
SD202: Databases
Advanced SQL and PostgreSQL features

Antoine Amarilli

Télécom Paris

1/23



Views

Table inheritance

Transactions and Concurrency

2/23



Views

3/23



Views: definition

• You can define a view to represent the result of a complex query:

CREATE VIEW Movie_with_actor AS

SELECT DISTINCT Movie.id, title FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

• View definition: simply a SELECT query as usual.
• You can then use the view as if it were a regular table

4/23



View: example

• Logical schema: Employee entity, every employee is either Secretary or
Professor

• This is specialization (complete and disjoint)
• Physical schema: one Secretary table and one Professor table
• The Employee table is their union, projected on the common attributes
• Instead of storing it, we can define it with a view

5/23



Advantages of views

What are views good for?

• Logical independence: you can change the definition of the view in an
application without changing the rest of the code

• Can be used to restrict access rights (only allow users to see a specific view)
• Can be switched easily to a materialized view for performance

Views can be a “fix” to address problems with the schema, or to redefine the
logical schema from the physical one

6/23



Materialized views

CREATE MATERIALIZED VIEW Movie_with_actor ...

Must then be manually updated with:

REFRESH MATERIALIZED VIEW Movie_with_actor ...

How to make the view refresh automatically? Workaround:

• Make the materialized view a regular table
• Define triggers to update it in the right way whenever the underlying tables

are changed

7/23



Example of maintaining a materialized view

• Logical schema: Employee entity, each employee is Secretary or Professor
• Physical schema: one Secretary table and one Professor table
• The Employee table is their union, projected on the common attributes
• How to reflect updates from Professor and Secretary?

• When a tuple in inserted in either table, insert its projection in Professor
• When a tuple is modified, also modify the projection
• When a tuple is deleted, also delete it

→ We assume that no tuple in Employee corresponds to two tuples in Professor
and Secretary (common key)

→ Question: can we accept updates to Employee? how to reflect them?

• Other common use case: maintaining an aggregate, e.g., a sum

8/23



Stored procedures

You can write custom procedures in PostgreSQL

CREATE OR REPLACE PROCEDURE transfer

(origin INT, destination INT, amount DECIMAL)

LANGUAGE plpgsql

AS $$

BEGIN

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

UPDATE Account SET balance = balance - amount WHERE id = origin;

UPDATE Account SET balance = balance + amount WHERE id = destination;

COMMIT;

END; $$

Also possible to write custom functions, custom aggregation operators...
9/23



Why use stored procedures

• For triggers (see later)
• To factor some application logic in the database for consistency across

applications
• For performance (execute code closer to the data)

• Stored procedures can be written in C

10/23



Triggers

• Procedures can be created as triggers to be automatically run whenever data
is changed

• Whenever a table is modified
• For every modified tuple in a table
• Can be run before or after the operation or instead of the operation

• Possible uses:
• Complex consistency check, or normalization/reformatting
• Recomputing auxiliary tables, automatically creating dependent data
• Manually updating an aggregate (e.g., a sum)
• Manually log database operations

11/23



Views

Table inheritance

Transactions and Concurrency

12/23



Table inheritance

13/23



Table inheritance

You can define tables that refine another table (inherit from it)

CREATE TABLE Employee (id SERIAL PRIMARY KEY, name VARCHAR, salary INT);

CREATE TABLE Professor (field VARCHAR) INHERITS (Employee);

CREATE TABLE Secretary (building VARCHAR) INHERITS (Employee);

INSERT INTO Employee(name, salary) VALUES ('John', 424);

INSERT INTO Professor(name, salary, field) VALUES ('Patricia', 343, 'CS');

INSERT INTO Secretary(name, salary, building) VALUES ('Simon', 252, 'A');

SELECT * FROM Professor;

SELECT * FROM Secretary;

SELECT * FROM Employee;

SELECT * FROM ONLY Employee;

14/23



Table inheritance subtleties

• Tables can inherit from multiple tables
• Deleting a parent table cascades to the tables that inherit from it
• Warning: uniqueness constraints and keys do not take inheritance into

account!

INSERT INTO Professor(id, name, salary, field) VALUES

(3, 'Paula', '454', 'CS');

SELECT * FROM Employee;

-- id's are no longer unique!

• Warning: inserting in a “parent” table does not work

-- This does not work

INSERT INTO Employee(name, salary, field) VALUES

('Priscilla', '4242', 'CS');
15/23



Views

Table inheritance

Transactions and Concurrency

16/23



Transactions and Concurrency

17/23



Reminder on ACID

SQL guarantees the ACID properties:

• Atomicity: a transaction block is either completely executed or not executed
at all

• Consistency: the database always satisfies the integrity constraints
• Isolation: if there are multiple transactions, they happen as if one had taken

place before the other
• Durability: one executed, transactions will not be lost

18/23



Transactions

• Default: every query (SELECT, INSERT, etc.) is a transaction
• We can manually define a transaction block with BEGIN ... COMMIT

• Start a transaction with BEGIN, and issue queries
• To perform the transaction, use COMMIT

• To abort the transaction, use ROLLBACK

• To define a savepoint, use SAVEPOINT label

• To roll back to a savepoint, use ROLLBACK TO SAVEPOINT label

Exercise: Can you think of a use case for transactions?

19/23



Challenges with single transactions

To correctly support transactions (one at a time) we must:

• Prepare the effects of the transaction, and atomically commit them
• Make sure the commits are durable, even if the hardware fails
• Be able to revert the effects of the transaction
• With save points, be able to revert its partial effects

20/23



Challenges with concurrent transactions

• Transactions: a sequence of read/write database operations
• These transactions are not ordered a priori (e.g., one may arrive while

another is running)
• We want to execute them in parallel for performance
• Problems:

• Two transactions can access the same data item at the same time
• Even if individual operations do not conflict, the sequence of operations of a

transaction may be affected by other transactions
• Strongest ACID guarantees: serializability

→ What will happen is consistent with a serial ordering of the transactions
→ Challenge: Parallelize as much as possible while respecting this

21/23



Concurrency

• Satisfying serializability is complicated and may cause transactions to:
• wait for another transaction to complete, possibly deadlock
• fail if we have started to execute it, but another transaction affected its data

• PostgreSQL supports several transaction isolation levels relaxing
serializability

• Each level describes which kinds of anomalies may take place
• More restrictive isolation means:

• worse performance
• more failures, but
• less inconsistency problems

• Also supports explicit locking in transactions (in addition to these
mechanisms)

22/23



Replication and clustering

• Having more than one server has several uses:
• partition the data if it is large
• do load balancing to use multiple servers
• evaluate a query on multiple servers in parallel
• have failover servers for high availability

• PostgreSQL has some support to propagate changes from a main database to
read-only failovers

• PostgreSQL did not focus initially on replication and clustering
• Many third party solutions

23/23


	Views
	Table inheritance
	Transactions and Concurrency

