
GRAPH DATABASES:
RDF AND PROPERTY GRAPHS

Ioana Manolescu
Inria and Ecole polytechnique
https://pages.saclay.inria.fr/ioana.manolescu
Ioana.manolescu@inria.fr

1ECE_5DA04_TP

mailto:Ioana.manolescu@inria.fr
mailto:Ioana.manolescu@inria.fr

Plan

1. Why do we need graph databases?

2. RDF graph databases

3. Property graph databases

2ECE_5DA04_TP

Data models, query languages, and data management
systems
Data model: abstraction (usually with clear mathematical semantics) used to
represent the data

• E.g., relational model: relation=set (or bag) of tuples

Query language: language (with completely specified grammar) used to express
information needs to be answered over a dataset

• E.g., SQL

• Data Manipulation Language: query language + updates. Also part of SQL

Data management system: a system that provides CRUD (via DML) over data of a
specific model

• CRUD: create, retrieve (=query), update, delete

• E.g., PostgreSQL, MySQL, Oracle, Microsoft, Amazon*, Google*, Snowflake, etc.

Today: graph data models and query languages. Next week: Neo4J lab.

ECE_5DA04_TP 3

Why graph databases?

4ECE_5DA04_TP

The real world consists of interconnected entities and relationships

Entities: nouns. One Entity in E-R diagram for each kind of real-world entity.

Relationships: actions (usually verbs)

Why graph databases?

5ECE_5DA04_TP

The real world consists of interconnected entities and relationships

Entities: nouns. One Entity in E-R diagram for each kind of real-world entity.

• Client, Bank, Branch, Product, Review, Song, …

Relationships: actions (usually verbs)

• E.g., Buys, Borrows, Writes, Likes, …

• Higher-arity relationships can connect more than two entities
• E.g., buysHouseFrom between Buyer, Seller, Notarybuyer, NotarySeller

The first scalable databases have been relational: data stored in tables.

Thus, to set up a data management application:

1. Design the conceptual Entity-Relationship model

2. Turn each Entity into a table

3. Turn each Relationship into a table

From a graph-structured model to a relational database

ECE_5DA04_TP 6

• Entity(Name, Address,
SS#)

• Branch(Name, Address,
Affiliation)

• Deposit(eName, bName,
Account#, Balance)

• Withdrawal(eNo, bNo,
Account#, Balance)

• Loan(eNo, bNo, Account#,
Balance)

Data organized into tables because this is what
data management systems handled best.

What do we miss in relational databases? (1)

Limited support for data heterogeneity

• If different instances of an entity have different attributes,
e.g., People have SS# and birthDate, but
Companies have none of these and have registrationNo ?

• Add all attributes to the schema; use NULLs in the data

• The attributes must still be known in advance

ECE_5DA04_TP 7

Name Address SS# Birthdate Registration#
John 1 main street 123456 19/3/2001 null
ACME 10 main street null null 98765

What do we miss in relational databases? (2)
Hard to write in SQL path queries: for each chain of money transfers from the
entity named “Alice” to the entity named “Xing”, find the time and the amount

Entity(ID, name), Account(eID, aNo), Transfer(a1, a2, date, amount)

WITH RECURSIVE chain(date, amount) AS (
SELECT t.date, t.amount, a2.aNo
FROM Entity ea, Account a1, Transfer t, Account a2
WHERE ea.name=’Alice’ and ea.ID=a.eID and and a.aNo=t.a1 and t.a2=a2.aNo

UNION ALL

SELECT t2.date, t2.amount, t2.a2
FROM chain c, Transfer t2
WHERE c.a2=t2.a1 and c.date<=t2.date)

SELECT sum(amount), min(date), max(date)
FROM chain c, Account ax, Entity ex
WHERE c.a2No=ax.aNo and ax.eID=ex.ID and ex.name=‘Xing’

ECE_5DA04_TP 8

What do we miss in relational databases? (3)
Hard to write in SQL queries such as: for each chain of money transfers from the
entity named “Alice” to the entity named “Xing”, find the time and the amount

Entity(ID, name), Account(eID, aNo), Transfer(a1, a2, date, amount)

WITH RECURSIVE chain(date, amount) AS (…) SELECT … FROM chain…

Note: we avoided cycles by asking that the dates be increasing

ECE_5DA04_TP 9

“When working with recursive queries it is important to be sure that
the recursive part of the query will eventually return no tuples, or

else the query will loop indefinitely. Sometimes, using UNION instead
of UNION ALL can accomplish this by discarding rows that duplicate

previous output rows. However, often a cycle does not involve output
rows that are completely duplicate: it may be necessary to check just
one or a few fields to see if the same point has been reached before.
The standard method for handling such situations is to compute an

array of the already-visited values.”

What do we miss in relational databases? (4)

Impossible to write queries over the schema and the data

• “For each table and each of their attributes, if the attribute name starts with ‘Pers’, show
the value of the attribute”

Dataset interoperability

• If two databases have Entities numbered 1, 2, 3, … these IDs are local to each database.

• If each database contains company ‘ACME’, is it really the same?

Databases store data, not knowledge

• Knowledge: any Student is a Person; if X teaches a class, then X is an Instructor

• Therefore, databases do not reason
• A query asking for Person instances will not return Students

• Unless we explicitly copy every instance of Student in Person… and even that does not always work (which
attributes are present in both tables?)

• Distinguish from enforcing constraints (that is a strength of relational DBMSs)

ECE_5DA04_TP 10

Recap: main limitations in relational databases

1. Limited support for path queries

2. Impossible to write queries over schema and data

3. Database interoperability not clear

4. No support for knowledge and reasoning

ECE_5DA04_TP 11

Enter graph databases

RDF has lead to wide-scale interoperability of data and knowledge.

Property graphs are more attractive in a single-organization (company) setting, in
particular because they facilitate efficient querying.

ECE_5DA04_TP 12

Relational
databases

RDF databases Property graph
databases

Path queries Barely (hard) ✓ ✓

Query schema
and data

⏤ ✓ ✓

Database
interoperability

⏤ ✓ ⏤

Reasoning ⏤ ✓ ⏤

Graph database ranking

ECE_5DA04_TP 13

RDF Property
Graphs
(some

flavor of)Strong, complete
suite of standards

RDF databases

14ECE_5DA04_TP

RDF graph: basic concepts

RDF: Resource Description Framework
Each piece of data states a value for a property that a resource (subject) has

(subject, property, object) or (subject, property, value)
An RDF database, or graph, is a set of triples.
In each triple, the subject is an International Resource Identifier (or IRI), whose
format is standardized. Previously known as URIs.

15ECE_5DA04_TP

E.g., https://www.hceres.fr/fr/annuaire-des-etablissements/telecom-paristech : identifier of Télécom Paristech
according to HCERES

https://www.hceres.fr/fr/annuaire-des-etablissements/telecom-paristech

RDF graph: basic concepts

RDF: Resource Description Framework
Each piece of data states a value for a property that a resource (subject) has

(subject, property, object) or (subject, property, value)
An RDF database, or graph, is a set of triples.
In each triple, the subject is an International Resource Identifier (or IRI), whose
format is standardized. Previously known as URIs.

16ECE_5DA04_TP

E.g., https://www.wikidata.org/wiki/Q2311820 : identifier of Télécom Paristech according to Wikidata,
a large RDF graph online

https://www.wikidata.org/wiki/Q2311820

RDF graph: basic concepts

RDF: Resource Description Framework
Each piece of data states a value for a property that a resource (subject) has

(subject, property, object) or (subject, property, value)
An RDF database, or graph, is a set of triples.
In each triple, the subject is an International Resource Identifier (or IRI),
whose format is standardized. Previously, Universal Resource Identifiers (URIs) .

17ECE_5DA04_TP

• https://www.hceres.fr/fr/annuaire-des-etablissements/telecom-paristech is more
readable… for those that use a Latin alphabet
• IRIs allow to use many more alphabets

• URIs are sometimes informative for a human.
• When they are not, e.g., https://www.wikidata.org/wiki/Q2311820,

usually the label or name of the resource is described in the RDF graph

https://www.hceres.fr/fr/annuaire-des-etablissements/telecom-paristech
https://www.wikidata.org/wiki/Q2311820

IRIs enable interoperability between datasets!

RDF: Resource Description Framework
Each piece of data states a value for a property that a resource (subject) has

(subject, property, object) or (subject, property, value)
An RDF database, or graph, is a set of triples.
In each triple, the subject is an International Resource Identifier (or IRI),
whose format is standardized. Previously, Universal Resource Identifiers (URIs).
All properties are also IRIs.
Values may also be IRIs.

18ECE_5DA04_TP

IRIs ensure interoperability!

RDF graphs: IRIs vs. literals

Subjects, and properties, must be IRIs. Objects can be IRIs or values.

Below, we use N-triples syntax for RDF: s p o .

<http://data.kasabi.com/dataset/nasa/launchsite/canaryislands>
<http://purl.org/net/schemas/space/country> "Spain" .

<http://data.kasabi.com/dataset/nasa/launchsite/capecanaveral>
<http://purl.org/net/schemas/space/country> "United States" .

<http://data.kasabi.com/dataset/nasa/launchsite/kourou>
<http://purl.org/net/schemas/space/country> "France" .

<http://nasa.dataincubator.org/launch/1998-003>
<http://purl.org/net/schemas/space/launchsite>
<http://data.kasabi.com/dataset/nasa/launchsite/capecanaveral> .

ECE_5DA04_TP 19

RDF: Practical details

Literals may have a type attached: uriJohn foaf:age "42"^^xsd:integer

• "42"^^xsd:integer is not the same as "42”

In an RDF graph description, one may introduce IRI prefixes and associate them short
names, leading to a more compact syntax:

ECE_5DA04_TP 20

@prefix dt: <http://example.org/datatype#> .
@prefix ns: <http://example.org/ns#> .
@prefix : <http://example.org/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
:x ns:p "cat"@en .
:y ns:p "42"^^xsd:integer .
:z ns:p "abc"^^dt:specialDatatype .

<http://example.org/ns#x> <http://example.org/ns#p> "cat"@en .
<http://example.org/ns#y> <http://example.org/ns#p> "42"^^ <http://www.w3.org/2001/XMLSchema#integer> .
<http://example.org/ns#z> <http://example.org/ns#p> "abc"^^ <http://example.org/datatype#specialDatatype> .

Has exactly the same content as

This is the Turtle syntax for RDF
https://www.w3.org/TR/turtle/

An RDF/XML syntax for RDF also exists https://www.w3.org/TR/rdf-syntax-grammar/

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/

RDF graphs: types

Pre-defined http://www.w3.org/1999/02/22-rdf-syntax-ns#type
property allows attaching types to resources, e.g.:

 <http://data.kasabi.com/dataset/nasa/launchsite/capecanaveral>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://purl.org/net/schemas/space/LaunchSite> .

A resource may have several types, e.g.:

<http://data.kasabi.com/dataset/nasa/launchsite/capecanaveral>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<https://www.wikidata.org/wiki/Q194188> .

ECE_5DA04_TP 21

spaceport

http://www.w3.org/1999/02/22-rdf-syntax-ns

RDF: Practical details

Very frequently used IRI prefixes from W3C standards:

Other common namespaces:

ECE_5DA04_TP 22

Prefix IRI

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
fn: http://www.w3.org/2005/xpath-functions#

Prefix Vocabulary description
foaf: “Friend of a Friend”, describing people and their relationships

dc: “Dublin Core”, metadata about creative works: title, year,
author, license, …

schema: Schema.org, a repository of type definitions for commonly
encountered entities

RDF graphs: blank nodes

They correspond to entities for whom the IRI is not known.
They are of the form _:label

_:b1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://purl.org/net/schemas/space/LaunchSite> .
<http://nasa.dataincubator.org/launch/2024-003>
<http://purl.org/net/schemas/space/launchsite> _:b1 .

Within an RDF graph, all occurrences of a BN denote the same “unknown” node.

Across RDF graphs, BN labels denote different nodes.
If graphs are unioned, the blank nodes are automatically relabeled:

Blank nodes can be seen as “local IDs”

ECE_5DA04_TP 23

Graph G1
_:b1, _:b2

Graph G2
_:b1, _:b2, _:b3

Graph G3=G1 U G2
_b1, _b2, _b3, _b4, _b5U =

Sample RDF graph (abridged)

uriJohn foaf:name “John” .

uriJohn nasa:crewOf nasa:apollo13 .

nasa:apollo13 rdf#type nasa:Spaceship .

uriJohn nasa:experimentAuthor _:exp1 .

_:exp1 rdf#type nasa:RadiologyExperiment .

ECE_5DA04_TP 24

We only know nasa:Spaceship and nasa:RadiologyExperiment are types
(or classes) because they appear as values of rdf#type.

Only a few other predefined properties: rdf#comment, rdf#label.

Types can also have properties, e.g.:
 nasa:Spaceship schema:author uriAliceJones .

 nasa:Spaceship schema:creationDate ”1/1/1998” .

Adding semantics (knowledge) to RDF graphs:
type hierarchies
RDF Schema (RDFS, in short) is the simplest language for describing knowledge that holds
in RDF graphs.

RDFs defines the property rdfs:subclassOf:

subclassOf is naturally transitive. This leads
to a first type of reasoning:

(t1, subclassOf, t2), (t2, subclassOf, t3) à
(t1, subclassOf, t3)

Implicit triples:

nasa:MedicalAstronaut rdfs:subclassOf foaf:Person .

nasa:ScientistAstronaut rdfs:subclassOf foaf:Person .
ECE_5DA04_TP 25

nasa:Spaceship rdfs:subclassOf nasa:Vehicle .
nasa:Astronaut rdfs:subclassOf foaf:Person .
nasa:Scientist rdfs:subclassOf foaf:Person .
nasa:ScientistAstronaut rdfs:subclassOf nasa:Scientist .

foaf:Person

nasa:Astronaut nasa:Scientist

nasa:MedicalAstronaut

nasa:ScientistAstronaut

Sample graph enriched by reasoning with type
hierarchies

ECE_5DA04_TP 26

uriJohn foaf:name “John” .

uriJohn nasa:crewOf nasa:apollo13 .

nasa:apollo13 rdf#type nasa:Spaceship .

uriJohn nasa:experimentAuthor _:exp1 .

_:exp1 rdf#type nasa:RadiologyExperiment .

nasa:Spaceship rdfs:subclassOf nasa:Vehicle .

nasa:Astronaut rdfs:subclassOf foaf:Person .

nasa:Scientist rdfs:subclassOf foaf:Person .

nasa:ScientistAstronaut rdfs:subclassOf nasa:Astronaut .

nasa:ScientistAstronaut rdfs:subclassOf nasa:Scientist .

nasa:ScientistAstronaut rdfs:subclassOf foaf:Person .

nasa:apollo13 rdf#type nasa:Vehicle .

Explicit triples

Implicit triples

Data triples:
the property is not
from an ontology
language

Schema
triples

Data triple

More reasoning on RDF graphs: subproperty

Properties can be specializations of each other, just like classes:

nasa:experimentAuthor rdfs:subpropertyOf nasa:participatedTo .

Just like subclassOf, subPropertyOf is transitive (reasoning identical; examples ommitted).

From the explicit triples:

 uriJohn nasa:experimentAuthor _:exp1 .
 nasa:experimentAuthor rdfs:subpropertyOf nasa:participatedTo .

We get the implicit triple:

 uriJohn nasa:participatedTo _:exp1 .

ECE_5DA04_TP 27

Data triple

Data triple

Schema triple

More reasoning on RDF graphs: property domain and range

Some properties are naturally associated to some types

 nasa:crewOf rdfs:domain nasa:Astronaut

 nasa:crewOf rdfs:range nasa:Spaceship

Semantics: any subject of nasa:crewOf is automatically an astronaut; any object of
nasa:crewOf is automatically a spaceship

• Thanks to rdfs:domain and rdfs:range, the subject and object of every
nasa:crewOf triple gain more (implicit) type information

Together, subclassOf, subpropertyOf, domain and range make up the RDFS
ontology language, a small but useful language for expressing knowledge.

Reasoning with an ontology: enumerating all consequences (implicit triples) based
on the data and schema triples, until no new triple can be inferred.

• For RDFS ontologies, this process terminates and runs in polynomial time in the
number of triples from the graph + ontology.

ECE_5DA04_TP 28

Sample reasoning on our NASA graph

ECE_5DA04_TP 29

foaf:Person

nasa:Astronaut nasa:Scientist

nasa:ScientistAstronaut

uriJohn”John” foaf:name nasa:apollo13nasa:crewOf nasa:Spaceship

nasa:Vehicle

rdfs:subclassOf
rdf#type

_:exp1 nasa:RadiologyExperimentrdf#type
nasa:experimentAuthor

nasa:crewOf

rd
fs

:d
om

ai
nrdfs:range

nasa:experimentAuthor nasa:participatedTordfs:subpropertyOf

rd
fs:
su
bc
las
sO
f

subclassOfsub
clas

sOf

rdfs:subclassOf

rd
fs
:s
ub

cl
as
sO

f

Classes, properties, and schema triples in blue.

rdf#type

nasa:participatedTo

rdf#type

rdf#type

Explicit triples are shown by full-line arrows.
Implicit triples are shown by dashed lines.

A given triple, explicitly present in the graph, may also be implicitly present. (They only “count as one”.)

One method known to produce complete results: 1. Saturate the ontology. 2. Saturate the data graph with the
(enriched) ontology.

Wrap-up on RDF ontologies and reasoning

RDFS is a small ontology language.

• Too small even to declare constraints, e.g.,
one cannot be a Human and a Cat;
or, only Humans have VoterIDs;
or, a person has at most two parents

Even smaller: use just subclassOf à taxonomy

Larger language used in more “industrial-strengh”
applications: W3C OWL (Web Ontology Language)

OWL allows declaring:

• Cardinality constraints

• Class disjointness

• Constraints between classes and intersections/unions of classes/property
domains, or property ranges…

ECE_5DA04_TP 30

!=

Wrap-up on RDF ontologies, reasoning, shape constraints
We have seen: Reasoning on an RDF graph with an RDF ontology, aka graph saturation
If we don’t saturate, how to get complete results? Reformulate the query.
• If Astronaut subclassOfPerson, query asks for Person instances?

In the presence of an OWL ontology, the graph may be inconsistent (not satisfy rules).
We then look for repairs (minimal modifications to the graph).

The need for structure (shape) constraints has also been felt.
The SHACL language has been proposed for that.
• a stands for rdf:type; sh is SHACL namespace
• ReviewShape describes the expected shape of

resources of type Review, which should have a rating.
• ratingShape describes the expected shape of

the rating property
• Property values can also be constrained

ECE_5DA04_TP 31

ex:ReviewShape
a sh:NodeShape ;
sh:targetClass ex:Review ;
sh:property ex:ratingShape .

ex:ratingShape
a sh:PropertyShape ;
sh:path ex:rating ;
sh:datatype xsd:integer ;
sh:minInclusive 1 ;
sh:maxInclusive 5 ;
sh:minCount 1 ;
sh:maxCount 1 .

RDF: what about relationships of higher arity?

E.g., buysHouseFrom between Buyer, Seller, NotaryBuyer, NotarySeller

How do we represent that ns:b1 buys house ns:h1 from seller ns:s1 with
the help of buyer’s notary ns:n1 and seller’s notary ns:n2?

ECE_5DA04_TP 32

Querying RDF databases with SPARQL

33ECE_5DA04_TP

SPARQL: the standard query language for RDF

SPARQL allows to:

1. Return values from one or several RDF graphs, matching a
certain structural pattern and certain conditions

2. Build new graphs

3. Aggregate information

4. Check for the presence of complex paths

5. Update RDF graphs

ECE_5DA04_TP 34

SPARQL: basic graph pattern queries

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" .

ECE_5DA04_TP 35

SELECT ?title
WHERE { <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title . }

?title

"SPARQL Tutorial"

Data:

Query:

Result:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .

_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name . ?x foaf:mbox ?mbox }

?name ?mbox

"Johnny Lee Outlaw" <mailto:jlow@example.com>

"Peter Goodguy" <mailto:peter@example.org>

Data: Query:

Result:

SPARQL: basic graph pattern queries

ECE_5DA04_TP 36

@prefix dt: <http://example.org/datatype#> .
@prefix ns: <http://example.org/ns#> .
@prefix : <http://example.org/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
:x ns:p "cat"@en .
:y ns:p "42"^^xsd:integer .
:z ns:p "abc"^^dt:specialDatatype .

SELECT ?v WHERE { ?v ?p "cat" }

?v

Data: Query:

Result:

SELECT ?v WHERE { ?v ?p "cat"@en }

?v

<http://example.org/ns#x>

Query:

Result:

SELECT ?v WHERE { ?v ?p 42 }

?v

<http://example.org/ns#y>

Query:

Result:

SELECT ?v
WHERE { ?v ?p "abc"^^<http://example.org/datatype#specialDatatype> }

?v

<http://example.org/ns#z>

Query:

Result:

SPARQL: OPTIONAL patterns in graph pattern queries

ECE_5DA04_TP 37

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .

_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

Data:

?name ?mbox ?hpage

"Alice" <http://work.example.org/alice/>

"Bob" <mailto:bob@work.example>

Result:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?hpage
WHERE { ?x foaf:name ?name .

OPTIONAL { ?x foaf:mbox ?mbox } .
OPTIONAL { ?x foaf:homepage ?hpage }

}

Query:

How are SPARQL basic pattern queries evaluated?

1. Because RDF graphs are very general, the only “regularity” we
can assume is: triple(s, p, o)

2. Because URIs (and often literals) are long, storage typically
dictionary-encodes them as integers.

3. The evaluation of an n-triple pattern requires n-1 joins.
Join estimation errors multiply à bad optimizer choices!
The triple table is typically large à errors are costly

4. We may store one table per class, and one table per property
Depending on the graph, this may lead to many tables!

5. Or, we may store one table per frequent class and property,
and store the rest in a triples table.

6. Still n-1 joins needed. No magic bullet.

ECE_5DA04_TP 38

s p o

id IRI_or_lit

s o
isCrewOf

s
Person

dictionary
s p o
enc_triples

triples

SPARQL: FILTERing basic graph pattern query matches

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title FILTER regex(?title, "^SPARQL") }

ECE_5DA04_TP 39

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

Data:

?title

"SPARQL Tutorial"

Result:

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE { ?x ns:price ?price . FILTER (?price < 30.5)

?x dc:title ?title . }

?title ?price

”The Semantic Web" 23

Result:Query:

FILTER can express complex conditions over one or more variables.

SPARQL: blank nodes in query results; implicit variables

PREFIX foaf: http://xmlns.com/foaf/0.1/
SELECT ?x ?name
WHERE { ?x foaf:name ?name }

ECE_5DA04_TP 40

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .
_:b foaf:name "Bob" .

Data:

?x ?name

_:c “Alice”

_:d “Bob”

Result:

Query:

Because blank node labels don’t matter much, blank nodes can be renamed before returning them.

PREFIX foaf: http://xmlns.com/foaf/0.1/
SELECT ?x ?y
WHERE { ?x foaf:name ?y }

PREFIX foaf: http://xmlns.com/foaf/0.1/
{ ?x foaf:name ?y }

Query with explicit variables: Equivalent query with implicit variables:

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

SPARQL: creating new graphs

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX org: <http://example.com/ns#>
CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x org:employeeName ?name }

ECE_5DA04_TP 41

@prefix org: <http://example.com/ns#> .

_:a org:employeeName "Alice" .
_:a org:employeeId 12345 .

_:b org:employeeName "Bob" .
_:b org:employeeId 67890 .

Data:

Result:

Query:

CONSTRUCT queries return new graphs (triples), not tables!
CONSTRUCT ensures the RDF data model is closed under SPARQL
• The set of all integers (Z) is closed under (+, -)
• The relational data model is closed under SQL

@prefix org: <http://example.com/ns#> .
_:x foaf:name "Alice" .
_:y foaf:name "Bob" .

SPARQL: aggregation

PREFIX : <http://books.example/>
SELECT (SUM(?lprice) AS ?totalPrice)
WHERE {?org :affiliates ?auth .

?auth :writesBook ?book .
?book :price ?lprice . }

GROUP BY ?org
HAVING (SUM(?lprice) > 10)

ECE_5DA04_TP 42

@prefix : <http://books.example/> .

:org1 :affiliates :auth1, :auth2 .
:auth1 :writesBook :book1, :book2 .
:book1 :price 9 .
:book2 :price 5 .
:auth2 :writesBook :book3 .
:book3 :price 7 .
:org2 :affiliates :auth3 .
:auth3 :writesBook :book4 .
:book4 :price 7 .

Data:

Result:

Query:

Very much like SQL

?totalprice

21

SPARQL: path expressions

For cases where there is some flexibility in the pattern that we want to match

ECE_5DA04_TP 43

{ :book1 dc:title|rdfs:label ?displayString }
Alternative:

{?x foaf:knows/foaf:knows/foaf:name ?name . }
Concatenation:

{ <mailto:alice@example> ^foaf:mbox ?x } which is the same as {?x foaf:mbox <mailto:alice@example>}
Inverse:

{
?x foaf:mbox <mailto:alice@example> .
?x foaf:knows+/foaf:name ?name .

}

Repeated labels along a path (at least once)
{ ?x !(rdf:type|^rdf:type) ?y }
Label negation

{
?x foaf:mbox <mailto:alice@example> .
?x foaf:knows*/foaf:name ?name .

}

Repeated labels along a path (zero or more least once)

SPARQL enables checking the existence
 of paths whose labels match a given
 regular expression.
 It does not enable (a) finding arbitrary
 paths, (b) returning paths, (c) limiting
 the path length.

SPARQL: path expressions and equivalent automata

ECE_5DA04_TP 44

{ :book1 dc:title|rdfs:label ?displayString }

{?x foaf:knows/foaf:knows/foaf:name ?name . }

{ ?x foaf:knows+/foaf:name ?name . }

rdfs:label

dc:title

foaf:namefoaf:knows

foaf:namefoaf:knows

foaf:knows

s0

s0

s0 s1

s2 s3

s2

foaf:knowss1

SPARQL allows to query the data together with the
ontology

ECE_5DA04_TP 45

@prefix nasa: <http://nasa.org/knowledge/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
nasa:Neil_Armstrong rdf:type nasa:Astronaut.
nasa:Neil_Armstrong nasa:crewOf nasa:Apollo_13

PREFIX nasa: <http://nasa.org/knowledge/> . , rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?x, ?y, ?p, ?o
WHERE { ?x rdf:type ?y . ?x p ?o . FILTER ?p != rdf:type}

?x ?y

<http://www.nasa.org/knowledge/#Neil_Armstrong> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type>

Result:

Query:

Graph:

Property graphs databases

46ECE_5DA04_TP

Property graphs

Nodes have
• An id
• Zero or more attributes

(name=value)
• Zero or more labels

Edges (relationships) have
• A type
• A source and a target nodes
• Zero or more attributes

(name=value)
• Some edges can be

undirected!

ECE_5DA04_TP 47

1-node graph
Can’t do this in RDF!

Property graphs: what about higher arity
relationships?

How do we model that buyer
Alice bought a house H from
seller Bob with the notaries
Jones and Thomson?

ECE_5DA04_TP 48

Querying property graphs
The Neo4J company put out “their own query language”: Cypher

• Since 2014 à implemented! Lab on Cypher

In 2019, ISO (the International Standard Organization, that standardizes SQL) has taken
up the task of standardizing property graph querying. It has created:

1. SQL/PGQ, an extension of SQL to query graphs stored in relational tables

2. GQL, a query language completely separate from the relational model

• The graph pattern matching is the same in SQL/PGQ, and GQL.

ECE_5DA04_TP 49

Sample property graph to illustrate queries

ECE_5DA04_TP 50

From: Deutsch et al., Graph Pattern Matching in GQL and SQL/PGQ, SIGMOD 2022

Cypher pattern matching

ECE_5DA04_TP 51

MATCH (a:Account {isBlocked:'no'})−[:isLocatedIn]−>
(g:City {name:'Ankh−Morpork'})<−[:isLocatedIn]−(b:Account {isBlocked:'yes'}),
p = (a)−[:Transfer*1..] −>(b)

RETURN a.owner, b.owner, p

a, g, b, p: variables. ASCII art for edges. Regular path expressions (here: one or more Transfer edges)
Returns tables. Also: returns paths!

Cypher pattern matching

ECE_5DA04_TP 52

We can put conditions on several attributes of the same node
MATCH (a:Account {isBlocked:'no’, owner: ‘Scott’})… à Less joins needed to evaluate queries!

We can ask for the label(s) of a node or edge:

MATCH (a {number: ‘123.222’}) RETURN a.labels() à Querying the data together with the schema

Cypher pattern matching

ECE_5DA04_TP 53

MATCH (a:Account {isBlocked:'no'})−[:isLocatedIn]−>
(g:City {name:'Ankh−Morpork'})<−[:isLocatedIn]−(b:Account {isBlocked:'yes'}),
p = (a)−[*1..] −>(b)

RETURN a.owner, b.owner, p

Regular path expressions (here: one or more edges between a and b)

Cypher pattern matching

ECE_5DA04_TP 54

MATCH p=shortestpath(a1:Account {owner:'Aretha'})−[:Transfer*]−> a2:Account{owner:’Charles’})
RETURN p

A few more graph exploration algorithms (BFS, …) available as libraries one can call.

More about Cypher and Neo4J

Cypher: Dominating industrial standard.

Neo4J strives to keep customers in by adding libraries for plenty of tasks:
Graph operations (BFS traversals, PageRank…)

Multiple parallel computation libraries (Map/Reduce…)

Large library of operations: APOC (Awesome Procedures on Cypher)
https://neo4j.com/docs/apoc/current/

Possibly fragilized by the standard imposed by multi B$ database companies

• Slight variations in data model (does every node need to have a label? Etc.)

• Path matching modes much richer in PGQL

The most widely implemented language so far à the lab next week.

ECE_5DA04_TP 55

https://neo4j.com/docs/apoc/current/

GQL pattern matching

ECE_5DA04_TP 56

SELECT x.owner AS A, y.owner AS B
FROM
MATCH (x:Account)−[:isLocatedIn]−> (g:City)<−[:isLocatedIn]−(y:Account),
MATCH ANY (x)−[e:Transfer]−>+(y)
WHERE x.isBlocked='no' AND y.isBlocked='yes’ AND g.name='Ankh−Morpork'

Also “ASCII art”
SELECT-FROM-WHERE J
Richer path semantics (see next)

GQL pattern matching

Matching a directed edge: MATCH −[e]−>

Matching an undirected edge: MATCH ~[e]~

Undirected or directed right to left: MATCH <~[e]~

Find large transfers from accounts into which a login attempt was made from a
blocked phone:

MATCH (p:Phone WHERE p.isBlocked='yes’)~[e:hasPhone]
~(a1:Account)−[t:Transfer WHERE t.amount>1M]−>(a2)

To constrain the length of a path:

MATCH (a:Account) [()−[t:Transfer]−>() WHERE t.amount>1M] {2,5} (b:Account)

ECE_5DA04_TP 57

Matching paths in GQL
Path restrictors: what do we call a path?

Path selectors: which path(s) to return among those that match?

ECE_5DA04_TP 58

TRAIL No repeated edges (may repeat nodes!)
ACYCLIC No repeated nodes (thus, cannot repeat edges)
SIMPLE No repeated nodes, except that the first and last nodes may be the

same.

ANY SHORTEST One path with shortest length for each (s, d). Non-deterministic
ALL SHORTEST All paths with shortest length for each (s, d).
ANY One path in each partition arbitrarily. Non-deterministic
ANY 𝑘 Arbitrary 𝑘 paths in each partition (if fewer than 𝑘, return all). Non-

deterministic.
SHORTEST 𝑘 The shortest 𝑘 paths (if fewer than 𝑘, return all). Non-deterministic

SHORTEST 𝑘
GROUP

Group paths with same source and destination. For each (s, d), group paths
again by length. Return 𝑘 shortest-length groups.

Questions?

59ECE_5DA04_TP

