
DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Database functionalities

Madhulika Mohanty, Inria & IPP 1Big Graph Databases (ECE_5DA04_TP)

Database Management Systems

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 2

• Functionality provided
– What kind of data can I put in? Relations/documents/KV-

pairs...
– How can I get data out of it? query languages/API
– How does it handle concurrent access?

ACID (or less)
– How long does a given operation take?

Query execution, optimization
• Implementation (internals)
– How does it cope with scale?

for reads? Smart storage and indexing structures
for writes? Concurrency control

Relational Database Management
Systems

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 3

• Functionality provided
– What kind of data can I put in? Relations
– How can I get data out of it? SQL query language
– How does it handle concurrent access?

ACID (or less)
– How long does a given operation take?

Query optimization
• Implementation (internals)
– How does it cope with scale?

for reads? Smart storage and indexing structures
for writes? Concurrency control

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Queries and their processing

Madhulika Mohanty, Inria & IPP 4Big Graph Databases (ECE_5DA04_TP)

How are queries processed?

DatabaseSQL Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’.

name

Julie

Madhulika Mohanty, Inria & IPP 5Big Graph Databases (ECE_5DA04_TP)

How are queries processed?

Database2. SQL
3. Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

1. Load

name

Julie

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

Madhulika Mohanty, Inria & IPP 6Big Graph Databases (ECE_5DA04_TP)

How are queries processed?

Database2. SQL
3. Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

1. Load

name

Julie

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

Storage system (disk,
memory, SSD…)

Madhulika Mohanty, Inria & IPP 7Big Graph Databases (ECE_5DA04_TP)

Database

How are queries processed?

2. SQL
3. Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

1. Load

name

Julie

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

Madhulika Mohanty, Inria & IPP 8Big Graph Databases (ECE_5DA04_TP)

How are queries processed?
SQL

Results

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Driver

select… from driver, car, accident where…

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan

Madhulika Mohanty, Inria & IPP 9Big Graph Databases (ECE_5DA04_TP)

Accident

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Car

Logical query plans
• Trees made of logical operators, each of which

specializes in a certain task

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 10

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Scan: read the
driver tuples)
("Scan" often

omitted)

Scan Scan

Join:
keep those pairs of
input which satisfy
a certain condition

SQL:
select driver.name,
driver.address
from driver, car, accident
where driver.ID=car.driver
and
car.license=accident.carLi
cense and
accident.date=‘1/11/17’

Join

Selection:
filter tuples

Projection:
restrict tuples

Logical query plans
• Trees made of logical operators, each of which specializes in a certain

task
• Logical operators: they are defined by their result, not by an algorithm
• Physical operators (a bit later) implement actual algorithms

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 11

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Scan: read the
driver tuples)
("Scan" often

ommitted)

Scan Scan

Join:
keep those pairs of
input which satisfy
a certain condition

Join

Selection:
filter tuples

Projection:
restrict tuples

How are queries processed?
SQL

Results

select… from driver, car, accident where…

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan 1

Logical plan 2

Madhulika Mohanty, Inria & IPP 12Big Graph Databases (ECE_5DA04_TP)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/13’

Driver
name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

CarAccident

How are queries processed?
SQL

Results

select… from driver, car, accident where…

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan 1

Logical plan 2
π π

Logical plan 3

Madhulika Mohanty, Inria & IPP 13Big Graph Databases (ECE_5DA04_TP)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Driver
name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

CarAccident

How are queries processed?
SQL

Results

select… from driver, car, accident where…

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

……………………….

Query language

Logical plan 1

Logical plan 2

π
Logical plan 3

Logical plan 4

Madhulika Mohanty, Inria & IPP 14Big Graph Databases (ECE_5DA04_TP)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Driver
name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

CarAccident

Logical query optimization

• Enumerates logical plans
• All logical plans compute the query result
– They are equivalent

• Some are (much) more efficient than others
• Logical optimization: moving from a plan to a

more efficient one
– Pushing selections
– Pushing projections
– Join reordering: most important source of optimizations

Madhulika Mohanty, Inria & IPP 15Big Graph Databases (ECE_5DA04_TP)

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Big Graph Databases (ECE_5DA04_TP)

Cost of an operator: depends on the number of
tuples (or tuple pairs) which it must process
e.g. c_disk x number of tuples read from disk
e.g. c_cpu x number of tuples compared

Cardinality of an operator's output: how many
tuples result from this operator

The cardinality of one operator's output determines
the cost of its parent operator
Plan cost = the sum of the costs of all operators
in a plan

Madhulika Mohanty, Inria & IPP 16

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

Big Graph Databases (ECE_5DA04_TP)

Scan costs: cs x (106+106 +103)
Scan cardinality estimations: 106, 106, 103

Driver-car join cost estimation: cj x (106 x 106 =1012)
Driver-car join cardinality estimation: 106

Driver-car-accident join cost estim.: cj x (106 x 103= 109)
Driver-car-accident join cardinality estimation: 2 x 103

Selection cost estimation: cf x (2 x 103)
Selection cardinality estimation: 10

Projection (similar), negligible

Total cost estimation: cs x (2x106+103)+ cf x 2x 103

+ cj x (1012 +2x103) ~ cj x 1012 ~ 1012

Madhulika Mohanty, Inria & IPP 17

cs, cj, cf constant

Pessi-
mistic

(worst-
case)
estim.

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »
Three plans, same scan costs (neglected below); join costs dominant

driver car accident

σ
π

date=‘1/11/17’

driver.name,
driver.address

driver car

accident

σ

π

date=
‘1/11/17’

driver.name,
driver.address

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

π

109 +1012 ~ 1012
109 +107 ~ 109

107 + 2*107 ~ 3*107

Madhulika Mohanty, Inria & IPP 18Big Graph Databases (ECE_5DA04_TP)

Logical query optimization example
1.000.000 cars, 1.000.000 drivers, 1.000 accidents, 2 cars per
accident, 10 accidents on 1/11/17
« Name and address of drivers in accidents on 1/11/2017? »
Three plans, same scan costs (neglected below); join costs dominant

The best plan reads only the accidents
that have to be consulted
• Selective data access
• Typically supported by an index

– Auxiliary data structure, built on top of
the data collection

– Allows to access directly objects
satisfying a
certain condition

driver car accident

σ

π

date=‘1/11/17’

driver.name,
driver.address

π

107 + 2*107 ~ 3*107

Madhulika Mohanty, Inria & IPP 19Big Graph Databases (ECE_5DA04_TP)

Join ordering is the main problem
in logical query optimization

R
R S

T

R T

S

S T

R
S

N=2: N=3:

Madhulika Mohanty, Inria & IPP 20Big Graph Databases (ECE_5DA04_TP)

R S

T

U U

R T

S

S T

U

R

U R

S

T

U R

T

S

U S

T

R

U S

R

T

U T

R

S

U T

S

R

R S T U R T S U R U S T

S T

R

U

R S

U

T S

R T

U

N=4:

Big Graph Databases (ECE_5DA04_TP)

Join ordering is the main problem
in logical query optimization

R S

T

U U

R T

S

S T

U

R

U R

S

T

U R

T

S

U S

T

R

U S

R

T

U T

R

S

U T

S

R

R S T U R T S U R U S T

S T

R

U

R S

U

T S

R T

U

N=4:

High (exponential) complexity à many heuristics
• Exploring only left-linear plans etc.

Madhulika Mohanty, Inria & IPP 21

Logical query optimization needs statistics
Exact statistics (on base data):

– 1.000.000 cars, 1.000.000 drivers, 1.000 accidents
Approximate / estimated statistics (on intermediary results)

– "1.75 cars involved in every accident"
Statistics are gathered
• When loading the data: take advantage of the scan
• Periodically or upon request (e.g. analyze in the Postgres RDBMS)
• At runtime: modern systems may do this to change the data layout
Statistics on the base data vs. on results of operations not evaluated (yet):

– « On average 2 cars per accident »
• For each column R.a, store:

|R|, |R.a| (number of distinct values), min{R.a}, max{R.a}
• Assume uniform distribution in R.a
• Assume independent distribution

– of values in R.a vs values in R.b; of values in R.a vs values in S.c
• + simple probability computations

Madhulika Mohanty, Inria & IPP 22Big Graph Databases (ECE_5DA04_TP)

More on statistics
• For each column R.a, store:

|R|, |R.a| (number of distinct values), min{R.a}, max{R.a}
• Assume uniform distribution in R.a
• Assume independent distribution

– of values in R.a vs values in R.b; of values in R.a vs values in S.c

• The uniform distribution assumption is frequently wrong
– Real-world distribution are skewed (popular/frequent values)

• The independent distribution assumption is sometimes wrong
– « Total » counter-example: functional dependency
– Partial but strong enough to ruin optimizer decisions: correlation

• Actual optimizers use more sophisticated statistic informations
– Histograms: equi-width, equi-depth
– Trade-offs: size vs. maintenance cost vs. control over estimation error

Madhulika Mohanty, Inria & IPP 23Big Graph Databases (ECE_5DA04_TP)

Database internal: query optimizer
SQL

Results

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where…

……………………….

Query language

1st logical query plan

Logical optimizer

Chosen logical query plan

Physical
plan 1

Physical
plan 3Physical

plan 2

Chosen logical plan

Madhulika Mohanty, Inria & IPP 24Big Graph Databases (ECE_5DA04_TP)

select driver.name,
driver.address
from driver, car,
accident
where
driver.ID=car.driver
and
car.license=accident
.carLicense and
accident.date=‘1/11
/17’

Physical query plans

Made up of physical operators =
algorithms for implementing logical operators

Example: equi-join (R.a=S.b)
Nested loops join:
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS;

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { tR ß R.next; put(hash(tR.a), tR); }
While (!endOf(S)) { tS ß S.next;

matchingR = get(hash(tS.b));
output(matchingR x tS);

} Madhulika Mohanty, Inria & IPP 25Big Graph Databases (ECE_5DA04_TP)

Physical query plans

Nested loops join:
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS;

} until (endOf(R) or endOf(S));

O(|R|x|S|)
O(|R|+|S|)

Made up of physical operators =
algorithms for implementing logical operators

Example: equi-join (R.a=S.b)

Also:
Block nested loops join
Index nested loops join
Hybrid hash join
Hash groups / teams
… Madhulika Mohanty, Inria & IPP 26Big Graph Databases (ECE_5DA04_TP)

Hash join: // builds a hash table in memory
While (!endOf(R)) { tR ß R.next; put(hash(tR.a), tR); }
While (!endOf(S)) { tS ß S.next;

matchingR = get(hash(tS.b));
output(matchingR x tS);

}O(|R|+|S|)

Madhulika Mohanty, Inria & IPPBig Graph Databases (ECE_5DA04_TP)

Physical optimization
Possible physical plans produced by physical optimization for our sample logical plan:

driver car accident

IdxLookup(idxAccid1,
date=‘1/11/17’)

SimpleProj(name, id,
address)

HashJoin(build: accident)

HashJoin(build: car|accident)

SimpleProj(driver.name,
driver.address)

driver car accident
IdxLookup(idxAccid1, date=‘1/11/17’)

SimpleProj(name, id,
address)

MergeJoin

MergeJoin

SimpleProj(driver.name, driver.address)

IdxScan
Sort

Sort
27

Physical plan performance
Metrics characterizing a physical plan
• Response time: between the time the query starts running to

the we know its end of results
• Work (resource consumption)

– How many I/O calls (blocks read)
• Scan, IdxScan, IdxAccess; Sort;

HashJoin

– How much CPU
• All operators

– Distributed plans: network traffic

• Total work: work made by all operators

Madhulika Mohanty, Inria & IPP 28Big Graph Databases (ECE_5DA04_TP)

Query optimizers in action
Most database management systems have an « explain » functionality à physical
plans. Below sample Postgres output:

EXPLAIN SELECT * FROM tenk1;
QUERY PLAN

Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

Madhulika Mohanty, Inria & IPP 29Big Graph Databases (ECE_5DA04_TP)

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

QUERY PLAN
--

Hash Join (cost=232.61..741.67 rows=106 width=488)
Hash Cond: ("outer".unique2 = "inner".unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..458.00 rows=10000 width=244)
-> Hash (cost=232.35..232.35 rows=106 width=244)

-> Bitmap Heap Scan on tenk1 t1 (cost=2.37..232.35 rows=106 width=244)
Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..2.37 rows=106 width=0)

Index Cond: (unique1 < 100)

Inspecting query plans

• Can use Dalibo:

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 30

Chosen logical plan

Database internal: physical plan
SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Logical optimizer

Physical optimizer

Chosen physical plan
……………………….

Chosen physical plan

Madhulika Mohanty, Inria & IPP 31Big Graph Databases (ECE_5DA04_TP)

Chosen logical plan

Database internals:
query processing pipeline

SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Chosen physical plan

Chosen physical planExecution engine

Madhulika Mohanty, Inria & IPP 32Big Graph Databases (ECE_5DA04_TP)

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Updating the database

Madhulika Mohanty, Inria & IPP 33Big Graph Databases (ECE_5DA04_TP)

What's in a database?
SQL

update
insert into driver
values ('Thomas',
3);
update car set
driver=3 where
license='123AB';

Madhulika Mohanty, Inria & IPP 34Big Graph Databases (ECE_5DA04_TP)

Driver Accident

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Car

Database

Driver Accident

name ID

Julie 1

Damien 2

Thomas 3

driver license

3 ‘123AB’

2 ‘171KZ’

Car

Database

Fundamental database features

1. Data storage
– Protection against unauthorized access, data loss

2. Ability to at least add to and remove data to
the database
– Also: updates; active behavior upon update

(triggers)
3. Support for accessing the data
– Declarative query languages: say what data you

need, not how to find it

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 35

Fundamental properties of
database stores: ACID

• Atomicity: either all operations involved in a transactions
are done, or none of them is
– E.g. bank payment

• Consistency: application-dependent constraint
E.g. every client has a single birthdate

• Isolation: concurrent operations on the database are
executed as if each ran alone on the system
– E.g. if a debit and a credit operation run concurrently, the

final result is still correct
• Durability: data will not be lost nor corrupted even in the

presence of system failure during operation execution

Madhulika Mohanty, Inria & IPP 36

Jim Gray, ACM Turing Award 1998 for « fundamental contributions to databases and
transaction management »

Big Graph Databases (ECE_5DA04_TP)

DATABASE FUNDAMENTALS
(RECALL/CRASH COURSE)

Takeaway

Madhulika Mohanty, Inria & IPP 37Big Graph Databases (ECE_5DA04_TP)

Main principles behind correct and
scalable data management...

... core of the database management systems:

1. Declarative query language allows users to just
state what they want

2. For one query there are several logical plans; for
each, several physical plans
– Optimizer picks best plan

3. ACID properties crucial for "faith in the system"
("my salary, payments, and social security are
within a reliable system")

Big Graph Databases (ECE_5DA04_TP) Madhulika Mohanty, Inria & IPP 38

