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Abstract

Given a multi-dimensional Markov diffusion X, the Malliavin integration by parts
formula provides a family of representations of the conditional expectation E[g(X2)|X1].
The different representations are determined by some localizing functions. We discuss
the problem of variance reduction within this family. We characterize an exponen-
tial function as the unique integrated mean-square-error minimizer among the class
of separable localizing functions. For general localizing functions, we prove existence
and uniqueness of the optimal localizing function in a suitable Sobolev space. We
also provide a PDE characterization of the optimal solution which allows to draw the
following observation : the separable exponential function does not minimize the in-
tegrated mean square error, except for the trivial one-dimensional case. We provide
an application to a portfolio allocation problem, by use of the dynamic programming
principle.
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1 Introduction

Let X be a Markov process. Given n simulated paths of X, the purpose of this paper is
to provide a Monte Carlo estimation of the conditional expectation

r(x) := E [g(X2)|X1 = x] , (1.1)

i.e. the regression function of g(X2) on X1. In order to handle the singularity due to the
conditioning, one can use Kernel methods developed in the statistics literature, see e.g.
[2]. However, the asymptotic properties of the Kernel estimators depend on the bandwidth
of the Kernel function as well as the dimension of the state variable X. Therefore, using
these methods in a Monte Carlo technique does not induce the

√
n rate of convergence.

Malliavin integration by parts formula has been suggested recently in [7], [6], [10] and
[9] in order to recover the

√
n rate of convergence. Let us first discuss the case of the

density estimator considered by [9]. The starting point is the expression of the density p
of a smooth real-valued random variable G (see [12] Proposition 2.1.1) :

p(x) = E

[
1{G>x}δ

(
DG

|DG|2

)]
, (1.2)

where δ is the Skorohod integration operator, and D is the Malliavin derivative operator.
Writing formally the density as p(x) = E[εx(G)], where εx is the Dirac measure at point
x, the above expression is easily understood as a consequence of an integration by parts
formula (integrating up the Dirac). A remarkable feature of this expression is that it
suggests a Monte Carlo estimation technique which does not require the use of Kernel
methods in order to approximate the Dirac measure.

The same observation prevails for the case of the regression function r(x) which can be
written formally in :

r(x) =
E [g(X2)εx(X1)]
E [εx(X1)]

.

Using the Malliavin integration by parts formula, [6] suggest an alternative representation
of the regression function r(x) in the spirit of (1.2). This idea is further developed in [10]
when the process X is a multi-dimensional correlated Brownian motion.

An important observation is that, while (1.2) suggests a Monte Carlo estimator with
√
n

rate of convergence, it also provides the price to pay for this gain in efficiency : the right-
hand side of (1.2) involves the Skorohod integral of the normalized Malliavin derivative
|DG|−2DG; in practice this requires an approximation of the continuous-time process DG
and its Skorohod integral.

In this paper, we provide a family of such alternative representations in the vector-valued
case. As in [6], we introduce localizing functions ϕ(x) in order to catch the idea that the
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relevant information, for the computation of r(x), is located in the neighborhood of x.
The practical relevance of such localizing functions is highlighted in [10].

The main contribution of this paper is the discussion of the variance reduction issue
related to the family of localizing functions. We first restrict the family to the class of
separable functions ϕ(x) =

∏
i ϕi(x

i). We prove existence and uniqueness of a solution
to the problem of minimization of the integrated mean square error in this class. The
solution is of the exponential form ϕi(xi) = e−η

ixi
where the ηi’s are positive parameters

characterized as the unique solution of a system of non-linear equations. In the one-
dimensional case, this result has been obtained heuristically by [9].

We also study the problem of minimizing the integrated mean square error within a
larger class of all localizing functions. We first prove existence and uniqueness in a suitable
Sobolev space. We then provide a PDE characterization of the solution with appropriate
boundary conditions. An interesting observation is that separable localizing functions do
not solve this equation, except for the one dimensional case.

The estimation method devised in this paper is further explored in [4] in the context of
the simulation of backward stochastic differential equations.

The paper is organized as follows. Section 2 introduces the main notations together
with some preliminary results. Section 3 contains the proof of the family of alternative
representations of the conditional expectation. The variance reduction issues are discussed
in Section 4. Numerical experiments are provided in Section 5. Finally, Section 6 provides
an application of this technique to a popular stochastic control problem in finance, namely
find the optimal portfolio allocation in order to maximize expected utility from terminal
wealth.

2 Preliminaries

We start by introducing some notations. Throughout this paper we shall denote by Jk
the subset of Nk whose elements I = (i1, . . . , ik) satisfy 1 ≤ i1 < . . . < ik ≤ d. We extend
this definition to k = 0 by setting J0 = ∅.

Let I = (i1, . . . , im) and J = (j1, . . . , in) be two arbitrary elements in Jm and Jn. Then
{i1, . . . , im} ∪ {j1, . . . , jn} = {k1, . . . , kp} for some max{n,m} ≤ p ≤ min{d,m + n}, and
1 ≤ k1 < . . . < kp ≤ d . We then denote I ∨ J := (k1, . . . , kp) ∈ Jp.
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2.1 Malliavin derivatives and Skorohod integrals

Let (Ω,F , P ) be a complete probability space equipped with a d-dimensional standard
Brownian motion W = (W 1, . . . ,W d). Since we are interested in the computation of the
regression function (1.1), we shall restrict the time interval to T := [0, 2]. We denote by
F := {Ft, t ∈ T} the P−completion of the filtration generated by W . Throughout this
paper, we consider a Markov process X such that X1 and X2 belong to the Sobolev spaces
Dk,p (p, k ≥ 1) of k−times Malliavin differentiable random variables satisfying :

||X||Dk,p :=

E(|X|p) +
k∑
j=1

E
(
||DjX||p

Lp(Tj)

)1/p

<∞

where

||DjX||Lp(Tj) =
(∫

Tj

|Dt1 · · ·DtjX|pdtj . . . dt1
)1/p

.

Given a matrix-valued process h, with columns denoted by hi, and a random variable
F , we denote

Shi (F ) :=
∫
T
F (hit)

∗dWt for i = 1, . . . , d, and ShI (F ) := Shi1 ◦ . . . ◦ S
h
ik

(F )

for I = (i1, . . . , ik) ∈ Jk, whenever these stochastic integrals exist in the Skorohod sense.
Here ∗ denotes transposition. We extend this definition to k = 0 by setting Sh∅ (F ) := F .
Similarly, for I ∈ Jk, we set :

Sh−I(F ) := ShĪ (F ) where Ī ∈ Jd−k and I ∨ Ī is the unique element of Jd .

2.2 Localizing functions

Let ϕ be a C0
b , i.e. continuous and bounded, mapping from Rd into R. We say that ϕ is

a smooth localizing function if

ϕ(0) = 1 and ∂Iϕ ∈ C0
b for all k = 0, . . . , d and I ∈ Jk .

Here, ∂Iϕ = ∂kϕ/∂xi1 , . . . ∂xik . For k = 0, Jk = ∅, and we set ∂∅ϕ := ϕ. We denote by
L the collection of all such localization functions.

With these notations, we introduce the set H(X) as the collection of all matrix-valued
L2(F2) processes h satisfying∫

T
DtX1htdt = Id and

∫
T
DtX2htdt = 0 (2.1)
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(here Id denotes the identity matrix) and such that :

ShI (ϕ(X1)) is well-defined in D1,2 for all I ∈ Jk , k ≤ d and ϕ ∈ L . (2.2)

We shall assume all over this paper that

Standing Assumption : H(X) 6= ∅.

We next report useful properties for the rest of the paper.

Lemma 2.1 Consider an arbitrary process h ∈ H(X). Then, for all bounded f ∈ C1
b and

for all real valued r.v. F ∈ D1,2 with E[F 2
∫
T |ht|

2dt] < ∞ :

(i)
∫
T
Dt (f(X2))htdt = 0 and therefore E

[
f(X2)

∫
T
Fh∗tdWt

]
= 0.

(ii)
∫
T
f(X1)Fh∗tdWt = f(X1)

∫
T Fh

∗
tdWt − ∇f(X1)F ,

Proof. The first identity in (i) is a direct consequence of the chain rule formula together
with (2.1). The second identity follows from the Malliavin integration by parts formula.
To see that (ii) holds, we apply a standard result (see e.g. Nualart (1995) p. 40)∫

T
f(X1)Fh∗tdWt = f(X1)

∫
T
Fh∗tdWt −∇f(X1)F

∫
T
DtX1htdt .

The required result follows from (2.1). �

2.3 Examples

Example 2.1 (Markov diffusion) Let X be defined by the stochastic differential equa-
tion :

dXt = b(Xt)dt+ σ(Xt)dWt , (2.3)

together with an initial condition X0. Here, b, σ and σ−1 are C∞
b vector and matrix-valued

functions. Under the above condition X belongs to the set Lk,pT (p, k ≥ 1) of processes X
such that Xt ∈ Dk,p for all t ∈ T and satisfying :

||X||Lk,p
T

:=

E(
∫
T
|Xt|pdt) +

k∑
j=1

E

(∫
T
||DjXt||pLp(T j)

dt

) 1
p

<∞ .

We denote by L∞T := ∩p≥1 ∩k≥1 Lk,pT . We similarly define D∞. Notice that f(X) ∈ L∞T
whenever f ∈ C∞

b . In particular, σ−1(X) ∈ L∞T (see [12] Proposition 1.5.1).
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The first variation process of X is the matrix-valued process defined by :

Y0 = Id and dYt = ∇b(Xt)Ytdt+
d∑
i=1

∇σi(Xt)YtdW i
t , (2.4)

where ∇ is the gradient operator, and σi is the i−th column vector of σ. By [12] Lemma
2.2.2, the processes Y and Y −1 also belong to L∞T .

The Malliavin derivative is related to the first variation process by :

DsXt = YtY
−1
s σ(Xs)1{s≤t} ; s ≥ 0 , (2.5)

so that :

DsX1 = Y1Y
−1
2 DsX21{s≤1} ; s ≥ 0 . (2.6)

It follows that H(X) is not empty. Indeed, since X, Y , Y −1 and σ−1(X) are in L∞T ,

ĥt := (DtX2)−1Y2Y
−1
1 (1t∈[0,1) − 1t∈[1,2]) (2.7)

defines a process in L∞T satisfying (2.1). Moreover, for each real-valued F ∈ D∞, and i =
1, . . . , d, Sĥi (F ) is well defined and belongs to D∞ (see [12] Property 2 p38 and Proposition
3.2.1 p158). By simple iteration of this argument, we also see that ĥ satisfies (2.2).

Example 2.2 (Euler approximation of a Markov diffusion) Consider the Euler approx-
imation X̄ of (2.3) on the grid 0 = t0 < t1 < . . . < tN = 1 < . . . < t2N = 2, N ∈
N,

X̄t0 = X0

X̄tn+1 = X̄tn + b
(
X̄tn

)
(tn+1 − tn) + σ

(
X̄tn

) (
Wtn+1 −Wtn

)
for 0 ≤ n ≤ 2N − 1 .

Recalling that b, σ are C∞
b , we see that, for each n ∈ {0, . . . , t2N}, X̄tn ∈ D∞, where the

Malliavin derivatives can be computed recursively as follows :

DtX̄t1 = σ
(
X̄t0

)
1t≤t1

DtX̄tn+1 = DtX̄tn +∇b(Xtn)DtX̄tn(tn+1 − tn)

+
d∑
i=1

∇σi(X̄tn)DtX̄tn(W i
tn+1

−W i
tn) + σ(X̄tn)1t∈(tn,tn+1] .

Noticing that DtX̄tn = 0 for t > tn and recalling that σ−1 ∈ C∞
b , we see that :

ĥt := (1− tN−1)−1σ−1(X̄tN−1)1t∈(tN−1,1]

− (2− t2N−1)−1σ−1(X̄t2N−1)Dt̂X̄2σ
−1(X̄tN−1)1t∈(t2N−1,2] (2.8)

where t̂ ∈ (tN−1, 1), satisfies (2.1) and (2.2).

Remark 2.1 Let ĥ be the process defined in Example 2.1 or 2.2. Then, using [12] Propo-
sition 3.2.1 p158, we see that, for any localizing function ϕ ∈ L :

E
[
SĥI (ϕ(X1))

]p
< ∞ for all p ≥ 1, I ∈ Jk, k ≤ d .
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3 Alternative representation of conditional expectations

The starting point of this paper is an alternative representation of the regression function
r(x), introduced in (1.1), which does not involve conditioning. This is a restatement of a
result reported in [6] without proof, and further developed in [10] in the case where the
process X is defined as a correlated Brownian motion, see also [9] for the one-dimensional
case with f ≡ 1, and [12] Exercise 2.1.3 for ϕ = f ≡ 1.

Theorem 3.1 Let f be a mapping from Rd into R with f(X2) ∈ L2, and {Ai, i ≤ d} a
family of Borel subsets of R. Then, for all h ∈ H(X), and ϕ ∈ L :

E [1A(X1)f(X2)] =
∫
A
E
[
Hx(X1)f(X2)Sh (ϕ(X1 − x))

]
dx , (3.1)

where Hx(y) :=
∏d
i=1 1{xi<yi}, A := A1 × . . .×Ad, and Sh = Sh(1,...,d).

The proof of the above Theorem will be provided at the end of this section. The repre-
sentation (3.1) can be understood formally as a consequence of d successive integrations by
parts, integrating up the Dirac measure to the Heaviside function Hx. The main difficulty
is due to the fact that the random variable Hx(X1) is not Malliavin-differentiable, see [12]
Remark 2 p31. We therefore adapt the argument of the proof of (1.2) in [12].

Remark 3.1 By the same argument (see Proposition 2.1.1 and Exercise 3.1 in [12], and
[9]), we also obtain an alternative representation of the density pX1 of X1. This is only a
re-writing of Theorem 3.1 with f ≡ 1 :

pX1(x) = E
[
Hx(X1)E

[
Sh (ϕ(X1 − x)) | F1

]]
= E

[
Hx(X1)Sh̄ (ϕ(X1 − x))

]
where h̄ := h1[0,1] ,

and the last equality follows from [12] Lemma 3.2.1. This means that, for the problem of
density estimation, we can consider processes in H(X) which vanish on the time interval
(1, 2].

Since the distribution of X1 has no atoms, we obtain the following family of represen-
tations of the regression function r(x), as a direct consequence of Theorem 3.1.

Corollary 3.1 Let g be a mapping from Rd into R with g(X2) ∈ L2. Then, for all h ∈
H(X) and ϕ ∈ L :

r(x) := E [g(X2) | X1 = x] =
q[g](x)
q[1](x)

where q[f ](x) := E
[
Qh,ϕ[f ](x)

]
,

and

Qh,ϕ[f ](x) := Hx(X1)f(X2)Sh (ϕ(X1 − x)) .
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Remark 3.2 Variance reduction I : optimal localization. As in [9], [6] and [10], we intro-
duce a localizing function ϕ in L in order to catch the idea that the relevant information,
for the computation of r(x), is located in the neighborhood of x. The practical impor-
tance of this issue is highlighted in [10]. The problem of selecting an ”optimal” localizing
function will be considered in the next section. The one-dimensional case was discussed
heuristically by [9].

Remark 3.3 Variance reduction II : control variates. This is a direct extension of [9]
who dealt with the one-dimensional case with g ≡ 1. Under the conditions of Theorem
3.1, it follows from Lemma 2.1 (i) that

E
[
Hx(X1)g(X2)Sh (ϕ(X1 − x))

]
= E

[
(Hx(X1)− c) g(X2)Sh (ϕ(X1 − x))

]
,

for all c ∈ R. This suggests to apply a control variate technique, i.e. choose c in order to
reduce the variance of the Monte Carlo estimator of the expectation (if g is not identically
equal to 0). Clearly, the variance is minimized for

ĉ(x) :=
E
[
Hx(X1)g(X2)2Sh (ϕ(X1 − x))2

]
E
[
g(X2)2Sh (ϕ(X1 − x))2

] .

Remark 3.4 For later use, we observe that, by using repeatedly Lemma 2.1 (ii), the
Skorohod integral on the right-hand side of (3.1) can be developed in

Sh (ϕ(X1 − x)) =
d∑

k=0

(−1)k
∑
I∈Jk

∂Iϕ(X1 − x)Sh−I(1) . (3.2)

Remark 3.5 Assume that
d∑

k=0

∑
I∈Jk

E

[(
f(X2)Sh−I(1)

)2
]
< ∞ , (3.3)

then it follows from the above Remark that Theorem 3.1 (and therefore Corollary 3.1)
holds for all ϕ ∈ C0(Rd) with ϕ(0) = 1, ∂Iϕ exists in the distribution sense and

d∑
k=0

∑
I∈Jk

E
[
(∂Iϕ(X1 − x))2

]
< ∞ .

Remark 3.6 In Section 4.2, we shall need to extend further the class of localizing function
by only requiring that

∂Iϕ ∈ L2(Rd) for all k = 0, . . . , d and I ∈ Jk . (3.4)

We shall see in Proposition 4.1 that the set of functions satisfying (3.4) can be imbedded
in C0(Rd

+), thus providing a sense to the constraint ϕ(0) = 1.
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Proof of Theorem 3.1 We shall prove the required representation result by using re-
peatedly an identity to be derived in the second part of this proof. Let us first introduce
the following additional notation

πi(x) := (0, . . . , 0, xi+1, . . . , xd)∗ for i = 0, . . . , d− 1, and πd(x) = 0 ,

for x ∈ Rd, and :

Ii = (i+ 1, . . . , d) ∈ Jd−i for i = 0, . . . , d− 1 and Id := ∅ .

1. By a classical density argument, it is sufficient to prove the result for f smooth and
Ai = [ai, bi] with ai < bi.

2. In preparation of the induction argument below, we start by proving that, for all
i = 1, . . . , d,

E
[
1Ai(X

i
1)φ

i(X1)f(X2)ShIi (ϕ ◦ πi(X1 − x))
]

=
∫
Ai

E
[
Hxi(Xi

1)φ
i(X1)f(X2)ShIi−1

(ϕ ◦ πi−1(X1 − x))
]
dxi ,

(3.5)

for any ϕ ∈ L, f and φi ∈ C1
b with φi(x) independent of the i−th component xi.

To see this, define the r.v.

Fi :=
∫ Xi

1

−∞
1Ai(x

i)φi(X1)f(X2)ShIi (ϕ ◦ πi−1(X1 − x)) dxi .

Since f , φi are smooth, Ai = [ai, bi] and ShIi (ϕ ◦ πi−1(X1 − x)) ∈ D1,2, Fi is Malliavin-
differentiable. By direct computation, it follows that

DtFi = 1Ai(X
i
1)φ

i(X1)f(X2)ShIi (ϕ ◦ πi(X1 − x))DtX
i
1

+
∫ Xi

1

−∞
dxi1Ai(x

i)Dt

{
φi(X1)f(X2)ShIi (ϕ ◦ πi−1(X1 − x))

}
. (3.6)

Now recall that the function φi does not depend on its i−th variable. Then, it fol-
lows from (2.1) that

∫
TDt{φi(X1)}hitdt = 0. Also, we know from Lemma 2.1 (i) that∫

TDt{f(X2)}hitdt = 0. Therefore, it follows from (3.6) that :∫
T
DtFih

i
tdt = 1Ai(X

i
1)φ

i(X1)f(X2)ShIi (ϕ ◦ πi(X1 − x)) (3.7)

+
∫ Xi

1

−∞
dxi1Ai(x

i)φi(X1)f(X2)
∫
T
DtS

h
Ii (ϕ ◦ πi−1(X1 − x))hitdt ,

where we used the fact that
∫
TDtX

i
1h
i
tdt = 1 by (2.1). We now observe that :

E

[∫
T
DtFih

i
tdt

]
= E

[
Fi

∫
T

(hit)
∗dWt

]
=
∫
Ai

dxiE

[
Hxi(Xi

1)φ
i(X1)f(X2)ShIi (ϕ ◦ πi−1(X1 − x))

∫ 2

0
(hit)

∗dWt

]
,
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where we used the Malliavin integration by parts formula. Then, taking expectations in
(3.7), we see that :

E
[
1Ai(X

i
1)φ

i(X1)f(X2)ShIi (ϕ ◦ πi(X1 − x))
]

=
∫
Ai

dxiE

[
Hxi(Xi

1)φ
i(X1)f(X2)

{
ShIi (ϕ ◦ πi−1(X1 − x))

∫
T

(hit)
∗dWt

−
∫
T
Dt{ShIi (ϕ ◦ πi−1(X1 − x))}hitdt

}]
=
∫
Ai

dxiE
[
Hxi(Xi

1)φ
i(X1)f(X2)ShIi−1

(ϕ ◦ πi−1(X1 − x))
]

3. We now use repeatedly identity (3.5). First notice that, by density, (3.5) holds also for
bounded φi(x). Set φd(x) :=

∏d−1
i=1 1Ai(x

i). Since ϕ(0) = 1, we see that :

E [1A(X1)f(X2)] = E
[
1A(X1)f(X2)ShId (ϕ ◦ πd(X1 − x))

]
=

∫
Ad

dxdE
[
Hxd(Xd

1 )φd(X1)f(X2)ShId−1
(ϕ ◦ πd−1(X1 − x))

]
.

We next concentrate on the integrand on the right hand-side of the last equation. We set
φd−1(y) := Hxd(yd)

∏d−2
i=1 1Ai(y

i), and we use again (3.5) to see that :

E [1A(X1)f(X2)]

=
∫
Ad

dxd
∫
Ad−1

dxd−1E
[
Hxd−1(Xd−1

1 )φd−1(X1)f(X2)ShId−2
(ϕ ◦ πd−2(X1 − x))

]
.

Iterating this procedure, we obtain the representation result announced in the theorem.
�

Remark 3.7 Let the conditions of Theorem 3.1 hold. For later use, observe that, by
similar arguments,

E
[
Hxi(Xi

1)1A−i(X−i
1 )f(X2)

]
=

∫
A−i

E
[
Hx(X1)f(X2)Sh(−i) (ϕ(X1 − x))

]
dx−i

where A−i = A1 × . . . ×Ai−1 ×Ai+1 × . . . ×Ad and dx−i =
∏
j 6=i dx

j .

4 Variance reduction by localization

Given a localizing function ϕ ∈ L (or ϕ in some convenient relaxation of L, see Remark
3.6), and h ∈ H(X), the representation result of Corollary 3.1 suggests to estimate the
regression coefficient r(x) by the Monte Carlo estimator :

r̂n(x) :=
q̂n[g](x)
q̂n[1](x)

where q̂n[f ](x) :=
1
n

n∑
k=1

Qh,ϕ[f ](x)(k) (4.1)
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and

Qh,ϕ[f ](x)(k) := Hx

(
X

(k)
1

)
f
(
X

(k)
2

)
Sh

(k)
(
ϕ(X(k)

1 − x)
)
. (4.2)

Here,
(
X(k), h(k)

)
are independent copies with the same distribution as (X,h). By direct

computation, we have

Var [q̂n[f ](x)] =
1
n

{
E
[
Hx(X1)f(X2)2Sh (ϕ(X1 − x))2

]
− q[f ](x)2

}
.

In this section, we consider the problem of minimizing the mean square error (mse, here-
after)

Ih[f ](ϕ) :=
∫

Rd

E
[
Hx(X1)f(X2)2Sh (ϕ(X1 − x))2

]
dx

within the class of localizing functions. This criterion has been introduced by [9] in the
one dimensional case with f ≡ 1.

In order to ensure that this optimization problem is well-defined, we assume that :

d∑
k=0

∑
I∈Jk

E
[
f(X2)2ShI (1)2

]
< ∞ and E|f(X2)| > 0 (4.3)

(see Remark 2.1 and Remark 3.6).

Notice that only the restriction of ϕ to Rd
+ is involved in Ih[f ](ϕ). We then consider

the set L+ ⊂ L of functions of the form ϕ|Rd
+

. On this set, the functional Ih[f ] is convex,

by linearity of the Skorohod integral.

4.1 Optimal Separable localization

We first consider the subset Ls+ of localizing functions ϕ of L+ of the form

ϕ(x) =
d∏
i=1

ϕi(xi) ,

and we study the integrated mse minimization problem within the class of such localizing
functions :

vhs [f ] := inf
ϕ∈Ls

+

Ih[f ](ϕ) . (4.4)

Theorem 4.1 Let h ∈ H(X) be fixed, and f a mapping from Rd into R satisfying Con-
dition (4.3). Then, there exists a unique solution ϕ̂ to the integrated mse minimization
problem (4.4) given by :

ϕ̂(x) = e−η̂
∗x , x ∈ (R+)d , for some η̂ ∈ (0,∞)d .

11



Moreover, η̂ is the unique solution of the system of non-linear equations

(η̂i)2 =
E

[
f(X2)2

(∑d−1
k=0(−1)k

∑
I∈J−i

k
Sh−I(1)

∏
j∈I η̂

j
)2
]

E

[
f(X2)2

(∑d−1
k=0(−1)k

∑
I∈J−i

k
Sh−(I∨i)(1)

∏
j∈I η̂

j
)2
] , 1 ≤ i ≤ d , (4.5)

where J −i
k = {I ∈ Jk : i 6∈ I}.

Observe that (4.5) is a system of (deterministic) polynomial equations.

Remark 4.1 By (3.2), one can define the integrated mse minimization problem within
some convenient relaxation of the class Ls+ of separable localizing functions. Since C0

b is
dense in L2, it is clear that the relaxation suggested in Remark 3.6 does not alter the value
of the minimum.

We split the proof of the above Theorem in several Lemmas. The conditions of Theorem
4.1 are implicitly assumed in the rest of this section. We shall use the following additional
notations :

H−i
x :=

∏
j 6=i

Hxj and ϕ−i(x) :=
∏
j 6=i

ϕj(xj) for ϕ ∈ Ls+ .

Lemma 4.1 Let h be an arbitrary element in H(X). Then, for all ϕ ∈ Ls+ :

Sh (ϕ(X1)) = ϕi(Xi
1)S

h
(
ϕ−i(X1)

)
− ϕ′i(X

i
1)S

h
−(i)

(
ϕ−i(X1)

)
.

Proof. By Lemma 2.1 (ii), we directly compute that :

Sh (ϕ(X1)) = Sh−Ii

(
ϕi(Xi

1)S
h
Ii

(
ϕ−i(X1)

))
= Sh−Ii−1

(
ϕi(Xi

1)S
h
Ii−1

(
ϕ−i(X1)

)
− (ϕi)′(Xi

1)S
h
Ii

(
ϕ−i(X1)

))
= ϕi(Xi

1)S
h
(
ϕ−i(X1)

)
− (ϕi)′(Xi

1)S
h
−(i)

(
ϕ−i(X1)

)
.

�

Remark 4.2 Let ϕ be an arbitrary separable localizing function in Ls+. Under (4.3), ϕ
is in the effective domain of Ih[f ] (see Remark 3.4). Given a function ψ : R+ −→ R with
ψ(0) = 0, define the mapping from Rd

+ into R :

φi[ϕ,ψ](x) := ϕ−i(x)ψ(xi) = ψ(xi)
∏
j 6=i

ϕj(xj) .

Then, if ψ is C1 and has compact support, we have φi[ϕ,ϕi +ψ] ∈ Ls+ and, by (4.3), is in
the effective domain of Ih[f ].

12



Lemma 4.2 Let ϕ be an arbitrary smooth separable localizing function. For all integer
i ≤ d, we denote by Ψi(ϕ) the collection of all maps ψ : R+ −→ R such that φi[ϕ,ψ] ∈
Ls+. Then, the minimization problem

min
ψ∈Ψi(ϕ)

Ih[f ](φi[ϕ,ψ])

has a unique solution ψ̂(y) := e−η̂
iy for some η̂i > 0 defined by

(η̂i)2 =

∫
Rd−1 E

[
H−i
x (X−i

1 )f(X2)2Sh(ϕ−i(X1 − x))2
]
dx−i∫

Rd−1 E
[
H−i
x (X−i

1 )f(X2)2Sh(−i)(ϕ
−i(X1 − x))2

]
dx−i

. (4.6)

Proof. 1. Assume that ϕi ∈ Ψi(ϕ) is optimal (since φi[ϕ,ψ] does not depend on the
i-th component ϕi of ϕ, we can use this notation to indicate the optimum) and consider
some function ψ : R+ −→ R with compact support and ψ(0) = 0 . By Remark 4.2,
φi[ϕ,ϕi + εψ] ∈ Ls+ for all ε ∈ R. Then for all ε

Ih[f ](ϕ) ≤ Ih[f ](φi[ϕ,ϕi + εψ]) .

By Linearity of the Skorohod integral,

Ih[f ](ϕ) ≤ Ih[f ](ϕ) + ε2Ih[f ](ϕ−iψ)

+ 2ε
∫

Rd

E
[
Hx(X1)f(X2)2Sh (ϕ(X1 − x))Sh

(
ϕ−iψ(X1 − x)

)]
dx .

For ε > 0, we divide the above inequality by ε and we let ε go to 0. This implies that :∫
Rd

E
[
Hx(X1)f(X2)2Sh (ϕ(X1 − x))Sh

(
ϕ−iψ(X1 − x)

)]
dx ≥ 0 .

Applying the same argument with ε < 0, it follows that equality holds in the above
inequality. By Fubini’s theorem, this provides∫

Rd−1

E

[
H−i
x (X−i

1 )f(X2)2
∫ Xi

1

−∞
Sh (ϕ(X1 − x))Sh

(
ϕ−iψ(X1 − x)

)
dxi

]
dx−i = 0 . (4.7)

2. Now, using Lemma 4.1, and performing the change of variable y = Xi
1 − xi (ω by ω),∫ Xi

1

−∞
Sh (ϕ(X1 − x))Sh

(
ϕ−iψ(X1 − x)

)
dxi

=
∫ Xi

1

−∞

(
ϕi(Xi

1 − xi)Fi − ϕ′i(X
i
1 − xi)Gi

) (
ψ(Xi

1 − xi)Fi − ψ′(Xi
1 − xi)Gi

)
dxi

=
∫ ∞

0

(
ϕi(y)Fi − ϕ′i(y)Gi

) (
ψ(y)Fi − ψ′(y)Gi

)
dy ,

where we used the notations Fi := Sh
(
ϕ−i(X1 − x)

)
andGi := Sh−(i)

(
ϕ−i(X1 − x)

)
. Recall

that ϕ−i does not depend on the i−th component. Integrating by parts, and recalling that
ψ has compact support and ψ(0) = 0, this provides :∫ Xi

1

−∞
Sh (ϕ(X1 − x))Sh

(
ϕ−iψ(X1 − x)

)
dxi =

∫ ∞

0
ψ(y)

[
ϕi(y)F 2

i − ϕ′′i (y)G
2
i

]
dy .
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Plug this equality in (4.7) and use again Fubini’s theorem to see that :

0 =
∫ ∞

0
ψ(y)

[
αiϕi(y)− βiϕ

′′
i (y)

]
dy

where αi and βi are the non-negative parameters defined by

αi :=
∫

Rd−1

E
[
H−i
x (X−i

1 )f(X2)2F 2
i

]
dx−i and βi :=

∫
Rd−1

E
[
H−i
x (X−i

1 )f(X2)2G2
i

]
dx−i .

By the arbitrariness of the perturbation function ψ, this implies that ϕi satisfies the
ordinary differential equation

αiϕi(y)− βiϕ
′′
i (y) = 0 for all y ≥ 0 ,

together with the boundary condition ϕi(0) = 1. We shall prove in the next step that
βi > 0. Recalling that ϕ has to be bounded, as an element of Ls+, this provides the unique
solution ϕi(y) = e−η

iy where ηi = (αi/βi)1/2.

3. To see that βi > 0, take an arbitrary xi ∈ R, and use the trivial inequality H−i
x ≥

H−i
x 1(Bn)d−11(xi,∞) = Hx1(Bn)d−1 to get :

βi ≥
∫

(Bn)d−1

E
[
Hx(X1)f(X2)2G2

i

]
dx−i .

Here n is an arbitrary positive integer, and Bn := [−n, n]. By Jensen’s inequality, this
provides :

βi ≥ (2n)1−d
{∫

(Bn)d−1

E [Hx(X1)|f(X2)|Gi] dx−i
}2

= (2n)1−d
{
E
[
Hxi(Xi

1)1(Bn)d−1(X−i
1 )|f(X2)|

]}2
,

where we used Remark 3.7 together with the definition of Gi. Since this inequality holds
for all xi ∈ R, we may send xi to −∞ and use Fatou’s lemma to get :

βi ≥ (2n)1−d
{
E
[
1(Bn)d−1(X−i

1 )|f(X2)|
]}2

.

Since E|f(X2)| > 0, this proves that βi > 0 by choosing a sufficiently large n, .

4. Conversely, let ϕi be defined as in the statement of the Lemma. Then Ih[f ](ϕ) ≤
Ih[f ](ϕ−i(ϕi + ψ)) for all function ψ with compact support such that ψ(0) = 0. Using
(4.3), we see by using classical density arguments that Ih[f ](ϕ) ≤ Ih[f ](ϕ−iψ) for all func-
tions ψ such that ψϕ−i ∈ Ls+. �

The last lemma suggests to introduce the subset Lexp
+ of Ls+ consisting of all separable

localizing functions

ϕη(x) := exp (−η∗x) , x ∈ Rd
+ ,
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for some η ∈ (0,∞)d. For ease of notation we set :

Jh[f ](η) := Ih[f ](ϕη) and wh[f ] := inf
η1,...,ηd>0

Jh[f ](η) . (4.8)

Lemma 4.3 Consider an arbitrary constant K > wh[f ]. Then

cl
(
{η ∈ (0,∞)d : Jh[f ](η) ≤ K}

)
is a compact subset of (0,∞)d .

Proof. Fix K > wh[f ], and let η ∈ (0,∞)d be such that Jh[f ](η) ≤ K. We need to prove
that all ηi’s are bounded and bounded away from zero.

Let 1 ≤ i ≤ d be a fixed integer, and set ϕ := ϕη. By Lemma 4.1,∫
Rd

Hx(X1)f(X2)2Sh (ϕ(X1 − x))2 dx

=
∫

Rd−1

Hx−i(X−i
1 )f(X2)2

∫ Xi
1

−∞

(
ϕi(Xi

1 − xi)Fi − ϕ′i(X
i
1 − xi)Gi

)2
dxidx−i ,

where we used the notations of the previous proof Fi := Sh
(
ϕ−i(X1 − x)

)
and Gi :=

Sh−(i)

(
ϕ−i(X1 − x)

)
. Using the fact that (∂ϕ/∂xi) = −ηiϕ, it follows from a trivial change

of variable that ∫
Rd

Hx(X1)f(X2)2Sh (ϕ(X1 − x))2 dx

=
∫

Rd−1

Hx−i(X−i
1 )f(X2)2(Fi + ηiGi)2dx−i

∫ ∞

0
ϕi(y)2dy

= (2ηi)−1

∫
Rd−1

Hx−i(X−i
1 )f(X2)2(Fi + ηiGi)2dx−i .

We therefore have :

K ≥ Jh[f ](η) :=
∫

Rd

E
[
Hx(X1)f(X2)2Sh (ϕ(X1 − x))2

]
dx

= (2ηi)−1

∫
Rd−1

E
[
Hx−i(X−i

1 )f(X2)2(Fi + ηiGi)2
]
dx−i

≥ (2ηi)−1

∫
Bd−1

n

E
[
Hx−i(X−i

1 )f(X2)2(Fi + ηiGi)2
]
dx−i ,

where we use the notation Bn := [−n, n] for some arbitrary integer n. Observing that 1
≥ Hxi for all xi ∈ R, we obtain after integrating the variable xi over the domain Bn :

2nK ≥ (2ηi)−1

∫
Bd

n

E
[
Hx(X1)f(X2)2(Fi + ηiGi)2

]
dx .

By Jensen’s inequality, this provides :

2nK ≥ (2ηi)−1(2n)−d
{∫

Bd
n

E
[
Hx(X1)|f(X2)|(Fi + ηiGi)

]
dx

}2

. (4.9)
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We now use Theorem 3.1 and Remark 3.7 to see that :∫
Bd

n

E [Hx(X1)|f(X2)|Fi] dx = E
[
1Bd

n
(X1)|f(X2)|

]
∫
Bd

n

E [Hx(X1)|f(X2)|Gi] dx =
∫
Bn

E
[
1Bd−1

n
(X−i

1 )Hxi(Xi
1)|f(X2)|

]
dxi

are both strictly positive for sufficiently large n. This provides the required bound for
(ηi)−1 and ηi out of inequality (4.9). �

Lemma 4.4 There exists a unique solution η̂ ∈ (0,∞)d to the optimization problem w of
(4.8), i.e.

wh[f ] = Jh[f ](η̂) = Ih[f ](ϕη̂) < Ih[f ](ϕη) for all η1, . . . , ηd > 0 with η 6= η̂ .

Proof. Observe that the mapping η 7→ Jh[f ](η) is stricly convex and lower semicontinu-
ous. Then, existence and uniqueness of a solution η̂ follow immediately from Lemma 4.3.

�

Proof of Theorem 4.1. Let (ϕn) be a minimizing sequence of (4.4). Using repeatedly
Lemma 4.2, we can define a minimizing sequence (ϕηn) in Lexp

+ . Then, existence of a
solution follows from Lemma 4.4. The uniqueness and the characterization of the optimal
solution follow from Lemma 4.2. The system of nonlinear equations (4.5) is obtained from
(4.6) by developing the Skorohod integral on the right hand-side and then performing the
integration as in the above proof, see Remark 3.4. �

4.2 Variance reduction with general localization

We now consider the integrated mse minimization problem with the class of all localizing
functions. In contrast with the separable case, we cannot work directly with smooth
localizing functions.
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4.2.1 Existence

By Remark 3.4, after a change of variable inside the expectation (ω by ω), the objective
function can be written in

Ih[f ](ϕ) = E

f(X2)2
∫ X1

1

−∞
. . .

∫ Xd
1

−∞

 d∑
k=0

(−1)k
∑
I∈Jk

∂Iϕ(X1 − ξ)Sh−I(1)

2

dξ


=

∫
Rd

+

E

f(X2)2

 d∑
k=0

(−1)k
∑
I∈Jk

∂Iϕ(ξ)Sh−I(1)

2 dξ ,
=

∫
Rd

+

E
[
(∂ϕ(ξ)∗Qh)

2
]
dξ ,

=
∫

Rd
+

∂ϕ(ξ)∗E[QhQ∗
h]∂ϕ(ξ)dξ ,

where we have introduced the column vectors

∂ϕ := ( ∂Iϕ )I∈Jk, k=0,...,d and Qh :=
(

(−1)kf(X2)Sh−I(1)
)
I∈Jk, k=0,...,d

.

Notice that the matrix

Γh := E[QhQ∗
h]

is symmetric and non-negative. We shall assume later that it is indeed positive definite
(see Theorem 4.2 below).

The above discussion leads us to consider the following Bounded Cross Derivatives
Sobolev space. Consider the space BCD0(Rd

+) of functions ϕ : Rd
+ → R such that all

partial derivatives ∂Iϕ, I ∈ Ik, k = 0, ..., d, exist and are continuous on the interior of Rd
+

and can be extended continuously to the boundary. Endow it with the inner product:

< ϕ,ψ >BCD0 :=
∫

Rd
+

∂ϕ∗∂ψdx

which is clearly positive definite. Then BCD0(Rd
+) is a pre-Hilbert space, and its completion

is a Hilbert space, which we denote by BCD(Rd
+), and which is endowed with the scalar

product:

< u, v >BCD:=
∫

Rd
+

∂u∗∂vdx

and the corresponding norm ‖u‖BCD =< u, u >
1/2
BCD .

The main purpose of this section is to prove an existence result for the integrated mse
minimization problem when the localizing functions are relaxed to the space BCD(Rd

+). To
do this we need to incorporate the constraint ϕ(0) = 1 which has to be satisfied by any
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localizing function. Since the functions of BCD(Rd
+) are only defined almost everywhere,

this requires some preparation.

Denote by C∞ (Rd
+

)
the space of all functions ϕ : Rd

+ → R, indefinitely differentiable
on the interior of Rd

+, and such that all derivatives can be extended continuously to the
boundary. Denote by C∞

0

(
Rd

+

)
the space of functions in C∞ (Rd

+

)
which have bounded

support.

Lemma 4.5 (Localization) Take some ϕ ∈ C∞
0

(
Rd

+

)
. If u ∈ BCD(Rd

+), then ϕu ∈
BCD(Rd

+), and the map u→ ϕu from BCD(Rd
+) into itself is continuous.

Proof. Fix I = (i1, ..., ik) ∈ Ik for some k = 0, ..., d. Since all the ij are different, Leibniz’s
formula takes a particularly simple form, namely:

∂I (ϕu) =
∂k

∂xi1 ...∂xik
(ϕu) =

∑
(I1,I2)∈A

(∂I1ϕ) (∂I2u)

where A is the set of all partitions of I in disjoint subsets I1 and I2. It follows from the
assumption on ϕ that the ∂I1ϕ (x) are uniformly bounded on Rd

+, so that:

‖∂I (ϕu)‖L2 ≤ CI ‖∂u‖L2

for some constant CI , and the result follows. �

Denote by C0
b

(
Rd

+

)
the space of all bounded continuous functions on Rd

+, endowed with
the topology of uniform convergence.

Proposition 4.1 There is a linear continuous map i : BCD(Rd
+) → C0

b

(
Rd

+

)
such that

u = i (u) almost everywhere. Moreover, lim‖x‖→∞ i(u)(x) = 0 for all u ∈ BCD(Rd
+).

Proof. 1. Pick some number M > 0, and a function ϕM ∈ C∞
0

(
Rd

+

)
such that:

ϕM (x) = 1 for ‖x‖ ≤M/2

ϕM (x) = 0 for ‖x‖ ≥M .

For any u ∈ BCD(Rd
+), and x ∈ Rd

+ set:

iM (u) (x) := (−1)d
∫
Hx∂Id (ϕMu) dy = (−1)d

∫
(1MHx) ∂Id (ϕMu) dy (4.10)

where 1M (y) = 1 if ‖y‖ < M and 0 if ‖y‖ ≥ M . The right-hand side of this formula
clearly is a continuous function of x, so iM (u) is continuous. In addition, we have:

|iM (u)(x)− iM (v)(x)| ≤ ‖ϕM (u− v)‖BCD ‖1MHx‖L2

≤ CM ‖u− v‖BCD ‖1MHx‖L2
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for some constant CM , according to the localization lemma. If v converges to u in BCD(Rd
+),

then iM (v) converges uniformly to iM (u).

We next rewrite the right-hand side of (4.10) :

iM (u) (x) = (−1)d
∫
x+Rd

+

∂d (ϕMu)
∂y1...∂yd

dy .

For v ∈ C∞ (Rd
+

)
, we can apply Stokes’ formula:

iM (v) (x) = (−1)d
∫
x+Rd

+

∂

∂y1

[
∂d−1 (ϕMv)
∂y2...∂yd

]
dy = (−1)d−1

∫
x−1+Rd−1

+

∂d−1 (ϕMv)
∂y2...∂yd

dy−1 ,

which corresponds, in this context, to the partial integration with respect to the y1 variable.
Iterating this argument, we see that :

iM (v)(x) = (ϕMv) (x) for all x ∈ Rd
+ .

If u ∈ BCD(Rd
+), we can find a sequence vn ∈ C∞ (Rd

+

)
converging to u in BCD(Rd

+). Then
iM (vn) converges to iM (u) uniformly and therefore iM (vn) −→ iM (u) in L2. On the
other hand, it follows from Lemma 4.5 that ϕMvn converges to ϕMu in BCD(Rd

+). We can
then identify the limits and conclude that :

iM (u) = ϕMu almost everywhere, for all u ∈ BCD(Rd
+) .

But ϕMu = u on the set ‖x‖ ≤ M/2. It follows that iM (u) = u on the set ‖x‖ ≤ M/2.
Since iM (u) = iM ′(u) almost everywhere on the set ‖x‖ ≤ M ∧M ′/2, we can define the
function i by a classical localization argument :

i(u)(x) := iM (u)(x) with M := 2‖x‖ .

2. We next prove that

lim
|x|→∞

i(u)(x) = 0 for all u ∈ BCD(Rd
+) . (4.11)

To see this, observe that for all u ∈ BCD(Rd
+) and x ∈ x0 + Rd

+ :

i(u)(x)2 = i(u)(x0)2 − (−1)d
∫
Hx0(y)Hy(x)∂Id(u

2)(y)dy , (4.12)

where
∫
Hx0(y)Hy(x)∂Id(u

2)(y)dy is well-defined as a sum of L2−scalar products of ele-
ments of L2. Then

lim inf
|x| → ∞

x ∈ x0 + Rd
+

i(u)(x)2 = lim sup
|x| → ∞

x ∈ x0 + Rd
+

i(u)(x)2 = i(u)(x0)2 − (−1)d
∫
Hx0∂Id(u

2)dy < ∞ ,

and (4.11) follows from the fact that u ∈ L2(R+).
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3. Using again (4.12), we directly estimate that :

i(u)(x0)2 = i(u)(x)2 + (−1)d
d∑

k=0

∑
I∈Jk

∫
Hx(y)Hy(x0)∂Iu(y)∂Īu(y)dy

≤ i(u)(x)2 +
d∑

k=0

∑
I∈Jk

‖∂Iu‖L2 ‖∂Īu‖L2

≤ i(u)(x)2 + Cd‖u‖2
BCD ,

where Cd is a constant which only depends on d. By sending |x| to infinity and using
(4.11), this provides |i(u)(x0)| ≤ Cd‖u‖2

BCD. Since i(u− v) = i(u)− i(v), this shows that :

sup
x0∈Rd

+

|i(u)(x0)− i(v)(x0)| ≤ Cd‖u− v‖BCD ,

for all u, v ∈ BCD(Rd
+). Hence, i is a linear 1 continuous map. �

Although the functions of the space BCD(Rd
+) are defined almost everywhere, the eval-

uation function is well defined from the previous proposition by u(x) := i(u)(x) for all
x ∈ Rd

+. We can then consider the following relaxation of the integrated mse minimization
problem :

vh[f ] := inf
ϕ∈L̄BCD

Ih[f ](ϕ) where L̄BCD :=
{
ϕ ∈ BCD(Rd

+) : ϕ(0) = 1
}
. (4.13)

Observe that Ih[f ](ϕ) is well-defined by (3.2) and (4.3). We are now ready for the main
result of this section.

Theorem 4.2 Let h ∈ H(X) be fixed, f a mapping from Rd into R satisfying Condition
(4.3) and such that Γh is positive definite. Then, there exists a unique solution ϕ̂ to the
integrated mse minimization problem (4.13).

Proof. Clearly, Ih[f ] is strictly convex and continuous on BCD(Rd
+). Since Γh is positive

definite, it is also coercive for the norm ‖ · ‖BCD. Identifying u with its continuous version
i(u), it follows from Proposition 4.1 that the set L̄BCD is closed. Hence, the existence result
follows by classical arguments. �

4.2.2 PDE characterization

We continue our discussion by concentrating on the two dimensional case d = 2. Set

a := E[f(X2)2] , b := E

[
f(X2)2

(
Sh(1)

)2
]
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and introduce the vector and the symmetric non-negative matrix

Q :=

(
Sh2 (1)
Sh1 (1)

)
c := E

[
f(X2)2Sh(1)Q

]
, q := E[f(X2)2QQ∗] .

Observing that E[f(X2)2Sh(1)] = E[f(X2)2Shi (1)] = 0, it follows that the objective func-
tion can be written in

Ih[f ](ϕ) =
∫

R2
+

(
bϕ2 − ϕ2c∗∇ϕ+∇ϕ∗q∇ϕ+ aϕ2

12

)
dx . (4.14)

Combining standard techniques of calculus of variation with Theorem 4.2, the above
representation leads to the following characterization of the optimal localizing function.

Theorem 4.3 Let d = 2. Then, the exists a unique continuous function in V satisfying
ϕ(0) = 1 and

bϕ− Tr[qD2ϕ] + aϕ1122 = 0 on R2
+ , (4.15)

−c1ϕ+ q12ϕ1 + q11ϕ2 − au112 on R+ × {0} , (4.16)

−c2ϕ+ q12ϕ2 + q22ϕ1 − au122 on {0} × R+ . (4.17)

This function is the unique solution to the integrated mse minimization problem (4.13).

Remark 4.3 In general, no separable localizing function is optimal for the problem of
integrated mse minimization within the class L̄BCD of all localizing functions. We shall
verify this claim in the two-dimensional case. Clearly it is sufficient to prove that the
exponential localizing function ϕη̂ is not optimal for the problem vh. Indeed, it follows
from (4.5) that (x, y) := η̂ is characterized by :

0 = b+ 2yc1 + y2q11 − ax2y2 − q22x2

0 = b+ 2xc2 + x2q22 − ax2y2 − q11y2 .

Suppose to the contrary that the ϕη̂ solves the problem vh. Then, it follows from (4.15)-
(4.16)-(4.17) that (x, y) has to satisfy the additional requirements :

0 = −c1 − q12x− q11y + ax2y

0 = −c2 − q12y − q22x+ axy2

0 = b− q22x2 − q11y2 − 2q12xy + ax2y2 .

One then easily checks that, except for the special case q12 = 0, the above system has no
solution.
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5 Numerical experiments

In this section, we consider the process X defined by the dynamics :

dXt = diag[Xt]σdWt , X1
0 = X2

0 = X3
0 = 1 .

where

σ =

 0.2 0 0
0.08 0.4 0
0.03 −0.15 0.32

 .

The assumptions of Section 2 are satisfied when considering the logarithm of X.

Our aim is to estimate the density function pX1 of X1 and the regression function :

r(x) = 100 ∗ E

[(
X1

2 +X2
2

2
−X3

2

)+

| X1 = x

]
(5.1)

on a grid of points x = (x1, x2, x3). By direct computation, we see that

(DtX2)−1 :=


1

σ11X1
1

0 0

− σ2,1

σ11σ22X1
1

1
σ22X2

1
0

σ21σ32−σ22σ31

σ11σ22σ33X1
1

−σ32

σ22σ33X2
1

1
σ33X3

1

 ,

so that, with ĥ := (DtX2)−1
(
1[0,1) − 1[1,2)

)
, all Skorohod integrals SĥI (ϕη̂(X1 − x)) are

computed explicitly.

We first estimate the optimal separable localizing function. The computation of the
optimal coefficients η̂i requires to solve numerically the system of non-linear equations
(4.5); this turns out to be feasible by a simple iterative procedure, and is by no means
time-consuming. Next, for each point x of our grid, we estimate the control variate function
ĉ(x) of Remark 3.3. The estimation of η̂ and ĉ is based on 100, 000 simulated paths.

The simulated paths of X and W are obtained by a very standard random numbers
generator. In order to isolate the performance of the variance reduction technique studied
in this paper, we do not introduce any other variance reduction method.

5.1. Density estimation. We start by estimating the density function pX1 of X1 at
different points x = (x1, x2, x3). Each estimation is based on 20, 000 simulations of X1.
We provide the empirical mean and standard deviation (in brackets) of 1, 000 different
estimators.

The density estimators are computed by using Remark 3.1, i.e. we replace ĥ by h̄ =
ĥ1t≤1 in the representation of Corollary 3.1.
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The first results concerning the density estimation suggest that the most important part
of the variance reduction is obtained by the localizing procedure. The introduction of the
function ĉ(x) does not significantly improve the variance. This may be explained by the
fact that the estimation of ĉ(x) is rather difficult since it involves the Heaviside function
Hx.

Density estimation
Reduction by ϕ : optimal localization,

Reduction by c : control variate,

x1 = 0.7

x3\x2 0.7 1.0 1.3

True value 1.08 0.93 0.45

Reduction by ϕ, c 1.09[0.11] 0.94[0.08] 0.45[0.03]

0.7 Reduction by ϕ 1.09[0.16] 0.94[0.09] 0.45[0.04]

Reduction by c 1.07[0.23] 0.93[0.24] 0.46[0.25]

No Reduction 1.07[0.26] 0.93[0.26] 0.47[0.28]

True value 1.13 0.62 0.21

Reduction by ϕ, c 1.13[0.08] 0.62[0.04] 0.21[0.02]

1.0 Reduction by ϕ 1.14[0.09] 0.62[0.04] 0.21[0.02]

Reduction by c 1.11[0.26] 0.61[0.26] 0.21[0.27]

No Reduction 1.12[0.29] 0.61[0.29] 0.22[0.31]

True value 0.53 0.21 0.05

Reduction by ϕ, c 0.53[0.04] 0.21[0.02] 0.05[0.01]

1.3 Reduction by ϕ 0.53[0.04] 0.21[0.02] 0.05[0.01]

Reduction by c 0.51[0.26] 0.19[0.25] 0.06[0.26]

No Reduction 0.51[0.29] 0.20[0.29] 0.06[0.31]

x1 = 1.0

x3\x2 0.7 1.0 1.3

True value 1.78 2.44 1.65

Reduction by ϕ, c 1.80[0.10] 2.44[0.07] 1.65[0.04]

0.7 Reduction by ϕ 1.80[0.11] 2.44[0.08] 1.65[0.04]

Reduction by c 1.78[0.26] 2.45[0.26] 1.67[0.27]

No Reduction 1.79[0.30] 2.45[0.31] 1.68[0.32]

True value 2.72 2.33 1.12

Reduction by ϕ, c 2.73[0.07] 2.34[0.04] 1.12[0.02]

1.0 Reduction by ϕ 2.73[0.08] 2.34[0.04] 1.12[0.02]

Reduction by c 2.73[0.27] 2.35[0.27] 1.15[0.29]

No Reduction 2.74[0.34] 2.36[0.35] 1.16[0.37]

True value 1.68 1.02 0.38

Reduction by ϕ, c 1.69[0.03] 1.02[0.01] 0.38[0.01]

1.3 Reduction by ϕ 1.69[0.03] 1.02[0.01] 0.38[0.01]

Reduction by c 1.69[0.27] 1.05[0.27] 0.41[0.28]

No Reduction 1.70[0.35] 1.06[0.37] 0.43[0.39]
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x1 = 1.3

x3\x2 0.7 1.0 1.3

True value 0.29 0.56 0.48

Reduction by ϕ, c 0.29[0.03] 0.56[0.02] 0.48[0.01]

0.7 Reduction by ϕ 0.30[0.03] 0.56[0.02] 0.48[0.01]

Reduction by c 0.28[0.30] 0.56[0.31] 0.50[0.30]

No Reduction 0.30[0.41] 0.57[0.43] 0.51[0.44]

True value 0.59 0.70 0.43

Reduction by ϕ, c 0.59[0.02] 0.70[0.01] 0.43[0.01]

1.0 Reduction by ϕ 0.59[0.02] 0.70[0.01] 0.45[0.27]

Reduction by c 0.58[0.31] 0.70[0.29] 0.45[0.29]

No Reduction 0.60[0.47] 0.72[0.48] 0.47[0.49]

True value 0.44 0.38 0.18

Reduction by ϕ, c 0.44[0.01] 0.38[0.00] 0.18[0.00]

1.3 Reduction by ϕ 0.44[0.01] 0.38[0.00] 0.18[0.00]

Reduction by c 0.44[0.30] 0.38[0.28] 0.19[0.27]

No Reduction 0.45[0.48] 0.40[0.49] 0.22[0.51]

5.2. Regression function estimation. We next turn to the estimation of the regression
function (5.1). Each estimation is based on 50, 000 simulations. We provide the empirical
mean and standard deviation (in brackets) of 1, 000 different estimators.

In view of the poor performance of the control variate technique (which involves the
time-consuming computation of ĉ(x)), we concentrate on the use of the optimal localiz-
ing function. The results reported below prove the efficiency of this variance reduction
technique, as the variance is significantly improved when the optimal localizing function
is incorporated.

Regression function estimation
Reduction by ϕ : optimal localization,

x1 = 0.9

x3\x2 0.9 1.0 1.1

True value 17.26 20.56 24.05

0.9 Reduction by ϕ 17.28[1.12] 20.49[1.19] 24.06[1.17]

No Reduction 16.88[5.01] 20.62[7.14] 25.04[11.52]

True value 13.70 16.59 19.61

1.0 Reduction by ϕ 13.72[0.82] 16.59[0.92] 19.73[1.00]

No Reduction 12.97[6.20] 16.08[10.41] 21.35[25.48]

True value 10.88 13.39 16.11

1.1 Reduction by ϕ 10.94[0.85] 13.48[0.90] 16.32[1.05]

No Reduction 10.58[17.54] 13.81[28.01] 13.19[166.22]
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x1 = 1.0

x3\x2 0.9 1.0 1.1

True value 20.08 23.58 27.24

0.9 Reduction by ϕ 19.93[1.01] 23.40[1.06] 27.08[1.16]

No Reduction 20.59[8.80] 23.94[32.24] 30.95[63.28]

True value 16.08 19.18 22.47

1.0 Reduction by ϕ 15.94[0.85] 19.00[0.92]] 22.27[0.95]

No Reduction 16.04[11.48] 20.25[32.05] 23.48[68.62]

True value 12.87 15.58 18.50

1.1 Reduction by ϕ 12.77[0.76] 15.57[0.85] 18.50[0.96]

No Reduction 11.26[55.83] 14.11[30.39] 25.46[325.15]

x1 = 1.1

x3\x2 0.9 1.0 1.1

True value 23.13 26.81 30.64

0.9 Reduction by ϕ 23.12[1.08] 26.68[1.10] 30.58[1.24]

No Reduction 24.64[28.23] 27.94[33.39] 30.20[116.46]

True value 18.69 21.98 25.45

1.0 Reduction by ϕ 18.63[0.94] 21.95[0.91] 25.47[1.01]

No Reduction 19.54[26.10] 23.63[34.24] 27.82[110.05]

True value 15.07 17.99 21.10

1.1 Reduction by ϕ 15.04[0.83] 17.96[0.78] 21.17[0.96]

No Reduction 13.98[30.29] 22.43[623.93] 17.37[180.44]

6 Optimal portfolio selection and option pricing

The representation of the conditional expectation presented in this paper has already
proved to be powerful for the pricing of American options (see [10]). The algorithm
developed to estimate the early exercise value is based on the dynamic programming
equation which leads to a backward induction algorithm that requires the computation of
a conditional expectation at each step (see also [1], [5] and [11] for similar approaches).

Following [3], we propose to use the same approach to solve stochastic control problems
written in a standard form.

6.1. Problem formulation. Consider the following simple optimal portfolio selection
problem. The financial market consists in a non-risky asset, with price process normalized
to unity, and two risky assets, one of which is non-tradable. We focus on the problem of
valuation of a contingent claim, with payoff G = g(XT ) written on the non-tradable asset
X. We are then in an incomplete market framework, where G can be partially hedged by
trading on the (tradable) risky asset Z whose price process is correlated to X.
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More precisely, we assume that the dynamics of the pair process (X,Z) is given by

dXt = Xt

(
µ1dt+ σ11dW 1

t

)
dZt = Zt

(
µ2dt+ σ21dW 1

t + σ22dW 2
t

)
,

where W is a standard Brownian motion in R2, and µ1, µ2, σ11 > 0, σ22 > 0, σ21 are
some given constants.

An admissible strategy is a U -valued predictable process (U is some compact subset of
R). We denote by U the set of such processes. Given a strategy ν ∈ U , the corresponding
wealth process Y ν is defined by

Y ν
t = Y0 +

∫ t

0
νr(Zr)−1dZr = Y0 +

∫ t

0
νr[µ2dr + σ21dW 1

r + σ22dW 2
r ] .

Since the contingent claim can not be perfectly hedged, we consider the valuation rule
induced by the utility indifference principle. Further simplification of the problem is
obtained by assuming an exponential utility function with risk aversion parameter a > 0.
In the presence of the liability G, the agent solves the following utility maximization
problem

vG(0, x, y) := sup
ν∈U

E
[
−e−a(Y ν

T −g(XT ))
∣∣∣ (X0, Y0) = (x, y)

]
,

where T > 0 is a given time horizon. Observe that the above value function does not
depend on the state variable Z. The comparison to the maximal expected utility v0, in
the absence of any liability, leads to the so-called utility indifference valuation rule (see
e.g. [8]) :

p(G, x, y) := inf
{
π ∈ R : vG(0, x, y + π) ≥ v0(0, x, y)

}
.

Observing that

vG(0, x, y) = e−ayvG(0, x, 0) , (6.1)

we see that

p(G, x, y) = p(G, x) =
1
a

ln
(
wG(0, x)
w0(0, x)

)
where wG(0, x) := vG(0, x, 0) .

Hence, the computation of the valuation rule p is reduced to the computation of the value
functions wG(0, x) and w0(0, x).

Changing the time origin, one defines accordingly the dynamic version of the problem
and the induced value functions vG(t, x, y) and wG(t, x). The value function vG satisfies
the dynamic programming principle

vG(t, x, y) = ess sup
ν∈U

E
[
vG
(
t+ ∆, Xt+∆, Y

ν
t+∆

) ∣∣ (Xt, Yt) = (x, y)
]
,
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for any time step ∆ > 0. In view of (6.1), this translates to wG in :

wG(t, x) = ess sup
ν∈U

E
[
e−aY

ν
t+∆wG (t+ ∆, Xt+∆)

∣∣∣ (Xt, Yt) = (x, 0)
]
. (6.2)

Hence, in the context of the particular model studied in this section, the number of state
variables is reduced to one, which considerably simplifies the computations. The reason
for considering such simplifications is that we are mainly concerned by the dynamic appli-
cation of the conditional expectation estimation presented in the first sections of this paper.

6.2. The case G = 0. When there is no contingent claim to be delivered, the value
function v0 does not depend on the state variable X. It follows from (6.2) that the op-
timal control process is constant in time. The Monte Carlo estimation procedure is then
considerably simplified, as it is sufficient to perform it on a single time step.

6.3. Discretization in time for vG. Set tk := n−1kT , n ∈ N and k = 0, . . . , n so that
the time step is ∆ = n−1T . By restricting the control process to be constant on [tk, tk+1),
the dynamic programming principle suggests the following (backward) approximation of
wG :

ŵG(tn, Xtn) = −eag(Xtn ) (6.3)

ŵG(tk, Xtk) = ess sup
ν∈U

E
[
e−aν(Ztk+1

−Ztk
)/Ztk ŵG

(
tk+1, Xtk+1

)
|Xtk

]
; k < n .

We now can appeal to the conditional expectation representation studied in this paper.
By a trivial adaptation of Corollary 3.1 to the case where the time intervals [0, 1] and [1, 2]
are replaced by [0, tk] and [tk, tk+1] (see (3.5)), it is easily checked that, for each ν ∈ U ,

E
[
e−aν(Ztk+1

−Ztk
)/Ztk ŵG

(
tk+1, Xtk+1

)∣∣∣Xt = x
]

=
E
[
1{Xtk

>x}e
−aν(Ztk+1

−Ztk
)/Ztk ŵG

(
tk+1, Xtk+1

)
Sk

]
E
[
1{Xtk

>x}Sk

] (6.4)

where Sk :=
∫ tk+1

0
ϕ(X2

tk
− x2)hkdW 2

t , ϕ(x) = e−ηx, and

hk := (σ22Xtk)−1
[
(tk)−11[0,tk) − (tk+1 − tk)−11[tk,tk+1]

]
.

We then use a backward induction procedure to compute the value function.

6.4. Monte Carlo approximation. We start by simulating N paths, Xi, of the process
X. Given the value function for k = n (i.e tn = T ),

ŵG(tn, X
(i)
tn ) = −e−a

(
0−g(X(i)

tn
)
)
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we use the other simulated paths, Xj , j 6= i, in order to build the Monte Carlo approx-
imation of (6.4) at the point (tn−1, X

(i)
tn−1

). The optimization over the parameter ν is
achieved by a simple Newton-Raphson algorithm. Iterating this procedure backward, we
can estimate, for each k and i, ŵ(tk, X

(i)
tk

) together with the corresponding optimal control
ν̂(tk, X

(i)
tk

).

6.5. Numerical experiments. We consider the contingent claim defined by the payoff
function g(x) = 5 ∗min{K,x}. We fix (X0, Z0) = (1, 1), (µ1, µ2) = (0.1, 0.1), σ11 = 0.15,
U = [0, 40], T = 1, n = 10, and we perform the computations for different values of K,
σ12, σ22 and a. Each estimation of the value functions vG, and the induced price pG, is
based on 8192 simulated paths. For each experiment, we compute 200 estimators. The
average and the standard deviation in percentage of the average (in brackets) are collected
in the following table.

K = 1.2, σ21 = 0.1, σ22 = 0.1

pG vG

a = 0.25 5.20 [0.46%] −2.94 [0.55%]

a = 1 5.26 [1.54%] −154.04 [14.36%]

K = 1.2, σ21 = 0.05, σ22 = 0.2

pG vG

a = 0.25 5.26 [0.50%] −2.98 [0.56%]

a = 1 5.40 [0.31%] −177.91 [1.66%]

K = ∞, σ21 = 0.05, σ22 = 0.2

pG vG

a = 0.25 5.59 [0.52%] −3.23 [0.61%]

a = 1 6.29 [1.30%] −433.25 [8.91%]

K = ∞, σ21 = 0.15, σ22 = 0.005

pG vG

a = 0.25 5.09 [0.22%] −2.85 [0.39%]

As expected, the price is increasing with the risk aversion parameter a and with K. It
is decreasing with the ”relative correlation” between X and Z. For K = ∞, G = 5 ∗XT

which is close to 5 ∗ ZT (in distribution) when the volatility coefficients are such that σ11

= σ21 >> σ22. Then, for a low risk aversion parameter, we should obtain a price of order
of 5 ∗ Z0 = 5. In the above table, the result is indeed close to 5 for a = 0.25.
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