

SD202: Databases

Functional dependencies and normal forms

Antoine Amarilli

Télécom Paris

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Schema normalization

Connection to Entity-Relationship

- We know how to design a logical schema via entity-relationship diagrams...
- · ... and how to implement it as a physical schema
- The goal of normalization is to check for remaining problems and fix the physical schema
 - Intuitively, we will look for additional constraints in data, called functional dependencies
 - These dependencies mean that tables should be subdivided further

Disclaimer

- The theory of functional dependencies and normal forms is **complicated** and could fill an entire class!
- We will only see basic insights here

First normal form

A schema satisfies the **first normal form** if the data of every cell is an **atomic type**. For instance, avoid:

Student				
id	name	classes		
42	John Student	SD202		
43	Jane Student	SD202,INF280		

→ This should already be the case at the **logical schema** level, e.g., these attributes should have been **composite attributes** or **multi-valued attributes**

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Functional dependencies

Definition of a functional dependency

- A functional dependency on a relation R is an assertion of the form $A_1 \dots A_n \to B_1 \dots B_m$, where the A_i and B_j are attributes of R
- Semantics: for any two tuples in R, if they agree on all of $A_1 ldots A_n$ then they agree on all of $B_1 ldots B_m$

Student				
id	name	grade		
42	John Student	14		
43	Jane Student	16		

 \cdot The functional dependency **id**, **name** \rightarrow **grade** holds

FDs on the data vs FDs on the schema

- An FD is part of the schema: it is a constraint that should always hold
 "In HotelBookings, the date and room determine the reservation_id"
- The FD will be satisfied on every relation instance of the schema
- However, a relation instance may satisfy some FDs "by chance"

Student			
id	name	grade	
101	Jean Student	14	
102	Jamie Student	14	

This data satisfies **name** \rightarrow **grade**, but the schema does not!

FD violations

A violation of an FD $A_1 \dots A_n \to B_1 \dots B_m$ is two tuples that:

- Agree on (all) the attributes $A_1 \dots A_n$
- Disagree on (some of) the attributes $B_1 \dots B_m$

Student				
id	name	grade		
42	John Student	14		
43	Jane Student	14		

Example: This demonstrates that the FD grade \rightarrow name, id, and the FD grade \rightarrow name, do not hold in the data, hence in the schema

Examples and properties of FDs

- The FD $A_1 \dots A_n \to B_1 \dots B_m$ always holds if $\{B_1 \dots B_m\} \subseteq \{A_1 \dots A_n\}$
 - \rightarrow For instance, $A \rightarrow A$, or $AA' \rightarrow A$, always hold
 - → FDs of this kind are called **trivial FDs**
- If attributes $A_1 ... A_n$ are a key for the relation then any FD with (at least) $A_1 ... A_n$ in the left-hand side will hold
- · An FD $A_1 \dots A_n \to B_1 \dots B_m$ is true iff the FDs $A_1 \dots A_n \to B_j$ are true for each B_j
 - \rightarrow It suffices to consider the FDs of the form $A_1 \dots A_n \rightarrow B$
 - ightarrow The general form can still be useful as a shorter notation

Finding FDs

Which FDs hold, and which FDs do not hold, in that instance?

Α	В	С	D
1	5	10	4
2	5	11	5
2	5	10	6
	5	10	

Finding FDs

Which FDs hold, and which FDs do not hold, in that instance?

A	В	С	D
1	5	10	4
2	5	11	5
2	5	10	6

The FDs ${\it A}
ightarrow {\it B}$, ${\it C}
ightarrow {\it B}$, ${\it AC}
ightarrow {\it D}$, and ${\it D}
ightarrow {\it ABC}$ hold

Finding FDs

Which FDs hold, and which FDs do not hold, in that instance?

В	C	D
5	10	4
5	11	5
5	10	6
	5	5 10 5 11

The FDs $A \rightarrow B$, $C \rightarrow B$, $AC \rightarrow D$, and $D \rightarrow ABC$ hold

The FDs B o A, B o C, A o C, C o B, A o D, etc., do not hold

FDs and anomalies

- First find FDs, by analyzing the business needs
- · Some of these FDs are "good", e.g., the ones from the relation key
- · Others are "bad" and illustrate a problem in schema modeling

Student

id	name	supervisor	supervisor_email
42	John Student	Patricia Professor	pprof@telecom-paris.fr
43	Jane Student	Patricia Professor	pprof@telecom-paris.fr
44	Jean Student	Leonard Lecturer	llect@telecom-paris.fr

Can you find the bad FD?

FDs and anomalies

- First find FDs, by analyzing the business needs
- · Some of these FDs are "good", e.g., the ones from the relation key
- · Others are "bad" and illustrate a problem in schema modeling

Student

id	name	supervisor	supervisor_email
42	John Student	Patricia Professor	pprof@telecom-paris.fr
43	Jane Student	Patricia Professor	pprof@telecom-paris.fr
44	Jean Student	Leonard Lecturer	llect@telecom-paris.fr

· Can you find the <code>bad FD?</code> Yes, it is <code>supervisor_email</code> \rightarrow <code>supervisor</code>

FDs and anomalies

- First find FDs, by analyzing the business needs
- · Some of these FDs are "good", e.g., the ones from the relation key
- · Others are "bad" and illustrate a problem in schema modeling

Student

id	name	supervisor	supervisor_email
42	John Student	Patricia Professor	pprof@telecom-paris.fr
43	Jane Student	Patricia Professor	pprof@telecom-paris.fr
44	Jean Student	Leonard Lecturer	llect@telecom-paris.fr

- · Can you find the <code>bad FD?</code> Yes, it is <code>supervisor_email</code> \rightarrow <code>supervisor</code>
- Can you understand why it will lead to insert/update/delete anomalies?

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Boyce-Codd Normal Form

Boyce-Codd Normal Form

- A set of attributes $A_1 ... A_n$ is a superkey if it determines the entire relation, i.e., the FDs $A_1 ... A_n \to B$ hold for every attribute B
 - ightarrow To simplify, we assume only one key, then the superkeys are its supersets
- A relation is in Boyce-Codd Normal Form (BNCF) if for every non-trivial FD $A_1 \dots A_n \to B_1 \dots B_m$ that it satisfies, then $A_1 \dots A_n$ is a superkey
- BCNF disallows, for instance:
 - FDs between non-key attributes (attributes outside the key)
 - FDs from a strict subset of the key attributes

Registration		
student	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli

Jane Doe SD202 Antoine Amarilli

· This represents a...

Registration		
student	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli

Jane Doe SD202 Antoine Amarilli

Pagistration

• This represents a... many-to-many relationship between classes and students

	Registration	
<u>student</u>	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli

Jane Doe SD202 Antoine Amarilli

Pagistration

- This represents a... many-to-many relationship between classes and students
- The key is...

Registration

student	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class

Registration		
<u>student</u> <u>class</u> teacher		teacher
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

D - -: - 4 - - 4 : - --

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The **teacher** is...

Registration		
<u>student</u>	<u>ident</u> <u>class</u> teacher	
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The **teacher** is... an **attribute** of the relationship

Registration		
<u>student</u>	<u>class</u> teacher	
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The **teacher** is... an **attribute** of the relationship
- · But: the **teacher** in fact...

Registration		
student class		teacher
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

D - - : - 4 - - 4 : - - -

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The **teacher** is... an **attribute** of the relationship
- But: the teacher in fact... only depends on the class!

Registration		
<u>student</u>	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli
Iana Doa	SDaga	Antoine Amarilli

D - - : - 4 - - 4 : - - -

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD **class** \rightarrow **teacher** holds but...

Registration		
<u>student</u> <u>class</u> teacher		
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The **teacher** is... an **attribute** of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class → teacher holds but... class is not a superkey (it is a strict subset of the key)

Registration		
<u>student</u>	<u>class</u> teacher	
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class → teacher holds but... class is not a superkey (it is a strict subset of the key)
- · Hence, the relation is...

Registration		
<u>student</u>	<u>class</u> teacher	
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class → teacher holds but... class is not a superkey (it is a strict subset of the key)
- · Hence, the relation is... not in BCNF

Candidates				
<u>candidate_id</u>	prepa_of_origin	city_of_origin		
1	Lycée Kléber	Strasbourg		
2	Louis-Le-Grand	Paris		

- This table describes the prépa and city of origin of candidates to a competitive exam
- The key is <u>candidate_id</u>
- The prépa and city and origin are attributes of the entity
- But: the prépa determines the city!
- The FD prepa_of_origin → city_of_origin holds but prepa_of_origin is not a superkey

How to fix BCNF violations? (example)

Take the FD <u>class</u> \rightarrow **teacher**, and find all attributes determined by <u>class</u>:

student	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

Make two relations:

- · One with **class** and with the attributes it determines
- The other with **class** but **without** the attributes that it determines

How to fix BCNF violations? (example)

Take the FD <u>class</u> \rightarrow **teacher**, and find all attributes determined by <u>class</u>:

student	<u>class</u>	teacher
John Doe	SD202	Antoine Amarilli
Jane Doe	SD202	Antoine Amarilli

Make two relations:

- · One with **class** and with the attributes it determines
- The other with **class** but **without** the attributes that it determines

student	class
John Doe	SD202
Jane Doe	SD202

class	teacher	
SD202	Antoine Amarilli	

How to fix BCNF violations? (theory)

- Consider a relation R which is not in BCNF
- · Consider a counterexample FD (non-trivial) $A_1 \dots A_n \to B_1 \dots B_m$
- Find the closure of $A_1 \dots A_n$:
 - All attributes B such that $A_1 \dots A_n \to B$ holds
 - · Call this $B_1' \dots B_p'$: it contains in particular $B_1 \dots B_m$

How to fix BCNF violations? (theory)

- Consider a relation R which is not in BCNF
- · Consider a counterexample FD (non-trivial) $A_1 \dots A_n \to B_1 \dots B_m$
- Find the closure of $A_1 \dots A_n$:
 - All attributes B such that $A_1 \dots A_n \to B$ holds
 - · Call this $B_1' \dots B_p'$: it contains in particular $B_1 \dots B_m$
- Split the attributes between:
 - The FD determiner $A_1 \dots A_n$
 - The closure $B'_1 \dots B'_p$ without the FD determiner $A_1 \dots A_n$
 - The other attributes $C_1 \dots C_q$
 - → Neither of these sets are empty! (why?)

How to fix BCNF violations? (theory)

- Consider a relation R which is not in BCNF
- Consider a counterexample FD (non-trivial) $A_1 \dots A_n \to B_1 \dots B_m$
- Find the closure of $A_1 \dots A_n$:
 - All attributes **B** such that $A_1 \dots A_n \to B$ holds
 - Call this $B_1' \dots B_p'$: it contains in particular $B_1 \dots B_m$
- Split the attributes between:
 - The FD determiner $A_1 \dots A_n$
 - The closure $B'_1 \dots B'_p$ without the FD determiner $A_1 \dots A_n$
 - The other attributes $C_1 \dots C_q$
 - → Neither of these sets are empty! (why?)
- Build two tables:
 - The projection on $A_1 \dots A_n$ and $B'_1 \dots B'_p$
 - The projection on $A_1 \dots A_n$ and $C_1 \dots C_q$

Why it works?

- Splitting in two tables reduces the redundancy
- Fundamental property: the join of the two tables (on the common attributes $A_1 ... A_n$) is equal to the original table
 - · Clearly it contains at least the same tuples
 - It cannot contain more tuples (why?)

Why it works?

- Splitting in two tables reduces the redundancy
- Fundamental property: the join of the two tables (on the common attributes $A_1 \dots A_n$) is equal to the original table
 - Clearly it contains at least the same tuples
 - It cannot contain more tuples (why?)
 - \rightarrow The first table $A_1 \dots A_n, B'_1 \dots B'_p$ satisfies the FD $A_1 \dots A_n \rightarrow B'_1 \dots B'_p$
 - \rightarrow The rows of the second table will join with exactly one row of the first table
- We say that this decomposition is a lossless decomposition, as opposed to a lossy decomposition

How to compute the closure?

Closure: Given a set of attributes $A_1 ... A_n$, how do we compute all attributes B such that the FD $A_1 ... A_n \to B$ holds?

Very simple algorithm:

- · Consider all the FDs that you know (when defining the schema)
- Initialize a set $X = \{A_1 \dots A_n\}$
- Repeatedly go over all FDs until convergence:
 - If an FD $L_1 \dots L_p \to R_1 \dots R_q$ is such that $\{L_1 \dots L_p\} \subseteq X$
 - Then add $R_1 \dots R_q$ to X
- At the end, the set **X** is the closure (why?)

Example of closure computation

Consider the following attributes:

- · item
- power
- category
- · color
- · design_grade
- $\cdot \ \, \text{functionality_grade}$
- · final_grade

Consider the FDs:

- item is a key
- \cdot category o color
- \cdot color \rightarrow design_grade
- $\cdot \ \, \textbf{functionality_grade}, \, \textbf{design_grade}$
 - \rightarrow final_grade

What is the closure of **category**, **functionality_grade**?

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Conclusion

Other topics

- The theory of normalization is very rich, we only saw the basics to repair violations in a schema
- · Other topics:
 - BCNF is not dependency preserving, i.e., sometimes some FDs of the original table are lost and cannot be expressed on the BCNF decomposition
 - There is an algorithm to decide which FDs are **implied** by the known FDs (Armstrong's axioms similar to closure)
 - There are many other normal forms!

Credits

Sources:

- https://pierre.senellart.com/enseignement/2016-2017/bd/ 6-normalisation.pdf
- https://sites.google.com/site/bahrimarouaa/teaching/inf725 "Functional dependencies and normalization"