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WHEN DOES THE RAMER FORMULA LOOK LIKE THE
GIRSANOV FORMULA?

By M. Zagai! anp O. ZEITOUNI ?

Technion-Israel Institute of Technology, Haifa, Israel

Let (B, H, P,;} be an abstract Wiener space and for every real p, let
T,w =  + pF(v) be a transformation from B to B. It is well known that
under certain assumptions the measures induced by 7, or Tp"1 are mutu-
ally absolutely continuous with respect to P, and the density function
is represented by the Ramer formula. In this formula, the Carleman-
Fredholm determinant det (I + pVF) appears as a factor. We characterize
the class of VF for which a.s.-Py, dety(Iy + pVF') = 1 for all p in an open
subset of R, in which case the form of Ramer’s expression reduces to the
familiar Cameron-Martin—Maruyama-Girsanov form. The proof is based
on a characterization of quasinilpotent Hilbert—Schmidt operators.

1. Introduction. Let {B, H, P,} be an abstract Wiener space, let p be a
real parameter and T,0 = @ + pF(w) be a transformation from B to B. By
the work of Ramer [4] and Kusuoka [2], it is well known that if: () I + pF(w) is
bijective as an operator from B to B and F(w) transforms B to H; (ii) F(w)
possesses a weak-H derivative VF which is a.s. Hilbert—Schmidt from H to H,
and is sufficiently smooth (cf. Theorem 6.4 of [2]); and (iii) (I; + pVF(w)) is a.s.
an invertible operator from H to itself, then both T, and Tp'1 induce
absolutely continuous transformations of measure and, setting

Y(w) = (d(T; ) Po/dP, )(w),

where
(T, 1Y Py(A) = Pofw: T, 'w € A},
then
(1) ¥(0) =|dety(Iy + pVF())| - exp{~8F(w) - XF, F)u),

where 8F denotes the divergence of F and det, denotes the Carleman-
Fredholm determinant. Note that in the classical Wiener case, if V,F
is adapted to the subsigma fields induced by {W,,n < 6} for all 6 € [0, 1],
then the divergence & reduces to the Ito integral (of dV,F/d6) and
det,(I;; + pVF) = 1 for all p (cf., e.g., [3]). Therefore if for some p, det, (I +
pVF) = 1 a.s.— Py, then it is natural to say that for this p the Ramer formula
(1) looks like the Girsanov formula (we remark that the Girsanov formula
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should probably be referred to as the Cameron-Martin-Maruyama-Girsanov
formula; however for clarity we will stick to Girsanov formula). The problem
of the characterization of F or VF for which, p given and fixed, the Ramer
formula looks like the Girsanov formula does not seen to be easy. We therefore
modify the problem by asking for the characterization of the VF for which the
Ramer formula looks like the Girsanov formula for all p € &, where & is an
open subset of the real line. The purpose of this note is to present such a
characterization (cf. the corollary in Section 3).

2. A preliminary result. Let -# be a Hilbert space and A a
Hilbert—Schmidt (HS) operator from -# to &#. Recall that such an operator is
said to be quasinilpotent if lim, . |A*|'"/” =0 and this is equivalent to
o(A) = 0, where o(A) denotes the spectrum of A (cf. Lemma VIL.3.4 of [1]).
Let A, B be HS and let u; denote the eigenvalues of A - B repeated accord-
ing to their multiplicity. Then the sum X u; converges absolutely and
Trace(A, B) = L u; (cf. XI.6 of [1]). Theorem XI.6.24 of [1] states that if A is
quasinilpotent, then Trace(A, A) = 0. The converse to this theorem is obvi-
ously not true (e.g., take A to be a 3 X 3 real matrix with eigenvalues
V2,i, —i). We show that under additional conditions, the reverse direction
does, however, hold true as follows:

THEOREM. Let A be a HS operator from # to #, denote by A, the
maximal modulus of its eigenvalues and let C > A,,.. Then the following are
equivalent:

(@) A is quasinilpotent [i.e., 0(A) = 0 or |A""/" > ___ 0]

(b) Trace(A*, A*¥) =0 forall k > 1.

(c) Trace(g(A), f(A)) = 0 for all functions g(2), f(2) which are analytic on
lz| < C and vanish at z = 0.

(@) det(I +pA) =1 forall p e R.

(e) dety(I + pA) =1 for all p in an open set O.

() (I +pA)~' =1+ B, for all p in some open set & and B, is HS and
quasinilpotent for all p in O.

Proor. We remark that most of the proof follows results in the literature.
The part which is novel is the proof of the implication (b) = (a).

Note that since A is HS, all its eigenvalues A; are countable, of finite
multiplicity and A; > 0 as i - © and o(A) = {A;,i = 1,2,...}. Moreover, if
(I + pA) is invertible, namely, p & o(A), setting

(2) (I+pA) '=1+B,
and using (I + pAXI + B,) = I yields
-1
I+B,=1-pA-(I+pA)
therefore [since (I + pA)~! is bounded] B, is also HS.
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(a) = (f): We have to show that B » 18 quasinilpotent. Assuming otherwise,
let A be a nonzero eigenvalue of B, and v the corresponding eigenvector;
A # —1since I + B, is invertible. Then, substituting in (2) yields that

A
(1+2)p

is a nonzero eigenvalue of A (v being the corresponding eigenvector), which is
impossible since o(A) = 0.

(f) = (a): Follows by the same arguments as (a) = ().

(a) = (¢): Follows directly from Theorem XI1.6.25 of [1].

(c) = (b): Obvious.

(a) = (d): Follows directly from part a of theorem 9.2 of [5].

(d) = (e): Obvious.

(e) = (b): By Theorem XI.6.26 of [1], det (I + pA) is an entire function of p.
Hence, since det,(I + pA) = 1 on an interval in the complex domain it is equal
to 1 for all p in the complex domain. On the other hand, det oI + pA)
possesses the following series expansion (cf. page 108 of [5]): .

_ ) m+1

det,[I + pA] =exp) Tp”‘ Trace( A, A™™1)
2

and (b) follows by the analyticity of det, [I + pAl.

(b) = (a): Let (c¢’) denote the condition

(¢’) Trace (g(A?), f(A?) = 0 for all functions g(z), f(z) which are analytic
on |z| < C and vanish at z = 0.

Note first that (b) = (¢’). Indeed, (b) implies that Trace(A2*, A2™) = 0 for
all m, k > 1. The continuity of the Trace operator and the analyticity of f and
g yield (¢'). We show next that (¢’) = (a): Set f(z) = z and

B z-A +¢

8.(2) = "2,

z—-A —¢
where A, is one of the eigenvalues of A with modulus A max- Note that
g.(A3) = -2 and

2z¢

and therefore g,(2) -, z for all z # A2, uniformly in z outside a small disk
around A3. Hence, by XI.6.25 of [1],

0 = Trace( A%, A%) = ¥} A%,
i=1
and on the other hand, denoting by m the multiplicity of +A,,
Trace( A%, g,( A?))

) © /\3
=-mA{+ ) XM+2 )

— A2 _
m+1 m+1 i A1 3 m+1
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Consequently, A = 0 which proves that (b) = (a) and completes the proof of
the theorem. O

3. Ramer’s formula. The theorem of the previous section yields the
following characterization:

CoroLLARY. Let T,0 = w + pF(w), and assume that for all p € O, where
@ is an open set in R, T, satisfies ()-(iii) from before. Then a necessary and
sufficient condition that for all p € O,

2
Y(w) = exp{—pSF - %(F, F)H}

[namely, det (I, + pVF) = 1] is that any of the conditions of the theorem hold
for all p in & for almost all (P,) w. Furthermore, since (T, Y*P, ~ Py and T,
bijective imply that (T,)*P, ~ P, with X(w)=Y T,0) [where d(T,)*Py/
dP, = X and d(T;")*P,/dP, = Y1 it follows that if Y(w) is of the Girsanov
form, so is X(w). .

Consider now the classical Wiener space: o = {W,, 0 < ¢ < 1}, where W
stands for the standard Wiener process. Let &, denote the subsigma fields
generated by {W,, 0 < 8 < t} and assume that F(w) satisfies the requirements
of Theorem 6.4 of [2]. Writing in this case F(w) = {F(w), 0 < ¢t < 1}, further
assume that F(w) is -measurable; then obviously det,(Iy + pVF) = 1 fol-
lows from a comparison of the Ramer and Girsanov formulas. Two direct
proofs of this result, based on the properties of det, (without any appeal to the
Girsanov-type results) will now be pointed out. Note first that since we are
dealing with the classical Wiener case we have the representations F, = [{f, ds
and

(VF., h)g = folef, - h(s) ds,

where D, f, is a Hilbert Schmidt kernel on [0, 1] and, since F, is <,-measur-
able, D, f, = 0 whenever s > ¢. In general, for the classical Wiener case, by the
Hilbert-Fredholm formula (cf., e.g., Theorem 9.4 of [5)]):

@ pm
dety(I; + pVF) =1 + mz=1 — j[.o,l]mdet(K(sl,sJ))me ds,...ds,,
where (K(s;, ;) ,,xn, is an m X m matrix with the (i, j)th entry given by 0 if
i=k and by D, f, for j+i. In our case, since D, f, =0 for s>t
(K(8;, 5D pxm is 2 triangular matrix with zeros on the diagonal and its
determinant is zero, consequently, dety(I; + pVF) = 1. The second proof of
this result is based on the result of this note: Note that for any K(s, ), L(s, t)
which are square integrable on [0,1]> and for any complete orthonormal
system on [0, 1], {¢,(8),i = 1,2,...},

Trace(K,L) = L [Ol(folK(s,o)(p,.(s)ds) : (folL(B,t)@(t) dt| de.
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Hence, by the Parseval theorem,
Trace(K, L) = f K(s,0)L(6,s)d6ds.
[0, 11

Now, if K(s,t) =0 and L(s,t) =0 for s > ¢, then Trace(K,L) =0, and
moreover M(s,t) = 0 for s > ¢, where

M(s,t) = ['K(s,0)L(6,1) do.
0

Consequently, if F, is «,-measurable, then D, f, satisfies condition (b) of the
theorem a.s.-P,,.

We note that in the abstract Wiener space setup, if VF is (a.s.-P,) both
quasinilpotent and of trace class, then Trace VF = 0 and the Fredholm deter-
minant coincides with the Carleman-Fredholm determinant. In the classical
Wiener space, the class of Ogawa integrable integrands {u ;,0 < s < 1} (cf. [3]
is larger than the class of integrands for which D,u is of trace class. If,
however, D,u is both quasinilpotent and of trace class, then the Skorohod
integral coincides with the Ogawa integral.
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