
DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Database functionalities

Ioana Manolescu, Institut Polytechnique de Paris 1Architectures for Big Data (TPT-DATAAI921)

Database Management Systems

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 2

• Functionality provided
– What kind of data can I put in? Relations/documents/pairs...
– How can I get data out of it? query languages/API
– How does it handle concurrent access?

ACID (or less)
– How long does a given operation take?

Query execution, optimization
• Implementation (internals)

– How does it cope with scale?
for reads? Smart storage and indexing structures
for writes? Concurrency control

Relational Database Management
Systems

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 3

• Functionality provided
– What kind of data can I put in? Relations
– How can I get data out of it? SQL query language
– How does it handle concurrent access?

ACID (or less)
– How long does a given operation take?

Query optimization
• Implementation (internals)
– How does it cope with scale?

for reads? Smart storage and indexing structures
for writes? Concurrency control

Fundamental database features

1. Data storage
– Protection against unauthorized access, data loss

2. Ability to at least add to and remove data to
the database
– Also: updates; active behavior upon update

(triggers)
3. Support for accessing the data
– Declarative query languages: say what data you

need, not how to find it

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 4

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Query processing

Ioana Manolescu, Institut Polytechnique de Paris 5Architectures for Big Data (TPT-DATAAI921)

How are queries processed?

DatabaseSQL Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.licese=‘123AB’.

name

Julie

Ioana Manolescu, Institut Polytechnique de Paris 6Architectures for Big Data (TPT-DATAAI921)

How are queries processed?

Database2. SQL
3. Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

1. Load

name

Julie

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

Ioana Manolescu, Institut Polytechnique de Paris 7Architectures for Big Data (TPT-DATAAI921)

How are queries processed?

Database2. SQL
3. Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

1. Load

name

Julie

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

Storage system (disk,
memory, SSD…)
Ioana Manolescu, Institut Polytechnique de Paris 8Architectures for Big Data (TPT-DATAAI921)

Database

How are queries processed?

2. SQL
3. Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

1. Load

name

Julie

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

Ioana Manolescu, Institut Polytechnique de Paris 9Architectures for Big Data (TPT-DATAAI921)

How are queries processed?
SQL

Results

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Driver

select… from driver, car, accident where…

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan

Ioana Manolescu, Institut Polytechnique de Paris 10Architectures for Big Data (TPT-DATAAI921)

Accident

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Car

Logical query plans
• Trees made of logical operators, each of which

specializes in a certain task

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 11

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Scan: read the
driver tuples)
("Scan" often

ommitted)

Scan Scan

Join:
keep those pairs of
input which satisfy
a certain condition

SQL:
select driver.name,
driver.address
from driver, car, accident
where driver.ID=car.driver
and
car.license=accident.carLi
cense and
accident.date=‘1/11/17’

Join

Selection:
filter tuples

Projection:
restrict tuples

Logical query plans
• Trees made of logical operators, each of which specializes in a certain

task
• Logical operators: they are defined by their result, not by an algorithm
• Physical operators (see next) implement actual algorithms

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 12

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Scan: read the
driver tuples)
("Scan" often

ommitted)

Scan Scan

Join:
keep those pairs of
input which satisfy
a certain condition

Join

Selection:
filter tuples

Projection:
restrict tuples

How are queries processed?
SQL

Results

select… from driver, car, accident where…

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan 1

Logical plan 2

Ioana Manolescu, Institut Polytechnique de Paris 13Architectures for Big Data (TPT-DATAAI921)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/13’

Driver
name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

CarAccident

How are queries processed?
SQL

Results

select… from driver, car, accident where…

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan 1

Logical plan 2
π π

Logical plan 3

Ioana Manolescu, Institut Polytechnique de Paris 14Architectures for Big Data (TPT-DATAAI921)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Driver
name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

CarAccident

How are queries processed?
SQL

Results

select… from driver, car, accident where…

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan 1

Logical plan 2

π
Logical plan 3

Logical plan 4

Ioana Manolescu, Institut Polytechnique de Paris 15Architectures for Big Data (TPT-DATAAI921)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Driver
name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

CarAccident

Logical query optimization

• Enumerates logical plans
• All logical plans compute the query result

– They are equivalent

• Some are (much) more efficient than others
• Logical optimization: moving from a plan to a

more efficient one
– Pushing selections
– Pushing projections
– Join reordering: most important source of optimizations

Ioana Manolescu, Institut Polytechnique de Paris 16Architectures for Big Data (TPT-DATAAI921)

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Architectures for Big Data (TPT-DATAAI921)

Cost of an operator: depends on the number of
tuples (or tuple pairs) which it must process
e.g. c_disk x number of tuples read from disk
e.g. c_cpu x number of tuples compared

Cardinality of an operator's output: how many
tuples result from this operator

The cardinality of one operator's output determines
the cost of its parent operator
Plan cost = the sum of the costs of all operators
in a plan

Ioana Manolescu, Institut Polytechnique de Paris 17

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Architectures for Big Data (TPT-DATAAI921)

Scan costs: cs x (106+106 +103)
Scan cardinality estimations: 106, 106, 103

Driver-car join cost estimation: cj x (106 x 106 =1012)

Driver-car join cardinality estimation: 106

Driver-car-accident join cost estim.: cj x (106 x 103= 109)
Driver-car-accident join cardinality estimation: 2 x 103

Selection cost estimation: cf x (2 x 103)
Selection cardinality estimation: 10

Projection (similar), negligible

Total cost estimation: cs x (2x106+103)+ cf x 2x 103

+ cj x (1012 +2x103) ~ cj x 1012 ~ 1012

Ioana Manolescu, Institut Polytechnique de Paris 18

cs, cj, cf constant

Pessi-
mistic

(worst-
case)
estim.

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »
Three plans, same scan costs (neglected below); join costs dominant

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

driver car

accident

σ

π

date=
‘1/11/17’

driver.name,
driver.address

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

π

109 +1012 ~ 1012
109 +107 ~ 109

107 + 2*107 ~ 3*107

Ioana Manolescu, Institut Polytechnique de Paris 19Architectures for Big Data (TPT-DATAAI921)

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »
Three plans, same scan costs (neglected below); join costs dominant

The best plan reads only the accidents
that have to be consulted
• Selective data access
• Typically supported by an index

– Auxiliary data structure, built on top of
the data collection

– Allows to access directly objects
satisfying a
certain condition

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

π

107 + 2*107 ~ 3*107

Ioana Manolescu, Institut Polytechnique de Paris 20Architectures for Big Data (TPT-DATAAI921)

Join ordering is the main problem
in logical query optimization

R
R S

T

R T

S

S T

R
S

N=2: N=3:

Ioana Manolescu, Institut Polytechnique de Paris 21Architectures for Big Data (TPT-DATAAI921)

R S

T

U U

R T

S

S T

U

R

U R

S

T

U R

T

S

U S

T

R

U S

R

T

U T

R

S

U T

S

R

R S T U R T S U R U S T

S T

R

U

R S

U

T S

R T

U

N=4:

Architectures for Big Data (TPT-DATAAI921)

Join ordering is the main problem
in logical query optimization

R S

T

U U

R T

S

S T

U

R

U R

S

T

U R

T

S

U S

T

R

U S

R

T

U T

R

S

U T

S

R

R S T U R T S U R U S T

S T

R

U

R S

U

T S

R T

U

N=4:

Plans(n+1) = (n+1) * Plans(n) + ½ * Σ i=1
(n/2) Plans(i)*Plans(n+1-i)

High (exponential) complexity à many heuristics
• Exploring only left-linear plans etc.

Ioana Manolescu, Institut Polytechnique de Paris 22

Logical query optimization needs statistics
Exact statistics (on base data):

– 1.000.000 cars, 1.000.000 drivers, 1.000 accidents
Approximate / estimated statistics (on intermediary results)

– "1.75 cars involved in every accident"
Statistics are gathered
• When loading the data: take advantage of the scan
• Periodically or upon request (e.g. analyze in the Postgres RDBMS)
• At runtime: modern systems may do this to change the data layout
Statistics on the base data vs. on results of operations not evaluated (yet):

– « On average 2 cars per accident »
• For each column R.a, store:

|R|, |R.a| (number of distinct values), min{R.a}, max{R.a}
• Assume uniform distribution in R.a
• Assume independent distribution

– of values in R.a vs values in R.b; of values in R.a vs values in S.c
• + simple probability computations

Ioana Manolescu, Institut Polytechnique de Paris 23Architectures for Big Data (TPT-DATAAI921)

More on statistics
• For each column R.a, store:

|R|, |R.a| (number of distinct values), min{R.a}, max{R.a}
• Assume uniform distribution in R.a
• Assume independent distribution

– of values in R.a vs values in R.b; of values in R.a vs values in S.c

• The uniform distribution assumption is frequently wrong
– Real-world distribution are skewed (popular/frequent values)

• The independent distribution assumption is sometimes wrong
– « Total » counter-example: functional dependency
– Partial but strong enough to ruin optimizer decisions: correlation

• Actual optimizers use more sophisticated statistic informations
– Histograms: equi-width, equi-depth
– Trade-offs: size vs. maintenance cost vs. control over estimation error

Ioana Manolescu, Institut Polytechnique de Paris 24Architectures for Big Data (TPT-DATAAI921)

Database internal: query optimizer
SQL

Results

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where…

……………………….

Query language

1st logical query plan

Logical optimizer

Chosen logical query plan

Physical
plan 1

Physical
plan 3Physical

plan 2

Chosen logical plan

Ioana Manolescu, Institut Polytechnique de Paris 25Architectures for Big Data (TPT-DATAAI921)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Physical query plans

Made up of physical operators =
algorithms for implementing logical operators

Example: equi-join (R.a=S.b)
Nested loops join:
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS;

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { tR ß R.next; put(hash(tR.a), tR); }
While (!endOf(S)) { tS ß S.next;

matchingR = get(hash(tS.b));
output(matchingR x tS);

}Ioana Manolescu, Institut Polytechnique de Paris 26Architectures for Big Data (TPT-DATAAI921)

Physical query plans

Nested loops join:
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS;

} until (endOf(R) or endOf(S));

O(|R|x|S|)
O(|R|+|S|)

Made up of physical operators =
algorithms for implementing logical operators

Example: equi-join (R.a=S.b)

Also:
Block nested loops join
Index nested loops join
Hybrid hash join
Hash groups / teams
… Ioana Manolescu, Institut Polytechnique de Paris 27Architectures for Big Data (TPT-DATAAI921)

Hash join: // builds a hash table in memory
While (!endOf(R)) { tR ß R.next; put(hash(tR.a), tR); }
While (!endOf(S)) { tS ß S.next;

matchingR = get(hash(tS.b));
output(matchingR x tS);

}O(|R|+|S|)

Ioana Manolescu, Institut Polytechnique de ParisArchitectures for Big Data (TPT-DATAAI921)

Physical optimization
Possible physical plans produced by physical optimization for our sample logical plan:

driver car accident

IdxLookup(idxAccid1,
date=‘1/11/17’)

SimpleProj(name, id,
address)

HashJoin(build: accident)

HashJoin(build: car|accident)

SimpleProj(driver.name,
driver.address)

driver car accident
IdxLookup(idxAccid1, date=‘1/11/17’)

SimpleProj(name, id,
address)

MergeJoin

MergeJoin

SimpleProj(driver.name, driver.address)

IdxScan
Sort

Sort
28

Physical plan performance
Metrics characterizing a physical plan
• Response time: between the time the query starts running to

the we know it’s end of results
• Work (resource consumption)

– How many I/O calls (blocks read)
• Scan, IdxScan, IdxAccess; Sort;

HybridHash (or spilling HashJoin)

– How much CPU
• All operators

– Distributed plans: network traffic

• Total work: work made by all operators

Ioana Manolescu, Institut Polytechnique de Paris 29Architectures for Big Data (TPT-DATAAI921)

Query optimizers in action
Most database management systems have an « explain » functionality à physical
plans. Below sample Postgres output:

EXPLAIN SELECT * FROM tenk1;
QUERY PLAN

Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

Ioana Manolescu, Institut Polytechnique de Paris 30Architectures for Big Data (TPT-DATAAI921)

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

QUERY PLAN
--

Hash Join (cost=232.61..741.67 rows=106 width=488)
Hash Cond: ("outer".unique2 = "inner".unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..458.00 rows=10000 width=244)
-> Hash (cost=232.35..232.35 rows=106 width=244)

-> Bitmap Heap Scan on tenk1 t1 (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..2.37 rows=106 width=0)

Index Cond: (unique1 < 100)

Inspecting query plans

• Here using https://tatiyants.com/pev/#/plans

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 31

https://tatiyants.com/pev/%23/plans

Chosen logical plan

Database internal: physical plan
SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Logical optimizer

Physical optimizer

Chosen physical plan
……………………….

Chosen physical plan

Ioana Manolescu, Institut Polytechnique de Paris 32Architectures for Big Data (TPT-DATAAI921)

Chosen logical plan

Database internals:
query processing pipeline

SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Chosen physical plan

Chosen physical planExecution engine

Ioana Manolescu, Institut Polytechnique de Paris 33Architectures for Big Data (TPT-DATAAI921)

Advanced query optimization techniques:
Dynamic Query Optimization

• Sizes (cardinalities) of intermediary results are estimated, which
may lead to estimation errors

• A cardinality estimation error may lead to chosing a logical plan and
a set of physical operators that perform significantly different from
expectation (especially for the worse)

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 34

Initially chosen plan:

driver car accident

SimpleSel(dept=75)

SimpleProj HashJoin(build: accident)

HashJoin(build: car|accident)

SimpleProj

driver car accident

SimpleSel(dept=75)

SimpleProj HashJoin(build: accident)

BlockNestedLoopsJoin

SimpleProj

Modified plan:

At execution
time, we see
that the lower
HashJoin output
is larger than
expected:
memory insuffi-
cient to build

R σcond1

U

T

Advanced query optimization techniques:
Multi-Query Optimization

Multiple queries sharing sub-expressions can be optimized
together into a single plan with shared subexpressions

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 35

P R

U

Query Q1 Query Q2

S

σcond2

S

Assume join conditions are the same
for R-S and S-U

T

R

U

σcond1 v cond2

S

σcond1 σcond2 P

Query Q1 Query Q2

followed by
choice of
physical
operators

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Updating the database

Ioana Manolescu, Institut Polytechnique de Paris 36Architectures for Big Data (TPT-DATAAI921)

What's in a database?
SQL

update
insert into driver
values ('Thomas',
3);
update car set
driver=3 where
license='123AB';

Ioana Manolescu, Institut Polytechnique de Paris 37Architectures for Big Data (TPT-DATAAI921)

Driver Accident

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Car

Database

Driver Accident

name ID

Julie 1

Damien 2

Thomas 3

driver license

3 ‘123AB’

2 ‘171KZ’

Car

Database

Database updates
• A set of operations atomically executed (either all, or none) is

called a transaction
• There may be some dependencies between the operations of

a transaction
– First read the bank account balance
– Then write that value reduced by 50€

• A total order over the operations of several concurrent
transaction is called a scheduling

• The DB component that receives all incoming transactions and
decides what operation will be executed when
(i.e., global order over the operations of all transactions)
is the scheduler

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 38

Database updates

• The scheduler is in charge of ordering all operations so that
they will appear executed one after the other (serially)

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 39

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

T1: A=A+100, B=B-100,
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

Ensuring consistency of concurrent
updates

• Scheduling is implemented through specific algorithms
and with the help of protocols

• A protocol is a rule that holds on the order in which a
transaction performs its operations
– E.g., "once a trasaction has released a lock, the transaction

will never take another lock"
• If all transactions follow a given protocol, then,

regardless on the order in which they are executed,
certain good properties are guaranteed
– E.g., "there is no deadlock" or "the result is the same as if

the transactions had been executed one after the other"

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 40

Fundamental database features

1. Data storage
– Protection against unauthorized access, data loss

2. Ability to at least add to and remove data to
the database
– Also: updates; active behavior upon update

(triggers)
3. Support for accessing the data
– Declarative query languages: say what data you

need, not how to find it

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 41

Fundamental properties of
database stores: ACID

• Atomicity: either all operations involved in a transactions
are done, or none of them is
– E.g. bank payment

• Consistency: application-dependent constraint
E.g. every client has a single birthdate

• Isolation: concurrent operations on the database are
executed as if each ran alone on the system
– E.g. if a debit and a credit operation run concurrently, the

final result is still correct
• Durability: data will not be lost nor corrupted even in the

presence of system failure during operation execution

Ioana Manolescu, Institut Polytechnique de Paris 42

Jim Gray, ACM Turing Award 1998 for « fundamental contributions to databases and
transaction management »

Architectures for Big Data (TPT-DATAAI921)

ACID properties
• Atomicity: per transaction (cf. boundaries)
• Consistency: difference in the expressive power of the

constraints
• Illustrated below for relational databases, create table

statement:

Ioana Manolescu, Institut Polytechnique de Paris 43Architectures for Big Data (TPT-DATAAI921)

CREATE TABLE tbl_name (create_definition,...) [table_options] [partition_options]

create_definition: col_name column_definition |
[CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...) [index_option] ... |
{INDEX|KEY} [index_name] [index_type] (index_col_name,...) [index_option] ... |

[CONSTRAINT [symbol]] UNIQUE [INDEX|KEY] [index_name] [index_type]
(index_col_name,...) [index_option] (…) |

CHECK (expr)

column_definition: data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY] (…)

ACID properties
Consistency (continued)
• SQL constraint syntax (within create table):

• Key-value store: REDIS
– a data item can have only one value for a given property

• Key-value store: DynamoDB
– The value of a data item can be constrained to be unique, or

allowed to be a set
• Hadoop File System (HDFS): no constraints

Ioana Manolescu, Institut Polytechnique de Paris 44

[CONSTRAINT [symbol]] FOREIGN KEY [index_name]
(index_col_name, ...)

REFERENCES tbl_name (index_col_name,...)
[ON DELETE reference_option]
[ON UPDATE reference_option]

reference_option: RESTRICT | CASCADE | SET NULL | NO ACTION

Architectures for Big Data (TPT-DATAAI921)

ACID properties
• Isolation: concurrent operations on the database are executed as if each ran

alone on the system
– Watch out for: read-write (RW) or write-write (WW) conflicts
– Conflict granularity depends on the data model

• An example of advanced isolation support: SQL
– E.g. SQL
– Server 2012 supports several isolation levels

– High isolation conflicts with high transaction throughput
– E.g. HDFS: a file is never modified (written only once and integrally)

Ioana Manolescu, Institut Polytechnique de Paris 45

Isolation Level Dirty Read Non Repeatable Read Phantom

Read uncommitted Yes Yes Yes

Read committed No Yes Yes

Repeatable read No No Yes

Snapshot No No No

Serializable No No No

Architectures for Big Data (TPT-DATAAI921)

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Takeaway

Ioana Manolescu, Institut Polytechnique de Paris 46Architectures for Big Data (TPT-DATAAI921)

Main principles behind correct and
scalable data management...

... pioneered in database management systems:

1. Declarative query language allows users to just
state what they want

2. For one query there are several logical plans; for
each, several physical plans
– Optimizer picks best plan

3. ACID properties crucial for "faith in the system"
("my salary, payments, and social security are
within a reliable system")

Architectures for Big Data (TPT-DATAAI921) Ioana Manolescu, Institut Polytechnique de Paris 47

