INF108: Compilation

Louis Jachiet

Louis JACHIET

1/



Conventions for compilation

When compiling it is important to follow strict conventions:

e bugs are hard to track
e bugs can be hard to trigger

e for compatibility with other tools, it is required

Louis JACHIET 2/

N
-



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

—— | <SP

The effect of an expression e is therefore:
e SP is decreased by 4
e the value of e is stored in 0(SP)
For instance for (1+2)-(3*4)

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore: i <SP

e SP is decreased by 4 —
e the value of e is stored in 0(SP)
For instance for (1+2)-(3*4)

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore:
e SP is decreased by 4
e the value of e is stored in 0(SP)

1]
2|+ SP
For instance for (1+2)-(3*4) ]

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore: 1+2 |« 5P
e SP is decreased by 4
e the value of e is stored in 0(SP)
For instance for (1+2)-(3*4)

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore: 1+2
e SP is decreased by 4
e the value of e is stored in 0(SP)
For instance for (1+2)-(3*4)

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore: 142
e SP is decreased by 4 3
e the value of e is stored in 0(SP) 4 |« SP

For instance for (1+2)-(3*4)

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4

e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore: 142
e SP is decreased by 4 3x4 | + SP
e the value of e is stored in 0(SP) 4

For instance for (1+2)-(3*4)

Louis JACHIET 3/21



Conventions for P1

e Each expression is stored on the stack

e Each expression moves SP by exactly 4
e Each global variable x is stored in data at label var_x

The effect of an expression e is therefore: (1+2)— (3x4) | « SP
e SP is decreased by 4 3x4

e the value of e is stored in 0(SP) 4
For instance for (142)-(3*4)

Louis JACHIET 3/21



What about let-in?



Semantics for let-in

Whats is the semantics of a let-in construct?

Louis JACHIET 4/21



Semantics for let-in

Whats is a semantics?

Louis JACHIET 4/21



Semantics for let-in

Let us note [e], the value given to e when evaluated in the
environment v.

Louis JACHIET 4/21



Semantics for let-in

[a op b], = [al, op [£],

llet x = ain b], =[],

. y when x =/
where v[x — y] denotes the function | —

v(/) otherwise

Louis JACHIET 5/21



Conventions for P1

e Each expression is stored on the stack

e SP moves by exactly 4

e Each expression moves SP by exactly 4

Each global variable x is stored in data at label var_x

Each sub-expression can only modify data below SP

Louis JACHIET 6 /21



Conventions for P1

e Each expression is stored on the stack

SP moves by exactly 4

Each expression moves SP by exactly 4

Each global variable x is stored in data at label var_x

Each sub-expression can only modify data below SP

Convention 2

Convention 1 + maintain the offset for each variable when
compiling

Louis JACHIET 6/ 21



Conventions for P1

e Each expression is stored on the stack

SP moves by exactly 4

Each expression moves SP by exactly 4

Each global variable x is stored in data at label var_x

Each sub-expression can only modify data below SP

Convention 2

Convention 1 + maintain the offset for each variable when
compiling

kind of tedious. ..

Louis JACHIET 6/ 21



Conventions for P1

Convention 3, we do not move SP but use an offset

e Each expression is stored on the stack

e SP does not move
e Each expression is given an offset O
e Each global variable x is stored in data at label var_x

e Each local variable is stored in data at some reserved space at
an offset 0’ > O

e Each sub-expression can only modify data below SP+offset

Louis JACHIET 7/21



What about functions?




Semantics for functions

Louis JACHIET

[a op b], = [a], op [b],
llet x = ain b], = [b] .,
[f(e)], = llet x=e in def(f)],

8 /21



Semantics for functions

[a op b], = [a], op [b],
llet x = ain b], = [b] .,
[f(e)], = llet x=e in def(f)],

Really?

Louis JACHIET 8/21



Semantics for functions

[[a e p b]:l ViocU Vglob - [[a]] ViocU Vglob 9 p [[b]] ViocU Vglob

[[IEt x=am b]] ViocUVglob - [[b]] V/OC[X_>[[aﬂvlocuvg/obluvglob

|:[‘F(e)]]vloc'vlvg/ob - [[fﬂ [XHY]UVg/ob with y= [[eﬂ ViocUVglob

Louis JACHIET 9/21



Conventions for P1

e Each expression is stored on the stack

e SP does not move
e Each expression is given an offset O
e Each global variable x is stored in data at label var_x

e Each local variable is stored in data at some reserved space at
an offset 0’ > O

e Each sub-expression / sub-function can only modify data below
SP+ 0O

Louis JACHIET 10 / 21



Conventions for P1

e Each expression is stored on the stack

e SP does not move
e Each expression is given an offset O
e Each global variable x is stored in data at label var_x

e Each local variable is stored in data at some reserved space at
an offset O’ > O

e Each sub-expression / sub-function can only modify data below

SP+ 0O

Louis JACHIET 10 / 21



Conventions for P1

e Each expression is stored on the stack
e SP

e Each expression is given an offset O

e Each global variable x is stored in data at label var_x

e Each local variable is stored in data at some reserved space at
an offset O’ > O

e Each sub-expression / sub-function can only modify data below
SP+ 0O

Louis JACHIET 10 / 21



That is not very optimized...

Yes but:

e |t is better to be correct than optimized

Louis JACHIET 1 /21



That is not very optimized...

Yes but:

e |t is better to be correct than optimized

e We can adapt it a little

Louis JACHIET 1 /21



Conventions for P1

e Each expression result is stored on the V0

e SP moves only for function calls
e Each expression is given an offset O
e Each global variable x is stored in data at label var_x

e Each local variable is stored in data at some reserved space at an
offset O’ > O

e Each sub-expression can only modify data below SP + O

e Each function stores RA at O — 4(SP) and its argument at O(SP)

Louis JACHIET 12 /21



Conventions for P1

e Each expression result is stored on the V0

e SP moves only for function calls
e Each expression is given an offset O
e Each global variable x is stored in data at label var_x

e Each local variable is stored in data at some reserved space at an
offset O’ > O

e Each sub-expression can only modify data below SP + O

e Each function stores RA at O — 4(SP) and its argument at O(SP)

When doing binop(e1, e2), we need to store the result of
€1 on the stack!

Louis JACHIET 12 /21



How to be sure to be correct?




Proofs

Semantics for the input

We have seen:

® [[a e b]] ViocYVgiob = [[a]] ViocYUVgiob P [[b]] ViocYUVglob

® [[|Et LG ReAlL b]] V/ocUVgIob = [[b]] Vloc[X%[[a]]vIOCUvg/Ob]UVgIOb

O [[f(e)]]vlocuvglob - [[ﬂ][x—)y]Uvg,ob Wlth Yy = [[e]] VlocUVg/ob

Louis JACHIET 13 /21



Proofs

Semantics for the input

We have seen:

® [[a e b]] ViocYVgiob = [[a]] ViocYUVgiob P [[b]] ViocYUVglob

® [[|Et LG ReAlL b]] V/ocUVgIob = [[b]] Vloc[X%[[a]]vIOCUvg/Ob]UVgIOb

O [[f(e)]]vlocuvglob - [[ﬂ][x—)y]Uvg,ob Wlth Yy = [[e]] VlocUVg/ob

Louis JACHIET 13 /21



Proofs

Semantics for the input

We have seen:

® [[a e b]] ViocYVgiob = [[a]] ViocYUVgiob P [[b]] ViocYUVglob

[let x = ain b]

ViocUVglob - [[b]] Vioc[x—[2] vlocu"g/ob]L'J Vglob

[[f(e)]]vlocuvglob = [[ﬂ][x—)y]Uvg,ob Wlth Yy = [[e]] ViocYUVgiob

e How to deal with read?

Louis JACHIET 13 /21



We can make [e], return a value and a state.

e for read: [read x|, = (state[x — read()])

e for print: [print e] = (state + out(ve)) with

state
(Ve, statee) = [€]ate

Louis JACHIET 14 /21



We can make [e], return a value and a state,

For expression not much changes:

O [[a op b]]state = [[a]]state Cop [[b]]state
where (vi, state) oop (vi, statep) = (v1 op vo, state;)

Louis JACHIET 15 /21



We can make [e], return a value and a state,

For expression not much changes:

O [[a op b]]state = [[a]]state Cop [[b]]state
where (vi, state) oop (vi, statep) = (v1 op vo, state;)

o [let x=ain b] ... = (vp,stater) where

(vp, statep) = [[b]]state[xﬁva] and (v,, state;) = [[a]]state

Louis JACHIET 15 /21



We can make [e], return a value and a state,

For expression not much changes:

O [[a op b]]state = [[a]]state Cop [[b]]state
where (vi, state) oop (vi, statep) = (v1 op vo, state;)

o [let x=ain b] ... = (vp,stater) where

(vp, statep) = [[b]]state[xﬁva] and (v,, state;) = [[a]]state

o [f(e)]state = (v state) where (vr, stater) = [f]irefxs,; @nd
(Ve, Statee) = [[e]state

Louis JACHIET 15 /21



We can make [e], return a value and a state,

For expression not much changes:

O [[a op b]]state = [[a]]state Cop [[b]]state
where (vi, state) oop (vi, statep) = (v1 op vo, state;)

o [let x=ain b] ... = (vp,stater) where

(vp, statep) = [[b]]state[xﬁva] and (v,, state;) = [[a]]state

o [f(e)]state = (v state) where (vr, stater) = [f]irefxs,; @nd
(Ve, Statee) = [[e]state

Except if we want to take exceptions into account...

Louis JACHIET 15 /21



We can make [e], return a value and a state.

o with (v,,state;) = [a].4e and (vp, statep) = [b] .t then
either [a op b] =1
when (v,,state,) = L or (vp,statep) = L

state = (Va Oop Vb, State) or [a op b]..e

Louis JACHIET 16 / 21



We can make [e], return a value and a state.

then
= [

o with (v,,state;) = [a] .4 and (vp, statep) = [b]
either [a op b]
when (v,,state,) = L or (vp,statep) = L

state

state = (Va Oop Vb, State) or [a op b]..e

We can continue a long time like this...

Louis JACHIET 16 / 21



Back to semantics

Denotational semantics

Denotational semantics is a way of formalizing the semantics of a
AST by giving representation what programs do and

Louis JACHIET 17 /21



Back to semantics

Denotational semantics

Denotational semantics is a way of formalizing the semantics of a
AST by giving representation what programs do and

Louis JACHIET 17 /21



Back to semantics

Cst(i),01,04 = i,04

Louis JACHIET 18 / 21



Back to semantics

Cst(i),01,04 = i,04 Var(x), 0,04 — 0(x), 04

Louis JACHIET 18 / 21



Back to semantics

Cst(i),01,04 = i,04 Var(x), 0,04 — 0(x), 04

€1,0/,0¢g — Vi,0g €,0/,0¢g — V2,0¢g
€1 Op €2,0/,0g — V1 OPjht V2,04

Louis JACHIET 18 / 21



Back to semantics

Cst(i),01,04 = i,04 Var(x), 0,04 — 0(x), 04

€1,0/,0g —» V1,0g €,01,0g —» V2,04
€1 Op €2,0/,0g — V1 OPjht V2,04

€1,0[,0g — V1,0g eg,U/[X/Vl],O'g—>V2,Ug

let x = ey in &,0/,05 — Vp,04

Louis JACHIET 18 / 21



Back to semantics

Cst(i),01,04 = i,04 Var(x), 0,04 — 0(x), 04

€1,0/,0g —» V1,0g €,01,0g —» V2,04
€1 Op €2,0/,0g — V1 OPjht V2,04

€1,0[,0g — V1,0g eg,U/[X/Vl],O'g—>V2,Ug

let x = ey in &,0/,05 — Vp,04

e,0/,0g = V,0g body(f), {x = v},04 = V', 0,

f(e),01,06 = V/,0g

Louis JACHIET 18 / 21



Back to semantics

read x,04,a 1 t, Out — og[x/al, t, Out

Louis JACHIET 19 /21



Back to semantics

read x,04,a 1 t, Out — og[x/al, t, Out

e,0,00 = v,04

print e, 0, In, Out — og, In, v :: Out

Louis JACHIET 19 /21



Back to semantics

read x,04,a 1 t, Out — og[x/al, t, Out

e,0,00 = v,04

print e, 0, In, Out — og, In, v :: Out

stmt,og, In, Out — O‘é, Inq, Outy prog, air, Iny, Outy — aé, Iny, Outy

stmt :: prog, o, In, Out — o3, Ina, Outy

Louis JACHIET 19 /21



Back to semantics: adding exceptions

€1,0/,0g —» V1,0g e270'/>0'g_>0’0'g
e1/ex, 0 — E(DivByZero)

Louis JACHIET 20 /21



Back to semantics: adding exceptions

€1,0/,0g —» V1,0g e270'/>0'g_>0’0'g
e1/ex, 0 — E(DivByZero)

e1,01,05 = E(v) €,0(,0g — \0,0g

e1 op &,0,05 — E(v)

Louis JACHIET 20 /21



Back to semantics: adding exceptions

€1,0/,0g —» V1,0g e270'/>0'g_>0’0'g
e1/ex, 0 — E(DivByZero)

e1,01,05 = E(v) €,0(,0g — \0,0g

e1 op &,0,05 — E(v)

€1,0/,0g = V1,0g e,01,05 = E(v)

e] op &,0/,05 — E(v)

Louis JACHIET 20 /21



Back to semantics: adding exceptions

€1,0/,0g —» V1,0g e270'/>0'g_>0’0'g
e1/ex, 0 — E(DivByZero)

e1,01,05 = E(v) €,0(,0g — \0,0g

e1 op &,0,05 — E(v)

€1,0/,0g = V1,0g e,01,05 = E(v)

e] op &,0/,05 — E(v)

e]_,O'/,O'g—>(V1,U) eg,U/,O'g—>E(V)

let x = ey in e,0/,0, = E(v)

Louis JACHIET 20 /21



Back to semantics: adding exceptions

€1,0/,0g —» V1,0g e270'/>0'g_>0’0'g
e1/ex, 0 — E(DivByZero)

e1,01,05 = E(v) €,0(,0g — \0,0g

e1 op &,01,05 — E(v)

€1,0/,0g = V1,0g e,01,05 = E(v)

e] op &,0/,05 — E(v)

e]_,O'/,O'g—>(V1,U) eg,U/,O'g—>E(V)

let x = ey in e,0/,0, = E(v)

We can continue a long time like this...

Louis JACHIET 20 /21



Back to semantics

This kind of semantics is called natural or big-step semantics.

Louis JACHIET 21 /21



Back to semantics

This kind of semantics is called natural or big-step semantics.

Another kind of semantics is the small-step semantics.

Louis JACHIET 21 /21



Small-step semantics

Cst(i),0 — (i,0)

Louis JACHIET 22 /21



Small-step semantics

Cst(i),0 — (i,0) Var(x),o — (0(x),0)

Louis JACHIET 22 /21



Small-step semantics

Cst(i),0 — (i,0) Var(x),o — (0(x),0)

e1,0 — €}, 0

€1 0p €,0 — €] Op &,0

Louis JACHIET 22 /21



Small-step semantics

Cst(i),0 — (i,0) Var(x),o — (0(x),0)
e1,0 — €}, 0 €,0 — €),0
€1 0p €,0 — €] Op &,0 nop e,o—nopeo

Louis JACHIET 22 /21



Small-step semantics

Cst(i),0 — (i,0) Var(x),o — (0(x),0)
e1,0 — €}, 0 €,0 — €),0
€1 0p €,0 — €] Op &,0 nop e,o—nopeo

with n’ = ny opj,; M

niop m,o—n,o

Louis JACHIET 22 /21



Small-step semantics

Cst(i),0 — (i,0) Var(x),o — (0(x),0)

€,0 — €),0

e1,0 — €}, 0
nop e,o—nopeo

€1 0p €,0 — €] Op &,0

o .
with n" = ny op;,; N2 eoc—é,o
let x =eine,o—letx=¢ine,o

niop m,o—n,o

Louis JACHIET 22 /21



Small-step semantics

Var(x),o — (0(x),0)

Cst(i),0 — (i,0)

€,0 — €),0

e1,0 — €}, 0
nop e,o—nopeo

€1 0p €,0 — €] Op &,0

o .
with n" = ny op;,; N2 eoc—é,o
let x =eine,o—letx=¢ine,o

niop m,o—n,o

let x =nin ey, 0 — ex[x/n|, o

Louis JACHIET 22 /21



Big-step semantics for arithmetics

Cst(i) — (i)

€1 — v € —
e1 op & — (V1 0Py V2)

Louis JACHIET 23 /21



Can we prove that our compilation is correct?

Our target language

With two variables and a stack:

e push(i) for i € N

e push(a op ;:h)
e a=pop()
b=pop()

stmty ; stmto

Louis JACHIET 24 /21



Semantics of our language

push(i), s, va,vp — i :1's, Va, Vp

push(a opjps b), S, Va, Vb — (Va OPjpe Vb) i1 S, Va, Vp

a= pOp(),l 15, Va, Vp — S, i’ Vb

b =pop(),i::s,Va Vp —> S, Va, i

stmty, s, va, vp — S, VL, v stmtp, s, v), vy — 5", vl v

stmty; stmto, s, va, v, — 5", VI, v}/

Louis JACHIET 25 /21



Our compiler

e Compil(Cst(i)) = push(i)
e Compil(e1 op &) =
e Compil(ey);

Compil(e);

b = pop();

a = pop();
push(a opj,;: b)

Louis JACHIET 26 / 21



Our compiler

e Compil(Cst(i)) = push(i)
e Compil(e1 op &) =
e Compil(er);

e Compil(ep);
* b= pop();
e a=pop();

e push(a op;,, b)

e—1i N Compil(e),[],0,0 — [i], Va, v

Louis JACHIET 26 /21



Our compiler

e Compil(Cst(i)) = push(i)
e Compil(e1 op &) =

Compil(ey);

Compil(e);

b = pop();

a = pop();

e push(a op;,; b)

We want to prove:

. - C. / ,
e—1 N Compil(e), s, va, vy — i :15,V}, vy

Louis JACHIET 26 /21



Proving the correctness of our compiler

e Compil(Cst(i)) = push(/)
e Compil(e; op &) =
Compil(e1); Compil(ez); b = pop(); a = pop(); push(a op,; b)

We will proceed by induction on the expressions.

Louis JACHIET 27 /21



Proving the correctness of our compiler

e Compil(Cst(i)) = push(/)
e Compil(e; op &) =
Compil(e1); Compil(ez); b = pop(); a = pop(); push(a op,; b)

We will proceed by induction on the expressions. For constants:

Cst(i) =i — push(i),s, va, vy — i 12 s, v}, v,

) Vas

Louis JACHIET 27 /21



Proving the correctness of our compiler

e Compil(Cst(i)) = push(/)
e Compil(e; op &) =
Compil(e1); Compil(ez); b = pop(); a = pop(); push(a op,; b)

We will proceed by induction on the expressions. For constants:

Cst(i) =i — Compil(Cst(i)), s, Va, Vb — 15, V], v}

Louis JACHIET 27 /21



Proving the correctness of our compiler (operation part)

The compiler

o Compil(Cst(i)) = push(i)
e Compil(e; op &) =
Compil(e1); Compil(e2); b = pop(); a = pop(); push(a opj,; b)

€ — w1 €& —
= er op & — (V1 op;y v2)

etope — i

Louis JACHIET 28 /21



Proving the correctness of our compiler (operation part)

The compiler

o Compil(Cst(i)) = push(i)
e Compil(e; op &) =
Compil(e1); Compil(e2); b = pop(); a = pop(); push(a opj,; b)

Compil(et), s, Va, Vb — V1 3 S, V2, v,
€ — V1 € — W

e1op & — (vi opj, v2) =

Compil(€),v1 s, v}, vy —> vo i vt s, vh vy

11 " "
b=pop(),va:iwviis, vy, vy = viiis, vy, v

Louis JACHIET 28 /21



Proving the correctness of our compiler (operation part)

The compiler

o Compil(Cst(i)) = push(i)
e Compil(e; op &) =
Compil(e1); Compil(e2); b = pop(); a = pop(); push(a opj,; b)

€ — W & — W
e1op & — (vi opj V2) =

Compil(er); Compil(e2), s, Va, Vb —> vo i va 32 5, v vy

1 11 "
b=rpop(),va:vis, vy, vy = viis, vy, v

AND a=pop(),vi:s,v),va = s, vi, v

Louis JACHIET 28 /21



Proving the correctness of our compiler (operation part)

The compiler

o Compil(Cst(i)) = push(i)
e Compil(e; op &) =
Compil(e1); Compil(e2); b = pop(); a = pop(); push(a opj,; b)

€ — W & — W
e op & — (v1 op;y, v2)

BUT b=rpop(),vs:ivi s, Vi, v) —wvis v iw
AND a=pop(),vi s,V va = s, vi, v
AND

pUSh(a OPjpe b),S, Vi, V2 — (Vl OPjn¢ V2) S, v, V2

Louis JACHIET 28 /21



Proving the correctness of our compiler (operation part)

e — V1 & — W
e op & — (vi opjy V2)

BUT b=rpop(),va:ivi s, vi,v) —wvis v iw
AND a=pop(),v1 s,V va = s, vi, v

AND pUSh(a Opint b)757 Vi, V2 — (Vl Opint V2) S, v, V2
THUS

b = pop(); a = pop(); push(a op,,; b), va 1 vi i s,vi,voa — (vi op;,, V2) i S, Vi, Vo

Louis JACHIET 28 /21



Proving the correctness of our compiler

The compiler
e Compil(Cst(i)) = push(i)
e Compil(e; op &) =
Compil(ey); Compil(e2); b = pop(); a = pop(); push(a opj,; b)

For operations:

etop e —1i

Compil(a op ;,,b), s, Va, vb — (v1 Opjp V2) S, Vi, V2

Louis JACHIET 29 /21



Things are always more complicated...

e We need to deal with exceptions

Louis JACHIET 30 /21



Things are always more complicated...

e We need to deal with exceptions

e We need to handle (global and local) variables

Louis JACHIET 30 /21



Things are always more complicated...

e We need to deal with exceptions
e We need to handle (global and local) variables

e We need to compile our intermediate language to assembly

Louis JACHIET 30 /21



Things are always more complicated...

We need to deal with exceptions

We need to handle (global and local) variables

We need to compile our intermediate language to assembly

We need to prove that there is a unique value that can be

obtained

Louis JACHIET 30 /21



Things are always more complicated...

We need to deal with exceptions

We need to handle (global and local) variables

We need to compile our intermediate language to assembly

We need to prove that there is a unique value that can be

obtained

Louis JACHIET 30 /21



Ok, proofs are too complicated
what we do?




Testing is not:

e a single expression

e a very limited number of expressions

e a multiplication of “1+x", “y*x", “14+3" because that does
not really test all cases

Louis JACHIET 31/21



Testing is not:

e a single expression

e a very limited number of expressions

e a multiplication of “1+x", “y*x", “14+3" because that does
not really test all cases

Tests should:

e test all features: all operations, let-in, functions, etc.

Louis JACHIET 31/21



Testing is not:

e a single expression

e a very limited number of expressions

e a multiplication of “1+x", “y*x", “14+3" because that does
not really test all cases

Tests should:

e test all features: all operations, let-in, functions, etc.

e test all combinations: what happens when - is not on top,
what happens when the same variables is bound twice, etc.

Louis JACHIET 31/21



Testing is not:

e a single expression

e a very limited number of expressions

e a multiplication of “1+x", “y*x", “14+3" because that does
not really test all cases

Tests should:

e test all features: all operations, let-in, functions, etc.

e test all combinations: what happens when - is not on top,
what happens when the same variables is bound twice, etc.

e test that everything goes well for complex cases

Louis JACHIET 31/21



Testing is not:

e a single expression

e a very limited number of expressions

e a multiplication of “1+x", “y*x", “14+3" because that does
not really test all cases

Tests should:

e test all features: all operations, let-in, functions, etc.

e test all combinations: what happens when - is not on top,
what happens when the same variables is bound twice, etc.

e test that everything goes well for complex cases

e use a sound baseline

Your tests vary between mediocre, really bad and absent...

Louis JACHIET 31/21



On one of my simplest tests, among the 37 submitted projects,
only ~ 20 agree on this test (25 after simple fixes):

print ((C((0+1)/(0+1))*2)-((0+1)*1))

Louis JACHIET 32 /21



	What about let-in?
	What about functions?
	How to be sure to be correct?

