SD202: Databases

Functional dependencies and normal forms

Antoine Amarilli
Télécom Paris

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Schema normalization

Connection to Entity-Relationship

- We know how to design a logical schema via entity-relationship diagrams...
- ... and how to implement it as a physical schema
- The goal of normalization is to check for remaining problems and fix the physical schema
- Intuitively, we will look for additional constraints in data, called functional dependencies
- These dependencies mean that tables should be subdivided further

Disclaimer

- The theory of functional dependencies and normal forms is complicated and could fill an entire class!
- We will only see basic insights here

First normal form

A schema satisfies the first normal form if the data of every cell is an atomic type. For instance, avoid:

Student

id	name	classes
42	John Student	SD2O2
43	Jane Student	SD2O2,INF280

\rightarrow This should already be the case at the logical schema level, e.g., these attributes should have been composite attributes or multi-valued attributes

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Functional dependencies

Definition of a functional dependency

- A functional dependency on a relation R is an assertion of the form $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$, where the A_{i} and B_{j} are attributes of R
- Semantics: for any two tuples in R, if they agree on all of $A_{1} \ldots A_{n}$ then they agree on all of $B_{1} \ldots B_{m}$

Student

id	name	grade
42	John Student	14
43	Jane Student	16

- The functional dependency id, name \rightarrow grade holds

FDs on the data vs FDs on the schema

- An FD is part of the schema: it is a constraint that should always hold \rightarrow "In HotelBookings, the date and room determine the reservation_id"
- The FD will be satisfied on every relation instance of the schema
- However, a relation instance may satisfy some FDs "by chance"

Student

id	name	grade
101	Jean Student	14
102	Jamie Student	14

This data satisfies name \rightarrow grade, but the schema does not!

FD violations

A violation of an FD $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$ is two tuples that:

- Agree on (all) the attributes $A_{1} \ldots A_{n}$
- Disagree on (some of) the attributes $B_{1} \ldots B_{m}$

Student

id	name	grade
42	John Student	14
43	Jane Student	14

Example: This demonstrates that the FD grade \rightarrow name, id, and the FD grade \rightarrow name, do not hold in the data, hence in the schema

Examples and properties of FDs

- The FD $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$ always holds if $\left\{B_{1} \ldots B_{m}\right\} \subseteq\left\{A_{1} \ldots A_{n}\right\}$
\rightarrow For instance, $A \rightarrow A$, or $A A^{\prime} \rightarrow A$, always hold
\rightarrow FDs of this kind are called trivial FDs
- If attributes $A_{1} \ldots A_{n}$ are a key for the relation then any FD with (at least) $A_{1} \ldots A_{n}$ in the left-hand side will hold
- An FD $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$ is true iff the FDs $A_{1} \ldots A_{n} \rightarrow B_{j}$ are true for each B_{j}
\rightarrow It suffices to consider the FDs of the form $A_{1} \ldots A_{n} \rightarrow B$
\rightarrow The general form can still be useful as a shorter notation

Finding FDs

Which FDs hold, and which FDs do not hold, in that instance?

A	B	C	D
1	5	10	4
2	5	11	5
2	5	10	6

Finding FDs

Which FDs hold, and which FDs do not hold, in that instance?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
1	5	10	4
2	5	11	5
2	5	10	6

The FDs $A \rightarrow B, C \rightarrow B, A C \rightarrow D$, and $D \rightarrow A B C$ hold

Finding FDs

Which FDs hold, and which FDs do not hold, in that instance?

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
1	5	10	4
2	5	11	5
2	5	10	6

The FDs $A \rightarrow B, C \rightarrow B, A C \rightarrow D$, and $D \rightarrow A B C$ hold
The FDs $B \rightarrow A, B \rightarrow C, A \rightarrow C, C \rightarrow B, A \rightarrow D$, etc., do not hold

FDs and anomalies

- First find FDs, by analyzing the business needs
- Some of these FDs are "good", e.g., the ones from the relation key
- Others are "bad" and illustrate a problem in schema modeling

Student

id	name	supervisor	supervisor_email
42	John Student	Patricia Professor	pprof@telecom-paris.fr
43	Jane Student	Patricia Professor	pprof@telecom-paris.fr
44	Jean Student	Leonard Lecturer	Llect@telecom-paris.fr

- Can you find the bad FD?

FDs and anomalies

- First find FDs, by analyzing the business needs
- Some of these FDs are "good", e.g., the ones from the relation key
- Others are "bad" and illustrate a problem in schema modeling

Student

id	name	supervisor	supervisor_email
42	John Student	Patricia Professor	pprof@telecom-paris.fr
43	Jane Student	Patricia Professor	pprof@telecom-paris.fr
44	Jean Student	Leonard Lecturer	Llect@telecom-paris.fr

- Can you find the bad FD? Yes, it is supervisor_email \rightarrow supervisor

FDs and anomalies

- First find FDs, by analyzing the business needs
- Some of these FDs are "good", e.g., the ones from the relation key
- Others are "bad" and illustrate a problem in schema modeling

Student

id	name	supervisor	supervisor_email
42	John Student	Patricia Professor	pprof@telecom-paris.fr
43	Jane Student	Patricia Professor	pprof@telecom-paris.fr
44	Jean Student	Leonard Lecturer	Ulect@telecom-paris.fr

- Can you find the bad FD? Yes, it is supervisor_email \rightarrow supervisor
- Can you understand why it will lead to insert/update/delete anomalies?

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Boyce-Codd Normal Form

Boyce-Codd Normal Form

- A set of attributes $A_{1} \ldots A_{n}$ is a superkey if it determines the entire relation, i.e., the FDs $A_{1} \ldots A_{n} \rightarrow B$ hold for every attribute B
\rightarrow To simplify, we assume only one key, then the superkeys are its supersets
- A relation is in Boyce-Codd Normal Form (BNCF) if for every non-trivial FD $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$ that it satisfies, then $A_{1} \ldots A_{n}$ is a superkey
- BCNF disallows, for instance:
- FDs between non-key attributes (attributes outside the key)
- FDs from a strict subset of the key attributes

Non-BNCF example (1)

	Registration	
$\underline{\text { student }}$	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a...

Non-BNCF example (1)

	Registration	
student	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students

Non-BNCF example (1)

	Registration	
$\underline{\text { student }}$	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is...

Non-BNCF example (1)

	Registration	
$\underline{\text { student }}$	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class

Non-BNCF example (1)

	Registration	
$\underline{\text { student }}$	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is...

Non-BNCF example (1)

	Registration	
student	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship

Non-BNCF example (1)

	Registration	
student	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact...

Non-BNCF example (1)

	Registration	
student	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!

Non-BNCF example (1)

	Registration	
student	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class \rightarrow teacher holds but...

Non-BNCF example (1)

	Registration	
student	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class \rightarrow teacher holds but... class is not a superkey (it is a strict subset of the key)

Non-BNCF example (1)

	Registration	
$\underline{\text { student }}$	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class \rightarrow teacher holds but... class is not a superkey (it is a strict subset of the key)
- Hence, the relation is...

Non-BNCF example (1)

	Registration	
$\underline{\text { student }}$	$\underline{\text { class }}$	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

- This represents a... many-to-many relationship between classes and students
- The key is... student, class
- The teacher is... an attribute of the relationship
- But: the teacher in fact... only depends on the class!
- The FD class \rightarrow teacher holds but... class is not a superkey (it is a strict subset of the key)
- Hence, the relation is... not in BCNF

Non-BNCF example (2)

Candidates

candidate_id	prepa_of_origin	city_of_origin
1	Lycée Kléber	Strasbourg
2	Louis-Le-Grand	Paris

- This table describes the prépa and city of origin of candidates to a competitive exam
- The key is candidate_id
- The prépa and city and origin are attributes of the entity
- But: the prépa determines the city!
- The FD prepa_of_origin \rightarrow city_of_origin holds but prepa_of_origin is not a superkey

How to fix BCNF violations? (example)

Take the FD class \rightarrow teacher, and find all attributes determined by class:

student	class	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

Make two relations:

- One with class and with the attributes it determines
- The other with class but without the attributes that it determines

How to fix BCNF violations? (example)

Take the FD class \rightarrow teacher, and find all attributes determined by class:

student	class	teacher
John Doe	SD2O2	Antoine Amarilli
Jane Doe	SD2O2	Antoine Amarilli

Make two relations:

- One with class and with the attributes it determines
- The other with class but without the attributes that it determines

student	class
John Doe	SD2O2
Jane Doe	SD2O2

class	teacher
SD2O2	Antoine Amarilli

How to fix BCNF violations? (theory)

- Consider a relation R which is not in BCNF
- Consider a counterexample FD (non-trivial) $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$
- Find the closure of $A_{1} \ldots A_{n}$:
- All attributes B such that $A_{1} \ldots A_{n} \rightarrow B$ holds
- Call this $B_{1}^{\prime} \ldots B_{p}^{\prime}$: it contains in particular $B_{1} \ldots B_{m}$

How to fix BCNF violations? (theory)

- Consider a relation R which is not in BCNF
- Consider a counterexample FD (non-trivial) $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$
- Find the closure of $A_{1} \ldots A_{n}$:
- All attributes B such that $A_{1} \ldots A_{n} \rightarrow B$ holds
- Call this $B_{1}^{\prime} \ldots B_{p}^{\prime}$: it contains in particular $B_{1} \ldots B_{m}$
- Split the attributes between:
- The FD determiner $A_{1} \ldots A_{n}$
- The closure $B_{1}^{\prime} \ldots B_{p}^{\prime}$ without the FD determiner $A_{1} \ldots A_{n}$
- The other attributes $C_{1} \ldots C_{q}$
\rightarrow Neither of these sets are empty! (why?)

How to fix BCNF violations? (theory)

- Consider a relation R which is not in BCNF
- Consider a counterexample FD (non-trivial) $A_{1} \ldots A_{n} \rightarrow B_{1} \ldots B_{m}$
- Find the closure of $A_{1} \ldots A_{n}$:
- All attributes B such that $A_{1} \ldots A_{n} \rightarrow B$ holds
- Call this $B_{1}^{\prime} \ldots B_{p}^{\prime}$: it contains in particular $B_{1} \ldots B_{m}$
- Split the attributes between:
- The FD determiner $A_{1} \ldots A_{n}$
- The closure $B_{1}^{\prime} \ldots B_{p}^{\prime}$ without the FD determiner $A_{1} \ldots A_{n}$
- The other attributes $C_{1} \ldots C_{q}$
\rightarrow Neither of these sets are empty! (why?)
- Build two tables:
- The projection on $A_{1} \ldots A_{n}$ and $B_{1}^{\prime} \ldots B_{p}^{\prime}$
- The projection on $A_{1} \ldots A_{n}$ and $C_{1} \ldots C_{q}$

Why it works?

- Splitting in two tables reduces the redundancy
- Fundamental property: the join of the two tables (on the common attributes $\left.A_{1} \ldots A_{n}\right)$ is equal to the original table
- Clearly it contains at least the same tuples
- It cannot contain more tuples (why?)

Why it works?

- Splitting in two tables reduces the redundancy
- Fundamental property: the join of the two tables (on the common attributes $A_{1} \ldots A_{n}$) is equal to the original table
- Clearly it contains at least the same tuples
- It cannot contain more tuples (why?)
\rightarrow The first table $A_{1} \ldots A_{n}, B_{1}^{\prime} \ldots B_{p}^{\prime}$ satisfies the FD $A_{1} \ldots A_{n} \rightarrow B_{1}^{\prime} \ldots B_{p}^{\prime}$
\rightarrow The rows of the second table will join with exactly one row of the first table
- We say that this decomposition is a lossless decomposition, as opposed to a lossy decomposition

How to compute the closure?

Closure: Given a set of attributes $A_{1} \ldots A_{n}$, how do we compute all attributes B such that the FD $A_{1} \ldots A_{n} \rightarrow B$ holds?

Very simple algorithm:

- Consider all the FDs that you know (when defining the schema)
- Initialize a set $X=\left\{A_{1} \ldots A_{n}\right\}$
- Repeatedly go over all FDs until convergence:
- If an FD $L_{1} \ldots L_{p} \rightarrow R_{1} \ldots R_{q}$ is such that $\left\{L_{1} \ldots L_{p}\right\} \subseteq X$
- Then add $R_{1} \ldots R_{q}$ to X
- At the end, the set X is the closure (why?)

Example of closure computation

Consider the following attributes:

- item
- power
- category
- color
- design_grade
- functionality_grade
- final_grade

Consider the FDs:

- item is a key
- category \rightarrow color
- color \rightarrow design_grade
- functionality_grade, design_grade
\rightarrow final_grade

What is the closure of category, functionality_grade?

Schema normalization

Functional dependencies

Boyce-Codd Normal Form

Conclusion

Conclusion

Other topics

- The theory of normalization is very rich, we only saw the basics to repair violations in a schema
- Other topics:
- BCNF is not dependency preserving, i.e., sometimes some FDs of the original table are lost and cannot be expressed on the BCNF decomposition
- There is an algorithm to decide which FDs are implied by the known FDs (Armstrong's axioms - similar to closure)
- There are many other normal forms!

Credits

Sources:

- https://pierre.senellart.com/enseignement/2016-2017/bd/ 6-normalisation.pdf
- https://sites.google.com/site/bahrimarouaa/teaching/inf725 "Functional dependencies and normalization"

