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Plan

1. Distributed data management: main architectures

2. Cloud computing

3. Data management in the cloud (including graphs)
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From a database to Big Data systems: architectures

3

Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed

main-memory
databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures
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From a database to Big Data systems: data models
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Relational DBMS: 

Schema: set of tables

Denormalize 
the data

JSON
DBMS

XML 
DBMS

Give up on 
a priori
schema

Add semantics
to data

Allow multiple
object types

RDF 
DBMS

Property
 graph 
DBMS

Key-value 
DBMS

Property
 graph + RDF

DBMS

Heterogeneous 
data model DBMS:
mediator, data lake,

data space, data mesh
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Dimensions of Big Data architectures

Data model(s)

• Relations, trees (XML, JSON), graphs (RDF, PGs), nested relations

Heterogeneity (Data Model, Query Language): 

• None, some, a lot

Hardware: 

• Hardware type: from disk to memory
• Scale of distribution: small (~10-20 sites) or large (~10.000 sites) 

Data distribution and replication

• What are the logical relations between distributed data collections? 

Interoperability and control:

• Who decides: data structure, data publication, data placement
• Who does what when processing queries or updates

5
ECE_5DA04_TP 



Distributed 
data management architectures
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Fundamental operations: Distribution and replication

Distribution: splitting a dataset, 
e.g., a database, or a relation, 
among two or more distributed
nodes

To scale up across more hardware

To parallelize computations
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Replication: copying a dataset, e.g., a 
database, or a relation on one or more 
sites.

To ensure durability even in the face of 
hardware (storage) destruction
To increase availability during a 
software crash at one site
To increase speed for queries that run 
on a replica which is close to the query
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Big Data management architectures

1. Distributed databases (since 1970)

2. Data warehouses (since 1970)

3. Data integration systems (since 1990s)

4. Peer-to-peer databases (since 2000)

5. Data lakes (since 2010), lakehouses (since 2020s)

6. Data mesh (since 2020s)

7. Cloud databases (since 2010s)

8
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Distributed databases

Oldest distributed architecture ('70s): IBM System R*

Illustrate/introduce the main priciples

Data is relational (tables).

Data is distributed among many nodes (sites, peers...)

Data catalog: information on which data is stored where
►Catalog stored at a master/central server.
►E.g., « Paris sales are stored in Paris », « Lyon sales are stored in Paris », « Client data 

is stored in London », etc.

Queries are distributed (may come from any site)

First analyzed through catalog

Query processing is distributed

Operators may run on different sites à network transfer

9
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Traditional distributed relational databases (since 1970)

Server DB1@site1: R1(a,b), S1(a,c)

Server DB2@site2: R2(a,b), S2(a,c), 

Server DB3@site3: R3(a,b), S3(a,c) defined as: 

select * from DB1.S1 union all 
select * from DB2.S2 union all 
select R1.a as a, R2.b as c 

from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a 

DB3@site3 decides what to import from site1, site2 (« hard links »)

Site1, site2 are independent servers

10
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Query evaluation in distributed databases: 
query unfolding

11

DB1: R1(a,b), S1(a,c)

DB2: R2(a,b), S2(a,c) 

DB3: R3(a,b), S3(a,c) defined as: 

select * from S1 union all 
select * from S2 union all 
select r1.a as a, r2.b as c 
from DB1.R1 r1, DB2.R2 r2
where r1.a=r2.a 

Query on  DB3: 

select a
from S3
where a = 3;

The query is formulated on S3, 
but there is no actual data there!
• The query is reformulated (or 

unfolded) based on the 
definition of S3

In classical DBMSs, a query over a view is also unfolded (demo) 
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How is a query unfolded?

Based on its logical algebra translation
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Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4} 16 plans!

R@s1 S@s2 T@s3 U@s4

q@s5

?

? ?

Plan pruning criteria if all the sites and network 
connections have equal performance:
• Ship the smaller collection

R@s1 T@s3

S@s2

q@s4
One choice:

@s1

@s1

13
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Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4
One choice:

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network 
connections have equal performance:

• Ship the smaller collection
• Transfer to join partner or the query site

@s1

@s2

14
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Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5

R@s1 S@s2

T@s3

R@s1 T@s3

S@s2?

?

q@s4

R@s1 S@s2

T@s3{s1, s2, s3, s4}

q@s4

{s1, s2, s3, s4}

q@s4

R@s1 S@s2 T@s3 U@s4

q@s5

@s5

@s1 @s4

Plan pruning criteria if all the sites and network 
connections have equal performance:

• Ship the smaller collection.
• Transfer to join partner or the query site

This plan illustrates total effort != response time

@s1

@s2

15
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Distributed query optimization technique: semijoin reducers

R join S = (R semijoin S) join S

Useful in distributed settings to reduce transfers: if the distinct S.b values 
are smaller than the non-joining R tuples
Example: 1.000.000 tuples in R, 1.000.000 tuples in S, 900.000 distinct 
values of R.a, 10 distinct values of S.b

16

R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more 
exactly:
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Distributed query optimization technique: semijoin reducers

R join S = (R semijoin S) join S

Useful in distributed settings to reduce transfers: if the distinct S.b values 
are smaller than the non-joining R tuples
Symetrical alternative: R join S = R join (S semijoin R)
This gives one more alternative in every join à search space explosion
Heuristics [Stocker, Kossmann et al., ICDE 2001] 
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R S
R.a=S.b S

R.a=S.b

R S

S
R.a=S.b

R d(S.b)

Or, more 
exactly:
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Data warehouse

A data warehouse is a large database with a single consolidated schema. 
It is built within one organization with strong control (or a tight collaboration).
Typically, a warehouse schema contains:
• A very large table,  called fact table. 

Each fact is characterized by several
dimensions.

• A set of small(er) dimension tables
which describe dimension values.

• A dimension value may be shared by
many facts à avoid redundancy in 
the fact table.  

Usually called a star schema. 
Data from many sources can go through
Extract-Transform-Load (ETL) processes
to feed the DW. 

18
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Data warehouse
A data warehouse is a large database with a single consolidated schema. 
Further splitting the dimension tables leads to a snowflake schema. 

19
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Data integration systems (aka mediation systems)

A number of databases (“data sources”), independently built and operated by 
independent organizations, must be used together
• E.g., providers of goods or services that sell something together via a Web site
• E-commerce: buy P from S1 or from S2

• Travel: buy a trip = hotel + restaurant + rental car from S1 and S2 and S3
• E.g., large scientific studies where different labs gather separate experiment data for a 

joint study
• Health: patient cohorts followed in separate hospitals

• Climate: measures of ocean water, resp. air temperature and wind

20
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Data integration systems (aka mediation systems)

A number of databases (“data sources”), independently built and operated by 
independent organizations, must be used together
Each data source has its own schema

The data integration system shows a single schema to users/applications, hiding the 
complexity of: different schema, possibly distributed databases… 

No data actually follows the integrated schema!

Mappings (logical formulae) relate the source schemas to the integrated (or mediator) 
schema.

21

Mediator data model

Source 1 
schema

Source n 
schema…

Mediator
schema

Source n 
data model

Query
Q

Source 1 
data model

Wrapper Wrapper
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Peer-to-peer databases

Decentralized, highly distributed, symetric architectures

A peer (or node) may publish (share) some data, independently from others.
While the peer is part of the P2P network, 
other peers can query its data.
To enable other peers to find the data, need to 
advertise
• Propagate to other nodes information about 

each node’s data
P2P networks are dynamic (peers may join or leave); peer churn 
Data must be re-advertised to reflect
• Changes in the data
• Changes in the peer network

22
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Data lakes

Data files and/or databases accumulate within large organizations
• E.g., Open Data from a large city, a region, or a country: administration and 

commerces, restaurants, census, school information…
• E.g., sales data within a company: online sale logs, advertisement campaigns, 

market forecasts, consolidated sale numbers… 
• E.g., all weather data from a climate studies lab

Large numbers of files (1000s); large or small  
Heterogeneous data models; often CSV, TSV, .XLS, … Documents also possible.
No single schema: too hard or impractical to design, also because of lack of 
centralized application focus or control.

23
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Data lakes

Data files and/or databases accumulate within large organizations
Large numbers of files (1000s); large or small  
Heterogeneous data models; often CSV, TSV, .XLS, … Documents also possible.
No single schema: too hard or impractical to design, also because of lack of 
centralized application focus or control.

INGEST: into large-scale, possibly
cloud-hosted storage, for massively parallel
processing (see next)
BLEND: combine two or more datasets

BLEND and TRANSFORM are reminiscent of ETL (Extract, Transform, Load) in Data 
Warehouses

24
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How to exploit a data lake?

Questions to address:

1. Dataset search: find a dataset by keyword search, format, date, … 
2. Dataset annotation: attach ontology concepts to a dataset

3. Find datasets compatible with this one: 
• Same-type, same-meaning attribute(s) à They may join. 

Difficulty: different attribute names, different data types… 

• Same schema à They may be unioned. 
• Share some attributes à They may be joined and/or their projections may be unioned, 

etc.
The datasets understood sufficiently well (« clean tables ») may be moved from the lake to a 
warehouse

Data lake without proper analysis means: « data swamp »

25
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Data lakehouse
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https://www.databricks.com/glossary/data-lakehouse 

A more recent brand of systems aiming to provide data warehouse-style 
processing in a lake-style environment
Metadata: file names, descriptions, tags… 
Governance: access rights, predefined workflows for some data processes 

https://www.databricks.com/glossary/data-lakehouse


Data lakehouse
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A more recent brand of systems aiming to provide data warehouse-style 
processing in a lake-style environment
OLTP: online transaction processing    CRM: customer relationship management
ERP: Enterprise Resource Planning (HR, manufacturing, supply chain, finance, accounting; generic)
LOB: Line of Business (specific to the company)

https://aws.amazon.com/fr/blogs/big-data/build-a-lake-house-architecture-on-aws/
ECE_5DA04_TP 
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Sample lakehouse

28

Schneider et al., 2024 https://doi.org/10.1007/s42979-024-02737-0
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Data mesh
Most recent category of systems, some tractions in industry (Netflix, Paypal, 
Amazon…)

Four core principles: 

1. Domain ownership: domain (application) specialists decide what data to store, how it 
should be structured, described, etc. 

29
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Data mesh

Four core principles: 

1. Domain ownership: domain (application) specialists decide what data to store, how it 
should be structured, described, etc. E.g., personnel, financial, marketing… 

2. Data as a product: each dataset, original or derived, should : 
• Be discoverable
• Be addressable
• Be trustworthy
• Have self-describing semantics and syntax

3. Self-serve data platform: easy for domain teams to add/modify/work on data
4. Federated computational governance across the domain teams + technical 

infrastructure

Recent term, durability unclear. 
Main emphasis is on organizational, not technical aspects. 
Organization is important, too. 

30
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Cloud computing and 
cloud data management

ECE_5DA04_TP 31



Cloud computing

Idea: delegate large-scale storage and large-scale computing to 
remote centers

Run by the (only) enterprise using them: private clouds
►Large companies can afford the cost to own and operate a cloud 

service: La Poste, Orange, ...

Run by a company who rents out storage and computing services: 
commercial clouds
►Main players: Amazon (has basically created the industry), 

Google, Microsoft

32
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Advantages of cloud computing

Allow companies to focus on their main business 
not on IT

Allow scaling the resource usage up and down according to the needs

Examples: 

• Shops with more clients as Christmas approaches

• Tax statements, built once a year

• Satellite image data processing company which
needs significant computing resources (only) 
when it has  an order from a client

33

https://www.wired.com/2015/03/orbital-insight/
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How cloud services work (1/3)
Data storage at scale

Users upload files to be hosted on cloud provider’s servers
Data is replicated for reliability and quick access
The service is paid by the GB and day
►Total cost = sum(file size x file storage time)

Computing

Users typically buy virtual computers (virtual machines, VM)
Service paid by the duration of use of the VM
Each VM is hosted by some physical computer in the cloud 
provider's cluster
If a physical machine fails, the VM is recreated elsewhere and the 
work restarts

ECE_5DA04_TP 
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How cloud services work (1/3)
Data storage at scale

Users upload files to be hosted on cloud provider’s servers
Data is replicated for reliability and quick access
The service is paid by the GB and day
►Total cost = sum(file size x file storage time)

Computing

Users typically buy virtual computers (virtual machines, VM)
Service paid by the duration of use of the VM
Each VM is hosted by some physical computer in the cloud 
provider's cluster
If a physical machine fails, the VM will be recreated elsewhere and 
the work will restart

ECE_5DA04_TP 
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The separation of storage and 
computing, in the way they

are provided and purchased, 
is called disaggregation.

It is a radical departure from the 
previous database management
architectures. It is specific to the 

cloud environment.



How cloud services work (2/3)

Computing (continued)

There are typically different sizes (capacities) of virtual machines 
►E.g., Small (S), Medium (M), Large (L), Extra-Large (XL); nowadays

hundreds of sizes (or instance types)
►The difference is in the computing speed (# of cores and their speed), 

memory size, network connectivity...

Fast storage of small-granularity data, typically in memory in the cloud

For: metadata (catalog, user management, ...)
Key-value stores, document stores
Pay per operation (put, get)

Other services

E.g. messaging queues to synchronize different applications

ECE_5DA04_TP 
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How cloud services work (3/3): 
cloud computing models
Infrastructure-as-a-service (IaaS)
The vendor provides access to computing resources such as servers, 
storage and networking. 
Clients use their own platforms and applications within a service provider’s
infrastructure.
They do not host but they develop, deploy and administer in the cloud. 

Platform-as-a-service (Paas)
The vendor provides: storage and other computing resources, prebuilt tools
to develop, customize and test their own applications.
Clients do not host and mostly do not administer either. 
They still develop and deploy in the cloud.

ECE_5DA04_TP 
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How cloud services work (3/3):
cloud computing models
Software-as-a-service (SaaS)
The vendor provides: storage and other computing resources; software and 
applications via a subscription model (or pay-per-use...)

Clients access the applications remotely. 
They do not store, host, develop nor administer.

ECE_5DA04_TP 
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Example of Microsoft Azure

ECE_5DA04_TP 
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https://docs.microsoft.com/fr-fr/azure/cloud-adoption-framework/strategy/monitoring-strategy

https://docs.microsoft.com/fr-fr/azure/cloud-adoption-framework/strategy/monitoring-strategy


Cloud services

Fine-granularity
data store

Virtual machines

Queue service

File storage service
Amazon 

Scalable Storage 
Service (S3)

Google Cloud 
Storage

Windows Azure 
BLOB Storage

Amazon Elastic 
Compute Cloud 

(EC2)

Google 
Compute Engine

Windows Azure 
Virtual 

Machines

Amazon 
DynamoDB

Google High 
Replication
Datastore

Windows Azure 
Tables

Amazon Simple 
Queue Service 

(SQS)

Google Task 
Queues

Windows Azure 
Queues

Cloud Platform
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Major vendors still actively publishing new features/tools!



Cloud database services
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V. Narasayya and S. Chaudhuri (Microsoft). « Cloud Data Services: Workloads, Architectures, 
and Multi-tenancy »,   Foundations and Trends in Data Management, 2021. 



Relational database ranking
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Relational database ranking
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Cloud and Big Data management
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https://www.economist.com/business/2020/09/15/how-snowflake-raised-3bn-in-a-record-software-ipo

https://www.economist.com/business/2020/09/15/how-snowflake-raised-3bn-in-a-record-software-ipo


Relational database ranking, December 2024
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State of the Cloud Computing industry
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State of the Cloud Computing industry
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Public cloud application SaaS end-user spending

https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/

https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/


Cloud data management: 
Principles and architectures
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How to build a data management platform in the cloud? 

Moving to large-scale distribution

Store (distribute) the data in a 
distributed file system

How to split it?
How to provide efficient access to this data? 

Process queries in cloud

How to evaluate operators over distributed
data, in a distributed architecture?
How to optimize queries? 

49

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)

Recall: 
classical

query
processing

in a 
database
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Distributing a large table

Goal: distribute a table into several fragments (or tablets, splits…) to leverage distributed
storage

When there are many fragments, this horizontal distribution is
also called sharding (shard: small fragment, typically of wood)

Good properties that the distribution could ensure:

q Relatively uniform distribution of data volume across the machines

q Finding easily where each record is stored

50

R=R1 U R2 U … U Rn
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Distributing a large table via hashing

Let R be a table sharded into R1 U  R2 U … U Rn.

Assume the key for R is a. 

Assume available a hash function which, given an input,  
returns an output in the 0… 2n-1, for some integer n. 

Then, for each tuple r from R: 
►Compute h(r.a) = k
►Tuple r will be part of shard number k
►When looking for an R tuple, we know it is on machine 

number k=h(a)

Hashing ensures (with high probability) uniform
distribution

Also, it facilitates searching by the key

51
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Massively parallel data data management using 
Map/Reduce

Cloud platforms provide distributed file systems, in which we can store very 
large collections of data. 

Popular framework (~2010-…) for processing very large amounts of data stored 
on multiple machines, in a massively parallel way: Map-Reduce

Idea: 

q Ask users to describe their desired computations by defining a set of 
functions

q Implement in a common framework:
q Calling the function on all the data fragments
q Gathering the results
q Intra-node communication, etc. 

ECE_5DA04_TP 
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Map/Reduce outline

map

map

map

map vk

reduce

reduce

k

mapper

mapper

mapper

mapper

reducer

reducer

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

sorted key-value pairs

MergeInput Map
function

Sort Shuffle Reduce
function Output

vkvk

vk vk

vk vk vk vk

vk vk vk vk

vk

vk

vk

vk

k v v v v

vk

vk
vk v

vk
vk
vk
vk

vk v v v

vk
vk
vk

vk v v
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Sample queries and their implementation in Map-Reduce

Assume Customer, Order are large, distributed tables

1. SELECT city
FROM customer c
WHERE c.name='Anne'

2. SELECT MONTH(c.start_date), COUNT(*) 
FROM customer c
GROUP BY MONTH(c.start_date) 

ECE_5DA04_TP 
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3. SELECT c.name, o.total
FROM customer c, order o 
WHERE c.id=o.cid

4. SELECT c.name, SUM(o.total) 
FROM customer c, order o 
WHERE c.id=o.cid
GROUP BY c.name



Making a selection query more efficient

How to reduce the effort involved in reading the data? 

q Add header information to each data split, summarizing split attribute 
values

q E.g., Split #110 has name in {'Anna’,... 'Bruce’} , or [A*…B*]
q Possible false positives, depending on the values
q Optimization in Hadoop, leading MapReduce implementation: Enhance 

the data-read request method of HDFS (Hadoop Distributed File System) 
into read(customer, attr1=val1, …, attrn=valn) to avoid reading data that 
does not match

1. SELECT city
FROM customer c
WHERE c.name='Anne'
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Making a selection query more efficient

How to reduce the effort involved in reading the data? 

q On each node, build in-memory index of the split on that node, e.g., on 
c.name

q For maximum efficiency, the index should be clustered à the split 
should be stored ordered by c.name

q Hadoop typical replication factor is 3 à three indexes are possible!
q Appropriately route queries

Example: c.name, c.age, c.city

1. SELECT city
FROM customer c
WHERE c.name='Anne'
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Chosen logical plan

Recall: query processing pipeline in DBMS
SQL

Results

select driver.name
from driver, car
where
driver.ID=car.driver
and 
car.license=‘123AB’

name ID

Julie 1

Damien 2

driver license

1 ‘123AB’

2 ‘171KZ’

Driver Car

select… from driver, car, accident where… Query language

1st logical query plan

Query optimizer

Chosen physical plan

Chosen physical planExecution engine

57
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Goal: query processing pipeline on top of MapReduce

Language parser

58

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management 
task specified in 

dedicated language
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Architecture: a MR program for every operator

59

Data storage: HDFS

1st logical query plan

Query optimizer for MR

Chosen MR-based physical plan

Parallel execution engine
• 1 master
• N slaves

Query (e.g. SQL)

59

Data storage (e.g. relational)

1st logical query plan

Query optimizer

Chosen physical plan

Execution engine

Query (e.g. SQL)
Database

management 
system

MapReduce
setting
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Implementing physical operators on MapReduce

To avoid writing code for each query!

If each operator is a (small) MapReduce program, we can evaluate queries
by composing such small programs

The optimizer can then chose the best MR physical operators and their
orders (just like in the traditional setting)

Translate:

q Unary operators ( selection and projection )
q Binary operators (mostly:        on equality, i.e. equijoin)
q N-ary operators (complex join expressions)
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Implementing unary operators on MapReduce

Selection σpred(R):

Map: 
foreach t which satisfies pred in the input 
partition
►Output (hn(t.toString()), t); // hn fonction de 

hash
Reduce:
►Concatenate all the inputs
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Projection π cols(R):

Map: foreach t
►Output (hn(t), πcols(t))
Reduce: 
►Concatenate all the inputs
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Recall: basic physical operators for binary joins in a DBMS

Nested loops join: 
foreach t1 in R{

foreach t2 in S {
if t1.a = t2.b then output (t1 || t2)  

}
}

Merge join: // requires sorted inputs
repeat{
while (!aligned) { advance R or S };
while (aligned) { copy R into topR, S into topS };
output topR x topS; 

} until (endOf(R) or endOf(S));

Hash join: // builds a hash table in memory
While (!endOf(R)) { t ß R.next; put(hash(t.a), t); }
While (!endOf(S)) { t ß S.next; 

matchingR = get(hash(S.b));
output(matchingR x t);

}

O(|R|x|S|)
O(|R|+|S|)

O(|R|+|S|)

Assume we need to join R, S on R.a=S.b

Also: 
Block nested loops join
Index nested loops join
Hybrid hash join
Hash groups / teams
…  
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Implementing equi-joins on MapReduce (1)

Repartition join (~symetric hash)

Map: 
foreach t in R
►Output (t.a , («R», t))
foreach t in S 
►Output (t.b, («S», t)) 

Reduce:

Foreach input key k
►Resk = set of all R tuples on k ×

set of all S tuples on k
►Output Resk

R S
R.a=S.b
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Implementing equi-joins on MapReduce (1): Repartition join

R(rID, rVal) join(rID = SID) S(sID, sVal)
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2
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Implementing equi-joins on MapReduce (2): 
Semijoin-based MapReduce join
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Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join
If |R| << |S|, broadcast R to all nodes!

Example: S is a log data collection (e.g. log table)

R is a reference table e.g. with user names, countries, 
age, …

Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.

Reduce: nothing (« map-only join »)
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R S
R.a=S.b
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Implementing equi-joins on MapReduce (4)

Trojan Join [Dittrich 2010]

A Map task is sufficient for the join if relations are already co-partitioned by 
the join key

The split of R with a given join key is already next to the split of S with the same
join key 
This can be achieved by a MapReduce job similar to repartition join, but which
builds co-partitions at the end

Useful when the joins can be known in advance (e.g. keys – foreign keys)
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Co-partitioned split

Co-group Co-group
HR DR HS DS HR DR HS DS…

Co-partitioned split

Co-group
HR DR HS DS ……
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Implementing binary equi-joins in MapReduce

Algorithm + -
Repartition Join Most general Not always the most

efficient

Semijoin-based Join Efficient when semijoin
is selective (has small
results)

Requires several jobs, 
one must first do the 
semi-join

Broadcast Join Map-only One table must be very
small

Trojan Join Map-only The relations should be
co-partitioned
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Implementing n-ary (multiway) 
join expressions in MapReduce
R(RID, C) join T(RID, SID, O) join S(SID, L)

« Mega » operator for the whole join expression?...

Three relations, two join attributes (RID and SID)

Split the SIDs into Ns groups and the RIDs in Nr groups. Assume Nr x Ns reducers
available. 

Hash T tuples according to a composite key made of the two attributes. Each T
tuple goes to one reducer.

Hash R and S tuples on partial keys (RID, null) and (null, SID) 

Distribute R and S tuples to each reducer where the non-null component matches 
(potentially multiple times!)

69
ECE_5DA04_TP 



Implementing multi-way joins in MR: replicated joins
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RID=1 SID=1

RID=1 SID=2

RID=2 SID=1

RID=2 SID=2
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Particular case of multi-way joins: 
star joins on MapReduce

Same join attribute in all relations: 
R(x, y) join S(x, z) join T(x, u)

If N reducers are available, it suffices to partition the space of x 
values in N 

Then co-partition R, S, T à map-only join
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R(Y,  X) S(X, Z,)

T(
U

,  
X)
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Query optimization for MapReduce

Given a query over relations R1, R2, …, Rn, how to translate it into a MapReduce
program?
q Use one replicated join?

q The space of composite join keys (Att1|Att2|…|Attk) is limited by the number of 
reducers à
may shuffle some tuples to many reducers. 

q Use n-1 binary joins
q Use n-ary (multiway) joins only
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What is the full space of alternatives? 
How to explore it? 
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RDF query optimization for MapReduce

73

Language parser

Hadoop
MapReduce

Results

Possibly algebraic optimizer

MapReduce compiler and optimizer

Data management 
task specified in 

dedicated language

How can we manage 
large volumes of 
Linked Open Data 
(RDF) based on 
MapReduce?
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RDF query optimization for MapReduce

RDF queries need more joins than « equivalent » relational ones

Relational: 2 atoms
Person(id, name, birthdate), Address(pID, street, city, zipcode, country)
RDF: 7 atoms
triple(pID, hasName, ?name), triple(pID, bornOn, ?birthDate), triple(pID, 
hasAddress, ?aID), triple(?aID, hasStreet, ?street), triple(?aID, hasCity, ?city), 
triple(?aID, hasZip, ?zipCode), triple(?aID, hasCountry, ?country)

SPARQL query optimization is a stress test for MapReduce platforms
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pid

name

birthdate

aID

street

city

zipcode

country

hasNam
e

hasAddress
hasStreet

hasZip

hasCountry
hasCity

bornOn
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Query plans on MapReduce

T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11

Query:

Left deep plan with binary joins:

Height=10
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SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}
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Query plans on MapReduce

Left deep plan with n-ary joins:

Height=7

T3T2T1

T5T4

T7

T6

T10T8

T11

T9

T12
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SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}
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Query plans on MapReduce

Bushy plan with binary joins:

Height=5

T3T2T1 T5T4 T7T6

T11

T8

T9 T10
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SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}
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Query plans on MapReduce

Bushy plan with n-ary joins only at leaves:

Height=4

T3T2T1 T5T4 T7T6

T1
1

T8 T9

T10
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SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}
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Query plans on MapReduce

Bushy plan with n-ary joins:

Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10
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SELECT ?x ?y
WHERE {
T1: ?w :prop1 <C1> .
T2: ?w :prop2 <C2> .
T3: ?w :prop3 ?x .
T4: ?x :prop4 <C3> .
T5: ?x :prop5 <C4> .
T6: ?x :prop6 ?z .
T7: ?z :prop7 ?f .
T8: ?f :prop8 ?y .
T9: ?f :prop9 ?h .
T10: <C5> :prop10 ?h .
T11: ?y :prop11 <C6> .}
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Query plans on MapReduce

Each join layer leads to one or more 
MR jobs (1 job = 1 map + 1 reduce)

The plan height = the number of 
successive jobs 

Impacts execution time!
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Height=10 Height=3

T3T2T1 T5T4 T7T6 T9T8 T11T10T3

T2T1

T4

T5

T6

T7

T8

T9

T10

T11
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How to build flat plans with n-ary joins?

N-ary joins not studied in relational database management, because:
q Fewer joins in all, and thus, fewer star (n-ary) joins
q Limited memory to be shared between few binary joins à little interest 

in fitting n-ary joins… 

Idea for SPARQL (Basic Graph Pattern) queries: 
q Identify cliques = subsets of n >= 2 triples sharing a common variable.

q Pick a clique, use an n-ary join to combine these triples
q Then find another clique in the query thus simplified, and similarly join them, 

etc.
q …

qUntil all triples have been joined
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CliqueSquare algorithm: Variable Graphs

Represent queries and intermediary results

SELECT ?x ?y
WHERE {
T1: ?x takesCourse ?y .
T2: ?x member ?z .
T3: ?w advisor ?x .
T4: ?w name ?u .}

T1 T2

T3

?x

?x

?x

T4

?w

Query Variable graph

Nodes are connected with an edge if they share a variable
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States

T3T2T1 T5T4 T7T6 T9T8 T10T11

Each node of a graph corresponds to a clique of 
nodes of the previous graph. 

A join operator corresponds to the "collapsing" 
of one clique (triples that all join on the same 

variables) into a single node
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CliqueSquare: optimization with n-ary joins
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From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

σ σ σ σ σ σ

π

Ø Reading the triples from HDFS requires a Map Scan (MS) operator
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From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

Ø Logical selections (σ) are translated to physical selections (F)
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From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

Ø First level joins are translated to Map side joins (MJ) taking advantage of the 
data partitioning (triples stored three times, hashed by subject, property, object)
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From the logical plan to a MapReduce physical plan

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

π

MJ MJ MJ MJ MJ

RJ RJ

Ø All subsequent joins are translated to Reduce side joins (RJ)
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From a MapReduce physical plan to a MapReduce program 
(sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Group the physical operators into Map/Reduce tasks and jobs

88
ECE_5DA04_TP 



From a MapReduce physical plan to a MapReduce 
program (sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Selections (F) and projections (π) belong to the same task as their child operator
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From a MapReduce physical plan to a MapReduce 
program (sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Map joins (MJ) along with all their descendants are executed in the same task
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From a MapReduce physical plan to a MapReduce 
program (sequence of jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

Ø Any other operator (RJ or MS) is executed in a separate task
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MapReduce program (jobs)

MS
[T3]

MS
[T2]

MS
[T1]

MS
[T5]

MS
[T4]

MS
[T7]

MS
[T6]

MS
[T9]

MS
[T8]

MS
[T10]

MS
[T11]

F F F F F F

MJ MJ MJ MJ MJ

RJ RJ

MS MS

RJ

π

JOB 1

Ø Tasks are grouped into jobs in a bottom-up traversal
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JOB 2
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Questions?
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