_b' \\ \hline \\ \hline \textit{Compil}(e_2), v_1 :: s, v_a', v_b' \rightarrow v_2 :: v_1 :: s, v_a'', v_b'' \end{array}$$

BUT
$$b = pop(), v_2 :: v_1 :: s, v_a'', v_b'' \rightarrow v_1 :: s, v_a'', v_2$$

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1); Compil(e_2); b = pop(); a = pop(); push(a \text{ op}_{int} b)$

BUT
$$b = pop(), v_2 :: v_1 :: s, v_a'', v_b'' \rightarrow v_1 :: s, v_a'', v_2$$

AND
$$a = pop(), v_1 :: s, v''_a, v_2 \to s, v_1, v_2$$

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1); Compil(e_2); b = pop(); a = pop(); push(a \text{ op}_{int} b)$

$$egin{array}{ccc} e_1
ightarrow v_1 & e_2
ightarrow v_2 \ \hline e_1 ext{ op } e_2
ightarrow \left(v_1 ext{ op}_{ ext{int}} \ v_2
ight) \end{array}$$

BUT
$$b = \mathsf{pop}(), v_2 :: v_1 :: s, v_a'', v_b'' \to v_1 :: s, v_a'', v_2$$

AND
$$a = pop(), v_1 :: s, v_a'', v_2 \to s, v_1, v_2$$

AND
$$\overline{\operatorname{push}(a \operatorname{op}_{int} b), s, v_1, v_2 \to (v_1 \operatorname{op}_{int} v_2) :: s, v_1, v_2}$$

$$egin{array}{ccc} e_1
ightarrow v_1 & e_2
ightarrow v_2 \ \hline e_1 ext{ op } e_2
ightarrow \left(v_1 ext{ op}_{ ext{int}} ext{ } v_2
ight) \end{array}$$

BUT
$$b = pop(), v_2 :: v_1 :: s, v_a'', v_b'' \rightarrow v_1 :: s, v_a'', v_2$$

AND
$$\overline{a = pop(), v_1 :: s, v_a'', v_2 \rightarrow s, v_1, v_2}$$

AND
$$push(a op_{int} b), s, v_1, v_2 \rightarrow (v_1 op_{int} v_2) :: s, v_1, v_2$$

THUS

 $b = pop(); a = pop(); push(a op_{int} b), v_2 :: v_1 :: s, v_1, v_2 \rightarrow (v_1 op_{int} v_2) :: s, v_1, v_2$

Proving the correctness of our compiler

The compiler

- Compil(Cst(i)) = push(i)
- $Compil(e_1 \text{ op } e_2) = Compil(e_1)$; $Compil(e_2)$; b = pop(); a = pop(); $push(a \text{ op}_{int} b)$

For operations:

$$e_1 ext{ op } e_2 o i$$
 \Rightarrow

$$Compil(a ext{ op }_{int}b), s, v_a, v_b \rightarrow (v_1 ext{ op}_{int} ext{ } v_2) :: s, v_1, v_2$$

• We need to deal with exceptions

- We need to deal with exceptions
- We need to handle (global and local) variables

- We need to deal with exceptions
- We need to handle (global and local) variables
- We need to compile our intermediate language to assembly

- We need to deal with exceptions
- We need to handle (global and local) variables
- We need to compile our intermediate language to assembly
- We need to prove that there is a unique value that can be obtained

- We need to deal with exceptions
- We need to handle (global and local) variables
- We need to compile our intermediate language to assembly
- We need to prove that there is a unique value that can be obtained

...

Ok, proofs are too complicated

what we do?

Testing is **not**:

- a single expression
- a very limited number of expressions
- a multiplication of "1+x", "y*x", "1+3" because that does not really test all cases

Testing is **not**:

- a single expression
- a very limited number of expressions
- a multiplication of "1+x", "y*x", "1+3" because that does not really test all cases

Tests should:

• test all features: all operations, let-in, functions, etc.

Testing is **not**:

- a single expression
- a very limited number of expressions
- a multiplication of "1+x", "y*x", "1+3" because that does not really test all cases

Tests should:

- test all features: all operations, let-in, functions, etc.
- test all combinations: what happens when is not on top, what happens when the same variables is bound twice, etc.

Testing is **not**:

- a single expression
- a very limited number of expressions
- a multiplication of "1+x", "y*x", "1+3" because that does not really test all cases

Tests should:

- test all features: all operations, let-in, functions, etc.
- test all combinations: what happens when is not on top, what happens when the same variables is bound twice, etc.

• test that everything goes well for complex cases

Testing is **not**:

- a single expression
- a very limited number of expressions
- a multiplication of "1+x", "y*x", "1+3" because that does not really test all cases

Tests should:

- test all features: all operations, let-in, functions, etc.
- test all combinations: what happens when is not on top, what happens when the same variables is bound twice, etc.
- test that everything goes well for complex cases
- use a sound baseline

Your tests vary between mediocre, really bad and absent...

My tests

On one of my simplest tests, among the 37 submitted projects, only ~ 20 agree on this test (25 after simple fixes):

```
print ((((0+1)/(0+1))*2)-((0+1)*1))
```