DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Database functionalities

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

Database Management Systems

* Functionality provided

— What kind of data can | put in? Relations/documents/KV-
pairs...

— How can | get data out of it? query languages/API

— How does it handle concurrent access?
ACID (or less)

— How long does a given operation take?
Query execution, optimization

* Implementation (internals)

— How does it cope with scale?
for reads? Smart storage and indexing structures
for writes? Concurrency control

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

Relational Database Management

Systems
* Functionality provided
— What kind of data can | put in? Relations
— How can | get data out of it? SQL query language

— How does it handle concurrent access?
ACID (or less)

— How long does a given operation take?
Query optimization
* Implementation (internals)

— How does it cope with scale?
for reads? Smart storage and indexing structures
for writes? Concurrency control

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Queries and their processing

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

How are queries processed?

select driver.name
from driver, car

driver.ID=car.driver :
and Julie

car.license=‘123AB'.

SQL) Database) Results

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

How are queries processed?

Driver
mm mm
Julie ‘123AB’
Damien 2 ‘171KZ’

1. Load:>

2. 5QL) Database m) 3. Results
name

select driver.name
from driver, car Julie
where
driver.ID=car.driver
and
car.license=‘123AB’

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 6

How are queries processed?

Driver

Julie

Damien

1. Loadﬁ

2.5QL ﬁ

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

Big Graph Databases (ECE _|

2

5DA04_TP)

‘123AB’

“171KZ’

Database

adhulika Mohanty, Inria & IPP

How are queries processed?

2. SQL) Database
select driver.name m

from driver, car Julie
where Drlver

driver.ID=car.driver mm mm

and Julie 1 ‘123AB’

r.license="123AB’
« Damien 2 | 2 171KZ’
Big Graph Databases (ECE_|5DA04_TP) adnhulika Mohanty, Inria & IPP 8

How are queries processed?

sQl)

select driver.name,
driver.address

from driver, car,
accident

where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

v

T[driver.name,
driver.address

0)
date=‘1/11/17’

DX

b N\

drive/r\car accident

(Drﬁer/ Acadent\
mmlmm

Julie 1 ‘123AB’
Damien 2 2 ‘“171KZ’

Big Graph Databases (ECE

_5DA04_TP) Maaﬁuhka Mohanty, Inria & IPP

select... from driver, car, accident where...

Query language

Logical plan

Logical query plans

* Trees made of logical operators, each of which
specializes in a certain task

SQL:
select driver.name,
driver.address Projection:
from driver, car, accident //_ restrict tuples
\;vnhdere driver.ID=car.driver T[j::z::gjgi’ss §e|ection:
car.license=accident.carLi o —1 |_filter tuples
cense and date="1/11/17" - [Join
accident.date=‘1/11/17’ M
J— Join:
Scan: read the Mﬁ(keep those pairs of
driver tuples) j\ /\a _ input which satisfy
("Scan" often driver car accident a certain condition

omitted) / /

Scan Scan

Logical query plans

Trees made of logical operators, each of which specializes in a certain
task

Logical operators: they are defined by their result, not by an algorithm
Physical operators (a bit later) implement actual algorithms

Projection:

//_ restrict tuples
It

driver.name, Selection:

c)_driver.address | filter tuples
e

date=‘1/11/17 . [oin
[]/

[Join:
Scan: read the W keep those pairs of
driver tuples) N input which satisfy

a certain condition

(uScann Often \drl\/e/r\}r aCCide;t

ommitted) / /

Scan Scan

How are queries processed?

sQl)

select driver.name,
driver.address

from driver, car,
accident

where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/13’

driver.name,
driver.address

DX
/\
M 0date=’1/11/17’
drive/r\car achdent

(I)rT\/er/ Acadent\
mmlmm

Julie 1 ‘123AB’
Damien 2 2 ‘“171KZ’

Big Graph Databases (ECE

_5DA04_TP) Maaﬁuhka Mohanty, Inria & IPP

select... from driver, car, accident where...

Query language

L

Logical plan 1

Logical plan 2

[> Results ..

How are queries processed?

sQl)

select driver.name,
driver.address

from driver, car,
accident

where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

v

T[driver.name,
driver.address

X
T

[] date=‘1/11/17’
/\ . / /
aCJldel 1

driver car

W Acadent \
mmlmm

Julie 1 ‘123AB’
Damien 2 2 ‘“171KZ’

Big Graph Databases (ECE

_|5DA04_TP) MaaHuH(a Mohanty, Inria & IPP

select... from driver, car, accident where...

Query language

L

Logical plan 1

Logical plan 2

Logical plan 3

[> Results ..

How are queries processed?

sQl)

select driver.name,
driver.address

from driver, car,
accident

where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Big Graph Databases (ECE_|

select... from driver, car, accident where...

v

T[driver.name,
driver.address

BN

n X

/\Gdate ‘1/11/17’

driver car accident

mer/ Accident \
mmlmm

Julie 1 ‘123AB’
Damien 2 2 ‘“171KZ’

5DA04_TP) MaaHuH(a Mohanty, Inria & IPP

Query language

L

Logical plan 1

l

Logical plan 2

Logical plan 3

Logical plan 4

[> Results ..

Logical query optimization

Enumerates logical plans

All logical plans compute the query result
— They are equivalent

Some are (much) more efficient than others

Logical optimization: moving from a plan to a
more efficient one

— Pushing selections

— Pushing projections

— Join reordering: most important source of optimizations

Logical query optimization example

1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17

« Name and address of drivers in accidents on 1/11/20177? »

T[driver.name,

driver.address
0]

date ‘1/11/17’

[><l/\

drlver

accident

Cost of an operator: depends on the number of
tuples (or tuple pairs) which it must process
e.g. c_disk x number of tuples read from disk
e.g. c_cpu x number of tuples compared

Cardinality of an operator's output: how many
tuples result from this operator

The cardinality of one operator's output determines
the cost of its parent operator

Plan cost = the sum of the costs of all operators

in a plan

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per

accident, 10 accidents on 1/11/17 r:elz;'c
« Name and address of drivers in accidents on 1/11/20177? » | (worst-
Scan costs: cs x (10°+10° +103) case)
Scan cardinality estimations: 106, 106, 103/est|m.
T[driver.name, . . : Y 6 6_1al12
) Driver-car join cost estimation: cj x (10” x 10 =10-9)
driver.address
o Driver-car join cardinality estimation: 10°
date=‘1/11/17
N Driver-car-accident join cost estim.: ¢j x (10° x 103= 10°)
/\ Driver-car-accident join cardinality estimation: 2 x 103
N Selection cost estimation: cf x (2 x 103)

drive/r\car accident

Selection cardinality estimation: 10

Projection (similar), negligible
cs, cj, cf constant

Total cost estimation: cs x (2x106+103)+ cf x 2x 103
+¢j x (1012 +2x103) ~ ¢j x 1012~ 1012

Logical query optimization example

1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17

« Name and address of drivers in accidents on 1/11/20177? »
Three plans, same scan costs (neglected below); join costs dominant

T[driver.name,

driver.address
0]

[><l/\

drlver accident

date ‘1/11/17’

10° +1012~ 1012

driver.name,
driver.address

A

DX

date—
drlve/r\car ‘1/11/17
accident

T[driver.name,
driver.address

By

n X

/\Gdate=‘1/11/17’

driver car accident

102 +107 ~ 10°

107 + 2*107 ~ 3*10/

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per

accident, 10 accidents on 1/11/17

« Name and address of drivers in accidents on 1/11/20177? »
Three plans, same scan costs (neglected below); join costs dominant

The best plan reads only the accidents
that have to be consulted

* Selective data access
* Typically supported by an index

— Auxiliary data structure, built on top of
the data collection

— Allows to access directly objects
satisfying a
certain condition

PN

1!

T[driver.name,
I driver.address

X

X

/\Gdate=‘1/11/17’

driver car accident

107 + 2*107 ~ 3*10/

- NAMA
QL -~ NAS
b —
o 5 X
= £ X
E o - —

o © o
£ =

v 2

b O

S

o .© .
T Y X
S O

c .

£ s
O

N=4:

Join ordering is the main problem
in logical query optimization

High (exponential) complexity = many heuristics

* Exploring only left-linear plans etc.

N=4:

Logical query optimization needs statistics

Exact statistics (on base data):
— 1.000.000 cars, 1.000.000 drivers, 1.000 accidents

Approximate / estimated statistics (on intermediary results)
— "1.75 cars involved in every accident”

Statistics are gathered

 When loading the data: take advantage of the scan

* Periodically or upon request (e.g. analyze in the Postgres RDBMS)
e At runtime: modern systems may do this to change the data layout

Statistics on the base data vs. on results of operations not evaluated (yet):
— « On average 2 cars per accident »

For each column R.a, store:
|R|, |R.a| (number of distinct values), min{R.a}, max{R.a}

Assume uniform distribution in R.a
Assume independent distribution

— of values in R.a vs values in R.b; of values in R.a vs values in S.c
+ simple probability computations

More on statistics

For each column R.a, store:
|R|[, |R.a| (number of distinct values), min{R.a}, max{R.a}

Assume uniform distribution in R.a
Assume independent distribution
— of values in R.a vs values in R.b; of values in R.a vs values in S.c

The uniform distribution assumption is frequently wrong
— Real-world distribution are skewed (popular/frequent values)
The independent distribution assumption is sometimes wrong
— « Total » counter-example: functional dependency
— Partial but strong enough to ruin optimizer decisions: correlation

Actual optimizers use more sophisticated statistic informations
— Histograms: equi-width, equi-depth
— Trade-offs: size vs. maintenance cost vs. control over estimation error

Database internal: query optimizer

sQl)

select driver.name,
driver.address

from driver, car,
accident

where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

T[drlver name, &
| driver.address

|date 17 1st logical query plan

dr|ver car accident @

Logical optimizer

Chosen Iogi\cgl query plan n/\

Physicaljvy

_ Physical
plan 1 PE?;S:]CEI plan 3
Drlver
Julie ‘123AB’

Big Graph Databases (ECE

Damien 2 l 2 ‘171KZ’
_|5DA04_TP) adhulika Mohanty, Inria & IPP

select... from driver, car, accident where...

L driver.name,
driver.address

PN

/\?date=’1/11/17’

driver car accident

Query language

h 4

Chosen logical plan

|:> Results 24

Physical query plans

Made up of physical operators =

algorithms for implementing logical operators

Example: equi-join (R.a=S.b)

Nested loops join:
foreach t1in R{

foreach t2in S {

}

}

if t1.a =t2.b then output (t1 || t2)

Merge join: // requires sorted inputs

repeat{

while (!aligned) { advance Ror S };

while (aligned) { copy R into topR, S into topS };
output topR x topsS;

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { tg € R.next; put(hash(tg.a), tg); }
While (lendOf(S)) { tg € S.next;

Big Graph DatabaseSHECENSDAOANIP)

}

matchingR = get(hash(tg.b));
output(matchingR x tg);

Madhulika Mohanty, Inria & IPP

25

Physical query plans

Made up of physical operators =

algorithms for implementing logical operators
Example: equi-join (R.a=S.b)

Nested loops join: O([R|x|S]) Merge join: // requires sorted inputs
foreach t1 in R{ repeat{ O(|R|+|S])

foreach t2in S { while (laligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };

if t1.a =t2.b then output (t1 || t2)
} output topR x topS;
} until (endOf(R) or endOf(S));

}

Hash join: // builds a hash table in memory Also:

While (!endOf(R)) { tg € R.next; put(hash(tg.a), tg); } Block nested loops join

While (lendOf(S)) { tg € S.next; Index nested loops join
matchingR = get(hash(tg.b)); Hybrid hash join

output(matchingR x tc); Hash groups / teams
O(IR+IS]) R R

Big Graph Databsz } 26

Physical optimization

Possible physical plans produced by physical optimization for our sample logical plan:

T[driver.name,
driver.address

X
X

driver car accident

SimpleProj(driver.name,
I driver.address)

HashJoin(build: car|accident)

/\(I)-date=’1/11/17'

>SimpIeProj(name, id, HashJoin(build: accident)

address)
/$<Looku p(idxAccidl,
date=1/11/17’)

driver car achdent

SimpleProj(name, id, Mergeloin

address) Nyt
Sth ldxSCan Id)lLookup(idxAccidl, date=‘1/11/17’)
driver calr acéident

SimpleProj(driver.name, driver.address)

Mergeloin

Physical plan performance

Metrics characterizing a physical plan

* Response time: between the time the query starts running to

the we know its end of results . o
SimpleProj(driver.name,

 Work (resource consumption) | driver.address)

— How many I/0 calls (blocks read) HashlJoin(build: car|accident)

" Saan, Id_xScan, ldxAccess; Sort; SimpleProj(name, id, HashJoin(build: accident)
HashJoin

address)
— How much CPU ldxLookup(idxAccid1l,

) date=1/11/17’)
All operators driver car accident

— Distributed plans: network traffic

* Total work: work made by all operators

Query optimizers in action

Most database management systems have an « explain » functionality = physical
plans. Below sample Postgres output:

EXPLAIN SELECT * FROM tenk1;
QUERY PLAN

Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE tl.uniquel < 100 AND tl.unique2 = t2.unique2;
QUERY PLAN
Hash Join (cost=232.61..741.67 rows=106 width=488)
Hash Cond: ("outer".unique2 = "inner".unique?2)
-> Seq Scan on tenk2 t2 (cost=0.00..458.00 rows=10000 width=244)
-> Hash (cost=232.35..232.35 rows=106 width=244)
-> Bitmap Heap Scan on tenk1 t1 (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (uniquel < 100)
-> Bitmap Index Scan on tenk1_uniquel (cost=0.00..2.37 rows=106 width=0)
Index Cond: (uniquel < 100)

Inspecting query plans

e Can use Dalibo:

Q3TGMiddle_tcp_dtsc4 &

20.87

0.44 7.87 15,000,000 537,141.75

execution time (s) planning time (ms) slowest node (s) largest node (rows) costliest node

AGGREGATE
by pl.s

HASH JOIN

Inner joi
on (pl.o=p1_1s)

SEQ SCAN 314.66ms | 29
on t.9111960 (p1)

SEQ SCAN
N t_8344502 (p2)

Big Graph Databases (ECE_5DA04_TP)

1.98s | 9 %
2.08s | 10 %
HASH 870.35ms | 4 %
HASH JOIN 2.65s | 13 %
Inner jo
on (p2.s=p1_1.s)
310.81ms | 1% HASH 2.09s | 10 %
AGGREGATE 7.87s | 38 %
oy p1_1.s
(siowestJlargest]
SEQ SCAN 2.57s | 12%
on encoded_triples (p1_1)

Madhulika Mohanty, Inria & IPP

30

Database internal: physical

sQl)

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

Big Graph Databases (ECE_|

select... from driver, car, accident where...

¢

1st logical query plan

=

Query optimizer

Logical

)

ptimizer

&

Physical optimizer

Chosen physical plan

-

Drlver

Julie ‘123AB’

Damien 2 ! 2 ‘171KZ’
5DA04_TP) adhulika Mohanty, Inria & IPP

plan

Query language

h 4

Chosen logical plan

hd

Chosen physical plan

Results

Database internals:
guery processing pipeline

sQl m)

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

Big Graph Databases (ECE

select... from driver, car, accident where...

1st logical query plan

l

Query optimizer

h 8
Chosen physical plan

h 4
Execution engine

Drlver

Julie ‘123AB’

Damien 2 l 2 “171KZ’
5DA04 TP) adhulika Mohanty, Inria & IPP

Query language

h 4

Chosen logical plan

v

Chosen physical plan

Results

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Updating the database

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

33

What's in a database?

SQL ;
e

updat

insert into driver
values ('Thomas’,
3);

update car set
driver=3 where
license='123AB';

Big Graph Databases (ECE_5DA04_TP)

Database

m Accident \
MIII driver | license _

Julie ‘123AB’
Damien | ‘“171KZ’

&

Database

m Accident \
name | 10| driver | license _

Julie 1 ‘123AB’
Damien 2 |2 ‘“171KZ’

Thomas 3

Madhulika Mohanty, Inria & IPP

34

Fundamental database features

. Data storage
— Protection against unauthorized access, data loss

. Ability to at least add to and remove data to
the database
— Also: updates; active behavior upon update
(triggers)
. Support for accessing the data

— Declarative query languages: say what data you
need, not how to find it

Fundamental properties of
database stores: ACID

Atomicity: either all operations involved in a transactions
are done, or none of them is

— E.g. bank payment

Consistency: application-dependent constraint
E.g. every client has a single birthdate

Isolation: concurrent operations on the database are
executed as if each ran alone on the system

— E.g. if a debit and a credit operation run concurrently, the
final result is still correct

Durability: data will not be lost nor corrupted even in the
presence of system failure during operation execution

Jim Gray, ACM Turing Award 1998 for « fundamental contributions to databases and
transaction management »

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Takeaway

Main principles behind correct and
scalable data management...

... core of the database management systems:

1. Declarative query language allows users to just
state what they want

2. For one query there are several logical plans; for
each, several physical plans
— Optimizer picks best plan

3. ACID properties crucial for "faith in the system"
("my salary, payments, and social security are
within a reliable system")

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP

38

