
ARCHITECTURES FOR
BIG DATA MANAGEMENT
(INCL. CLOUD)

Ioana Manolescu
Inria and Ecole polytechnique
https://pages.saclay.inria.fr/ioana.manolescu
Ioana.manolescu@inria.fr

1ECE_5DA04_TP

mailto:Ioana.manolescu@inria.fr
mailto:Ioana.manolescu@inria.fr

Plan

1. Distributed data management: main architectures

2. Cloud computing

3. Data management in the cloud (including graphs)

2ECE_5DA04_TP

From a database to Big Data systems: architectures

3

Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed

main-memory
databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures

ECE_5DA04_TP

From a database to Big Data systems: data models

4

Relational DBMS:

Schema: set of tables

Denormalize
the data

JSON
DBMS

XML
DBMS

Give up on
a priori
schema

Add semantics
to data

Allow multiple
object types

RDF
DBMS

Property
 graph
DBMS

Key-value
DBMS

Property
 graph + RDF

DBMS

Heterogeneous
data model DBMS:
mediator, data lake,

data space, data mesh

ECE_5DA04_TP

Dimensions of Big Data architectures

Data model(s)

• Relations, trees (XML, JSON), graphs (RDF, PGs), nested relations

Heterogeneity (Data Model, Query Language):

• None, some, a lot

Hardware:

• Hardware type: from disk to memory
• Scale of distribution: small (~10-20 sites) or large (~10.000 sites)

Data distribution and replication

• What are the logical relations between distributed data collections?

Interoperability and control:

• Who decides: data structure, data publication, data placement
• Who does what when processing queries or updates

5
ECE_5DA04_TP

Distributed
data management architectures

ECE_5DA04_TP 6

Fundamental operations: Distribution and replication

Distribution: splitting a dataset,
e.g., a database, or a relation,
among two or more distributed
nodes

To scale up across more hardware

To parallelize computations

7

Replication: copying a dataset, e.g., a
database, or a relation on one or more
sites.

To ensure durability even in the face of
hardware (storage) destruction
To increase availability during a
software crash at one site
To increase speed for queries that run
on a replica which is close to the query

1
2
3
4
5
6

1
2
3

4
5
6

1
2
3

1
2
3

1
2
3 1

2
3

R R1
R2

R1
R1’

R1’’
R1’’’

ECE_5DA04_TP

Big Data management architectures

1. Distributed databases (since 1970)

2. Data warehouses (since 1970)

3. Data integration systems (since 1990s)

4. Peer-to-peer databases (since 2000)

5. Data lakes (since 2010), lakehouses (since 2020s)

6. Data mesh (since 2020s)

7. Cloud databases (since 2010s)

8
ECE_5DA04_TP

Distributed databases

Oldest distributed architecture ('70s): IBM System R*

Illustrate/introduce the main priciples

Data is relational (tables).

Data is distributed among many nodes (sites, peers...)

Data catalog: information on which data is stored where
►Catalog stored at a master/central server.
►E.g., « Paris sales are stored in Paris », « Lyon sales are stored in Paris », « Client data

is stored in London », etc.

Queries are distributed (may come from any site)

First analyzed through catalog

Query processing is distributed

Operators may run on different sites à network transfer

9
ECE_5DA04_TP

Traditional distributed relational databases (since 1970)

Server DB1@site1: R1(a,b), S1(a,c)

Server DB2@site2: R2(a,b), S2(a,c),

Server DB3@site3: R3(a,b), S3(a,c) defined as:

select * from DB1.S1 union all
select * from DB2.S2 union all
select R1.a as a, R2.b as c

from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a

DB3@site3 decides what to import from site1, site2 (« hard links »)

Site1, site2 are independent servers

10
ECE_5DA04_TP

Query evaluation in distributed databases:
query unfolding

11

DB1: R1(a,b), S1(a,c)

DB2: R2(a,b), S2(a,c)

DB3: R3(a,b), S3(a,c) defined as:

select * from S1 union all
select * from S2 union all
select r1.a as a, r2.b as c
from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a

Query on DB3:

select a
from S3
where a = 3;

The query is formulated on S3,
but there is no actual data there!
• The query is reformulated (or

unfolded) based on the
definition of S3

In classical DBMSs, a query over a view is also unfolded (demo)

ECE_5DA04_TP

How is a query unfolded?

Based on its logical algebra translation

ECE_5DA04_TP
12

Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4} 16 plans!

R@s1 S@s2 T@s3 U@s4

q@s5

?

? ?

Plan pruning criteria if all the sites and network
connections have equal performance:
• Ship the smaller collection

R@s1 T@s3

S@s2

q@s4
One choice:

@s1

@s1

13
ECE_5DA04_TP

Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4
One choice:

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network
connections have equal performance:

• Ship the smaller collection
• Transfer to join partner or the query site

@s1

@s2

14
ECE_5DA04_TP

Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network
connections have equal performance:

• Ship the smaller collection.
• Transfer to join partner or the query site

This plan illustrates total effort != response time

@s1

@s2

15
ECE_5DA04_TP

Distributed query optimization technique: semijoin reducers

R join S = (R semijoin S) join S

Useful in distributed settings to reduce transfers: if the distinct S.b values
are smaller than the non-joining R tuples
Example: 1.000.000 tuples in R, 1.000.000 tuples in S, 900.000 distinct
values of R.a, 10 distinct values of S.b

16

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more
exactly:

ECE_5DA04_TP

Distributed query optimization technique: semijoin reducers

R join S = (R semijoin S) join S

Useful in distributed settings to reduce transfers: if the distinct S.b values
are smaller than the non-joining R tuples
Symetrical alternative: R join S = R join (S semijoin R)
This gives one more alternative in every join à search space explosion
Heuristics [Stocker, Kossmann et al., ICDE 2001]

17

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more
exactly:

ECE_5DA04_TP

Data warehouse

A data warehouse is a large database with a single consolidated schema.
It is built within one organization with strong control (or a tight collaboration).
Typically, a warehouse schema contains:
• A very large table, called fact table.

Each fact is characterized by several
dimensions.

• A set of small(er) dimension tables
which describe dimension values.

• A dimension value may be shared by
many facts à avoid redundancy in
the fact table.

Usually called a star schema.
Data from many sources can go through
Extract-Transform-Load (ETL) processes
to feed the DW.

18
ECE_5DA04_TP

Data warehouse
A data warehouse is a large database with a single consolidated schema.
Further splitting the dimension tables leads to a snowflake schema.

19
ECE_5DA04_TP

Data integration systems (aka mediation systems)

A number of databases (“data sources”), independently built and operated by
independent organizations, must be used together
• E.g., providers of goods or services that sell something together via a Web site
• E-commerce: buy P from S1 or from S2

• Travel: buy a trip = hotel + restaurant + rental car from S1 and S2 and S3
• E.g., large scientific studies where different labs gather separate experiment data for a

joint study
• Health: patient cohorts followed in separate hospitals

• Climate: measures of ocean water, resp. air temperature and wind

20
ECE_5DA04_TP

Data integration systems (aka mediation systems)

A number of databases (“data sources”), independently built and operated by
independent organizations, must be used together
Each data source has its own schema

The data integration system shows a single schema to users/applications, hiding the
complexity of: different schema, possibly distributed databases…

No data actually follows the integrated schema!

Mappings (logical formulae) relate the source schemas to the integrated (or mediator)
schema.

21

Mediator data model

Source 1
schema

Source n
schema…

Mediator
schema

Source n
data model

Query
Q

Source 1
data model

Wrapper Wrapper

ECE_5DA04_TP

Peer-to-peer databases

Decentralized, highly distributed, symetric architectures

A peer (or node) may publish (share) some data, independently from others.
While the peer is part of the P2P network,
other peers can query its data.
To enable other peers to find the data, need to
advertise
• Propagate to other nodes information about

each node’s data
P2P networks are dynamic (peers may join or leave); peer churn
Data must be re-advertised to reflect
• Changes in the data
• Changes in the peer network

22
ECE_5DA04_TP

Data lakes

Data files and/or databases accumulate within large organizations
• E.g., Open Data from a large city, a region, or a country: administration and

commerces, restaurants, census, school information…
• E.g., sales data within a company: online sale logs, advertisement campaigns,

market forecasts, consolidated sale numbers…
• E.g., all weather data from a climate studies lab

Large numbers of files (1000s); large or small
Heterogeneous data models; often CSV, TSV, .XLS, … Documents also possible.
No single schema: too hard or impractical to design, also because of lack of
centralized application focus or control.

23
ECE_5DA04_TP

Data lakes

Data files and/or databases accumulate within large organizations
Large numbers of files (1000s); large or small
Heterogeneous data models; often CSV, TSV, .XLS, … Documents also possible.
No single schema: too hard or impractical to design, also because of lack of
centralized application focus or control.

INGEST: into large-scale, possibly
cloud-hosted storage, for massively parallel
processing (see next)
BLEND: combine two or more datasets

BLEND and TRANSFORM are reminiscent of ETL (Extract, Transform, Load) in Data
Warehouses

24
ECE_5DA04_TP

How to exploit a data lake?

Questions to address:

1. Dataset search: find a dataset by keyword search, format, date, …
2. Dataset annotation: attach ontology concepts to a dataset

3. Find datasets compatible with this one:
• Same-type, same-meaning attribute(s) à They may join.

Difficulty: different attribute names, different data types…

• Same schema à They may be unioned.
• Share some attributes à They may be joined and/or their projections may be unioned,

etc.
The datasets understood sufficiently well (« clean tables ») may be moved from the lake to a
warehouse

Data lake without proper analysis means: « data swamp »

25
ECE_5DA04_TP

Data lakehouse

ECE_5DA04_TP
26

https://www.databricks.com/glossary/data-lakehouse

A more recent brand of systems aiming to provide data warehouse-style
processing in a lake-style environment
Metadata: file names, descriptions, tags…
Governance: access rights, predefined workflows for some data processes

https://www.databricks.com/glossary/data-lakehouse

Data lakehouse

27

A more recent brand of systems aiming to provide data warehouse-style
processing in a lake-style environment
OLTP: online transaction processing CRM: customer relationship management
ERP: Enterprise Resource Planning (HR, manufacturing, supply chain, finance, accounting; generic)
LOB: Line of Business (specific to the company)

https://aws.amazon.com/fr/blogs/big-data/build-a-lake-house-architecture-on-aws/
ECE_5DA04_TP

https://aws.amazon.com/fr/blogs/big-data/build-a-lake-house-architecture-on-aws/

Sample lakehouse

28

Schneider et al., 2024 https://doi.org/10.1007/s42979-024-02737-0

ECE_5DA04_TP

https://doi.org/10.1007/s42979-024-02737-0

Data mesh
Most recent category of systems, some tractions in industry (Netflix, Paypal,
Amazon…)

Four core principles:

1. Domain ownership: domain (application) specialists decide what data to store, how it
should be structured, described, etc.

29
ECE_5DA04_TP

Data mesh

Four core principles:

1. Domain ownership: domain (application) specialists decide what data to store, how it
should be structured, described, etc. E.g., personnel, financial, marketing…

2. Data as a product: each dataset, original or derived, should :
• Be discoverable
• Be addressable
• Be trustworthy
• Have self-describing semantics and syntax

3. Self-serve data platform: easy for domain teams to add/modify/work on data
4. Federated computational governance across the domain teams + technical

infrastructure

Recent term, durability unclear.
Main emphasis is on organizational, not technical aspects.
Organization is important, too.

30
ECE_5DA04_TP

Cloud computing and
cloud data management

ECE_5DA04_TP 31

Cloud computing

Idea: delegate large-scale storage and large-scale computing to
remote centers

Run by the (only) enterprise using them: private clouds
►Large companies can afford the cost to own and operate a cloud

service: La Poste, Orange, ...

Run by a company who rents out storage and computing services:
commercial clouds
►Main players: Amazon (has basically created the industry),

Google, Microsoft

32
ECE_5DA04_TP

Advantages of cloud computing

Allow companies to focus on their main business
not on IT

Allow scaling the resource usage up and down according to the needs

Examples:

• Shops with more clients as Christmas approaches

• Tax statements, built once a year

• Satellite image data processing company which
needs significant computing resources (only)
when it has an order from a client

33

https://www.wired.com/2015/03/orbital-insight/

ECE_5DA04_TP

https://www.wired.com/2015/03/orbital-insight/

How cloud services work (1/3)
Data storage at scale

Users upload files to be hosted on cloud provider’s servers
Data is replicated for reliability and quick access
The service is paid by the GB and day
►Total cost = sum(file size x file storage time)

Computing

Users typically buy virtual computers (virtual machines, VM)
Service paid by the duration of use of the VM
Each VM is hosted by some physical computer in the cloud
provider's cluster
If a physical machine fails, the VM is recreated elsewhere and the
work restarts

ECE_5DA04_TP
34

How cloud services work (1/3)
Data storage at scale

Users upload files to be hosted on cloud provider’s servers
Data is replicated for reliability and quick access
The service is paid by the GB and day
►Total cost = sum(file size x file storage time)

Computing

Users typically buy virtual computers (virtual machines, VM)
Service paid by the duration of use of the VM
Each VM is hosted by some physical computer in the cloud
provider's cluster
If a physical machine fails, the VM will be recreated elsewhere and
the work will restart

ECE_5DA04_TP
35

The separation of storage and
computing, in the way they

are provided and purchased,
is called disaggregation.

It is a radical departure from the
previous database management
architectures. It is specific to the

cloud environment.

How cloud services work (2/3)

Computing (continued)

There are typically different sizes (capacities) of virtual machines
►E.g., Small (S), Medium (M), Large (L), Extra-Large (XL); nowadays

hundreds of sizes (or instance types)
►The difference is in the computing speed (# of cores and their speed),

memory size, network connectivity...

Fast storage of small-granularity data, typically in memory in the cloud

For: metadata (catalog, user management, ...)
Key-value stores, document stores
Pay per operation (put, get)

Other services

E.g. messaging queues to synchronize different applications

ECE_5DA04_TP
36

How cloud services work (3/3):
cloud computing models
Infrastructure-as-a-service (IaaS)
The vendor provides access to computing resources such as servers,
storage and networking.
Clients use their own platforms and applications within a service provider’s
infrastructure.
They do not host but they develop, deploy and administer in the cloud.

Platform-as-a-service (Paas)
The vendor provides: storage and other computing resources, prebuilt tools
to develop, customize and test their own applications.
Clients do not host and mostly do not administer either.
They still develop and deploy in the cloud.

ECE_5DA04_TP
37

How cloud services work (3/3):
cloud computing models
Software-as-a-service (SaaS)
The vendor provides: storage and other computing resources; software and
applications via a subscription model (or pay-per-use...)

Clients access the applications remotely.
They do not store, host, develop nor administer.

ECE_5DA04_TP
38

Example of Microsoft Azure

ECE_5DA04_TP
39

https://docs.microsoft.com/fr-fr/azure/cloud-adoption-framework/strategy/monitoring-strategy

https://docs.microsoft.com/fr-fr/azure/cloud-adoption-framework/strategy/monitoring-strategy

Cloud services

Fine-granularity
data store

Virtual machines

Queue service

File storage service
Amazon

Scalable Storage
Service (S3)

Google Cloud
Storage

Windows Azure
BLOB Storage

Amazon Elastic
Compute Cloud

(EC2)

Google
Compute Engine

Windows Azure
Virtual

Machines

Amazon
DynamoDB

Google High
Replication
Datastore

Windows Azure
Tables

Amazon Simple
Queue Service

(SQS)

Google Task
Queues

Windows Azure
Queues

Cloud Platform

ECE_5DA04_TP
40

Major vendors still actively publishing new features/tools!

Cloud database services

ECE_5DA04_TP
41

V. Narasayya and S. Chaudhuri (Microsoft). « Cloud Data Services: Workloads, Architectures,
and Multi-tenancy », Foundations and Trends in Data Management, 2021.

Relational database ranking

ECE_5DA04_TP
42https://db-engines.com/en/ranking

Cl
ou

d-
na

tiv
e

sy
st

em
s

https://db-engines.com/en/ranking

Relational database ranking

ECE_5DA04_TP
43https://db-engines.com/en/ranking

Cl
ou

d-
na

tiv
e

sy
st

em
s

Al
so

 o
ffe

re
d

an
 c

lo
ud

 se
rv

ic
es

https://db-engines.com/en/ranking

Cloud and Big Data management

ECE_5DA04_TP
44

https://www.economist.com/business/2020/09/15/how-snowflake-raised-3bn-in-a-record-software-ipo

https://www.economist.com/business/2020/09/15/how-snowflake-raised-3bn-in-a-record-software-ipo

Relational database ranking, December 2024

ECE_5DA04_TP
45

State of the Cloud Computing industry

ECE_5DA04_TP
46

State of the Cloud Computing industry

ECE_5DA04_TP
47

Public cloud application SaaS end-user spending

https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/

https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/

Cloud data management:
Principles and architectures

ECE_5DA04_TP 48

How to build a data management platform in the cloud?

Moving to large-scale distribution

Store (distribute) the data in a
distributed file system

How to split it?
How to provide efficient access to this data?

Process queries in cloud

How to evaluate operators over distributed
data, in a distributed architecture?
How to optimize queries?

49

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)

Recall:
classical

query
processing

in a
database

ECE_5DA04_TP

Distributing a large table

Goal: distribute a table into several fragments (or tablets, splits…) to leverage distributed
storage

When there are many fragments, this horizontal distribution is
also called sharding (shard: small fragment, typically of wood)

Good properties that the distribution could ensure:

q Relatively uniform distribution of data volume across the machines

q Finding easily where each record is stored

50

R=R1 U R2 U … U Rn

ECE_5DA04_TP

Distributing a large table via hashing

Let R be a table sharded into R1 U R2 U … U Rn.

Assume the key for R is a.

Assume available a hash function which, given an input,
returns an output in the 0… 2n-1, for some integer n.

Then, for each tuple r from R:
►Compute h(r.a) = k
►Tuple r will be part of shard number k
►When looking for an R tuple, we know it is on machine

number k=h(a)

Hashing ensures (with high probability) uniform
distribution

Also, it facilitates searching by the key

51
ECE_5DA04_TP

Massively parallel data data management using
Map/Reduce

Cloud platforms provide distributed file systems, in which we can store very
large collections of data.

Popular framework (~2010-…) for processing very large amounts of data stored
on multiple machines, in a massively parallel way: Map-Reduce

Idea:

q Ask users to describe their desired computations by defining a set of
functions

q Implement in a common framework:
q Calling the function on all the data fragments
q Gathering the results
q Intra-node communication, etc.

ECE_5DA04_TP
52

53

Map/Reduce outline

map

map

map

map vk

reduce

reduce

k

mapper

mapper

mapper

mapper

reducer

reducer

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

MergeInput Map
function

Sort Shuffle Reduce
function Output

vkvk

vk vk

vk vk vk vk

vk vk vk vk

vk

vk

vk

vk

k v v v v

vk

vk
vk v

vk
vk
vk
vk

vk v v v

vk
vk
vk

vk v v

ECE_5DA04_TP

Sample queries and their implementation in Map-Reduce

Assume Customer, Order are large, distributed tables

1. SELECT city
FROM customer c
WHERE c.name='Anne'

2. SELECT MONTH(c.start_date), COUNT(*)
FROM customer c
GROUP BY MONTH(c.start_date)

ECE_5DA04_TP
54

3. SELECT c.name, o.total
FROM customer c, order o
WHERE c.id=o.cid

4. SELECT c.name, SUM(o.total)
FROM customer c, order o
WHERE c.id=o.cid
GROUP BY c.name

Making a selection query more efficient

How to reduce the effort involved in reading the data?

q Add header information to each data split, summarizing split attribute
values

q E.g., Split #110 has name in {'Anna’,... 'Bruce’} , or [A*…B*]
q Possible false positives, depending on the values
q Optimization in Hadoop, leading MapReduce implementation: Enhance

the data-read request method of HDFS (Hadoop Distributed File System)
into read(customer, attr1=val1, …, attrn=valn) to avoid reading data that
does not match

1. SELECT city
FROM customer c
WHERE c.name='Anne'

ECE_5DA04_TP

Making a selection query more efficient

How to reduce the effort involved in reading the data?

q On each node, build in-memory index of the split on that node, e.g., on
c.name

q For maximum efficiency, the index should be clustered à the split
should be stored ordered by c.name

q Hadoop typical replication factor is 3 à three indexes are possible!
q Appropriately route queries

Example: c.name, c.age, c.city

1. SELECT city
FROM customer c
WHERE c.name='Anne'

ECE_5DA04_TP

Chosen logical plan

Recall: query processing pipeline in DBMS
SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Chosen physical plan

Chosen physical planExecution engine

57
ECE_5DA04_TP

Goal: query processing pipeline on top of MapReduce

Language parser

58

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management
task specified in

dedicated language

ECE_5DA04_TP

Architecture: a MR program for every operator

59

Data storage: HDFS

1st logical query plan

Query optimizer for MR

Chosen MR-based physical plan

Parallel execution engine
• 1 master
• N slaves

Query (e.g. SQL)

59

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)
Database

management
system

MapReduce
setting

ECE_5DA04_TP

Implementing physical operators on MapReduce

To avoid writing code for each query!

If each operator is a (small) MapReduce program, we can evaluate queries
by composing such small programs

The optimizer can then chose the best MR physical operators and their
orders (just like in the traditional setting)

Translate:

q Unary operators (selection and projection)
q Binary operators (mostly: on equality, i.e. equijoin)
q N-ary operators (complex join expressions)

60
ECE_5DA04_TP

Implementing unary operators on MapReduce

Selection σpred(R):

Map:
foreach t which satisfies pred in the input
partition
►Output (hn(t.toString()), t); // hn fonction de

hash
Reduce:
►Concatenate all the inputs

61

Projection π cols(R):

Map: foreach t
►Output (hn(t), πcols(t))
Reduce:
►Concatenate all the inputs

ECE_5DA04_TP

Recall: basic physical operators for binary joins in a DBMS

Nested loops join:
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS;

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { t ß R.next; put(hash(t.a), t); }
While (!endOf(S)) { t ß S.next;

matchingR = get(hash(S.b));
output(matchingR x t);

}

O(|R|x|S|)
O(|R|+|S|)

O(|R|+|S|)

Assume we need to join R, S on R.a=S.b

Also:
Block nested loops join
Index nested loops join
Hybrid hash join
Hash groups / teams
…

62
ECE_5DA04_TP

Implementing equi-joins on MapReduce (1)

Repartition join (~symetric hash)

Map:
foreach t in R
►Output (t.a , («R», t))
foreach t in S
►Output (t.b, («S», t))

Reduce:

Foreach input key k
►Resk = set of all R tuples on k ×

set of all S tuples on k
►Output Resk

R S
R.a=S.b

63
ECE_5DA04_TP

Implementing equi-joins on MapReduce (1): Repartition join

R(rID, rVal) join(rID = SID) S(sID, sVal)

64

2

ECE_5DA04_TP

Implementing equi-joins on MapReduce (2):
Semijoin-based MapReduce join

65ECE_5DA04_TP

Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join
If |R| << |S|, broadcast R to all nodes!

Example: S is a log data collection (e.g. log table)

R is a reference table e.g. with user names, countries,
age, …

Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.

Reduce: nothing (« map-only join »)

66

R S
R.a=S.b

ECE_5DA04_TP

Implementing equi-joins on MapReduce (4)

Trojan Join [Dittrich 2010]

A Map task is sufficient for the join if relations are already co-partitioned by
the join key

The split of R with a given join key is already next to the split of S with the same
join key
This can be achieved by a MapReduce job similar to repartition join, but which
builds co-partitions at the end

Useful when the joins can be known in advance (e.g. keys – foreign keys)

67

Co-partitioned split

Co-group Co-group
HR DR HS DS HR DR HS DS…

Co-partitioned split

Co-group
HR DR HS DS ……

ECE_5DA04_TP

Implementing binary equi-joins in MapReduce

Algorithm + -
Repartition Join Most general Not always the most

efficient

Semijoin-based Join Efficient when semijoin
is selective (has small
results)

Requires several jobs,
one must first do the
semi-join

Broadcast Join Map-only One table must be very
small

Trojan Join Map-only The relations should be
co-partitioned

68
ECE_5DA04_TP

Implementing n-ary (multiway)
join expressions in MapReduce
R(RID, C) join T(RID, SID, O) join S(SID, L)

« Mega » operator for the whole join expression?...

Three relations, two join attributes (RID and SID)

Split the SIDs into Ns groups and the RIDs in Nr groups. Assume Nr x Ns reducers
available.

Hash T tuples according to a composite key made of the two attributes. Each T
tuple goes to one reducer.

Hash R and S tuples on partial keys (RID, null) and (null, SID)

Distribute R and S tuples to each reducer where the non-null component matches
(potentially multiple times!)

69
ECE_5DA04_TP

Implementing multi-way joins in MR: replicated joins

70

RID=1 SID=1

RID=1 SID=2

RID=2 SID=1

RID=2 SID=2

ECE_5DA04_TP

Particular case of multi-way joins:
star joins on MapReduce

Same join attribute in all relations:
R(x, y) join S(x, z) join T(x, u)

If N reducers are available, it suffices to partition the space of x
values in N

Then co-partition R, S, T à map-only join

71

R(Y, X) S(X, Z,)

T(
U

,
X)

ECE_5DA04_TP

Query optimization for MapReduce

Given a query over relations R1, R2, …, Rn, how to translate it into a MapReduce
program?
q Use one replicated join?

q The space of composite join keys (Att1|Att2|…|Attk) is limited by the number of
reducers à
may shuffle some tuples to many reducers.

q Use n-1 binary joins
q Use n-ary (multiway) joins only

72

What is the full space of alternatives?
How to explore it?

ECE_5DA04_TP

RDF query optimization for MapReduce

73

Language parser

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management
task specified in

dedicated language

How can we manage
large volumes of
Linked Open Data
(RDF) based on
MapReduce?

ECE_5DA04_TP

RDF query optimization for MapReduce

RDF queries need more joins than « equivalent » relational ones

Relational: 2 atoms
Person(id, name, birthdate), Address(pID, street, city, zipcode, country)
RDF: 7 atoms
triple(pID, hasName, ?name), triple(pID, bornOn, ?birthDate), triple(pID,
hasAddress, ?aID), triple(?aID, hasStreet, ?street), triple(?aID, hasCity, ?city),
triple(?aID, hasZip, ?zipCode), triple(?aID, hasCountry, ?country)

SPARQL query optimization is a stress test for MapReduce platforms

74

pid

name

birthdate

aID

street

city

zipcode

country

hasNam
e

hasAddress
hasStreet

hasZip

hasCountry
hasCity

bornOn

ECE_5DA04_TP

Query plans on MapReduce

T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11

Query:

Left deep plan with binary joins:

Height=10

75

SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}

ECE_5DA04_TP

Query plans on MapReduce

Left deep plan with n-ary joins:

Height=7

T3T2T1

T5T4

T7

T6

T10T8

T11

T9

T12

76

SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}

ECE_5DA04_TP

Query plans on MapReduce

Bushy plan with binary joins:

Height=5

T3T2T1 T5T4 T7T6

T11

T8

T9 T10

77

SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}

ECE_5DA04_TP

Query plans on MapReduce

Bushy plan with n-ary joins only at leaves:

Height=4

T3T2T1 T5T4 T7T6

T1
1

T8 T9

T10

78

SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}

ECE_5DA04_TP

Query plans on MapReduce

Bushy plan with n-ary joins:

Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10

79

SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}

ECE_5DA04_TP

Query plans on MapReduce

Each join layer leads to one or more
MR jobs (1 job = 1 map + 1 reduce)

The plan height = the number of
successive jobs

Impacts execution time!

80

Height=10 Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11

ECE_5DA04_TP

How to build flat plans with n-ary joins?

N-ary joins not studied in relational database management, because:
q Fewer joins in all, and thus, fewer star (n-ary) joins
q Limited memory to be shared between few binary joins à little interest

in fitting n-ary joins…

Idea for SPARQL (Basic Graph Pattern) queries:
q Identify cliques = subsets of n >= 2 triples sharing a common variable.

q Pick a clique, use an n-ary join to combine these triples
q Then find another clique in the query thus simplified, and similarly join them,

etc.
q …

qUntil all triples have been joined

81
ECE_5DA04_TP

CliqueSquare algorithm: Variable Graphs

Represent queries and intermediary results

SELECT ?x ?y
WHERE {
T1: ?x takesCourse ?y .
T2: ?x member ?z .
T3: ?w advisor ?x .
T4: ?w name ?u .}

T1 T2

T3

?x

?x

?x

T4

?w

Query Variable graph

Nodes are connected with an edge if they share a variable

82
ECE_5DA04_TP

States

T3T2T1 T5T4 T7T6 T9T8 T10T11

Each node of a graph corresponds to a clique of
nodes of the previous graph.

A join operator corresponds to the "collapsing"
of one clique (triples that all join on the same

variables) into a single node

83

CliqueSquare: optimization with n-ary joins

ECE_5DA04_TP

From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

σ σ σ σ σ σ

π

Ø Reading the triples from HDFS requires a Map Scan (MS) operator

84
ECE_5DA04_TP

From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

Ø Logical selections (σ) are translated to physical selections (F)

85
ECE_5DA04_TP

From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

Ø First level joins are translated to Map side joins (MJ) taking advantage of the
data partitioning (triples stored three times, hashed by subject, property, object)

86
ECE_5DA04_TP

From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

RJ RJ

Ø All subsequent joins are translated to Reduce side joins (RJ)

87
ECE_5DA04_TP

From a MapReduce physical plan to a MapReduce program
(sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Group the physical operators into Map/Reduce tasks and jobs

88
ECE_5DA04_TP

From a MapReduce physical plan to a MapReduce
program (sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Selections (F) and projections (π) belong to the same task as their child operator

89
ECE_5DA04_TP

From a MapReduce physical plan to a MapReduce
program (sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Map joins (MJ) along with all their descendants are executed in the same task

90
ECE_5DA04_TP

From a MapReduce physical plan to a MapReduce
program (sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Any other operator (RJ or MS) is executed in a separate task

91
ECE_5DA04_TP

MapReduce program (jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

JOB 1

Ø Tasks are grouped into jobs in a bottom-up traversal

92

JOB 2

ECE_5DA04_TP

Questions?

93ECE_5DA04_TP

