ARCHITECTURES FOR

BIG DATA MANAGEMENT
(INCL. CLOUD)

loana Manolescu
Inria and Ecole polytechnique

https://pages.saclay.inria.fr/ioana.manolescu
loana.manolescu@inria.fr

mailto:Ioana.manolescu@inria.fr
mailto:Ioana.manolescu@inria.fr

r

Plan

1. Distributed data management: main architectures
2. Cloud computing

3. Data management in the cloud (including graphs)

ECE_5DA04_TP

b

ca—

r

From a database to Big Data systems: architectures

Main-memory

databases \

{L

Distributed
' main-memory

databases

Data stored
in memory

A

Relational DBMS:
i. Data stored on disk
ii. Single server
iii. Company server

Distribute
the data
across many
machines

Distributed
databases

Disaggregated
architectures

/

Cloud Databases
(or data services)

Database

— hosted and operated

by commercial provider

Distributed
Mediator transactions
systems
P2P
systems

ECE 5DA04 TP

From a database to Big Data systems: data models

Heterogeneous
JSON XML data model DBMS:
DBMS DBMS mediator, data lake,
Key-value data space, data mesh
DBMS 4
RDF
: DBMS
Denormalize
Property
the data /
4 Give up on graph + RDF
o Add semantics DBMS
a priori to data :
schema
Relational DBMS: P t
Allow multiple ;Org; Y
h : f tabl '
Schema: set of tables object types DBMS

lreeia— 4
ECE 5DA04 TP

IIII

Dimensions of Big Data architectures

Data model(s)
e Relations, trees (XML, JSON), graphs (RDF, PGs), nested relations
Heterogeneity (Data Model, Query Language):

* None, some, a lot

Hardware:

 Hardware type: from disk to memory
e Scale of distribution: small (~10-20 sites) or large (~10.000 sites)

Data distribution and replication
 What are the logical relations between distributed data collections?

Interoperability and control:

 Who decides: data structure, data publication, data placement
* Who does what when processing queries or updates

ECE 5DA04 TP

Distributed
data management architectures

ECE_5DA04_TP

lreeia—

r

Fundamental operations: Distribution and replication

Distribution: splitting a dataset,
e.g., a database, or a relation,
among two or more distributed

nodes

To scale up across more hardware

To parallelize computations

R
HEE

v b W N B

R1

HEE R

1
2
3

|
4

5
6

Replication: copying a dataset, e.g., a
database, or a relation on one or more
sites.

To ensure durability even in the face of
hardware (storage) destruction

To increase availability during a
software crash at one site

To increase speed for queries that run
on a replica which is close to the query

Rl 17
R NN
1... Rl’ 1 Rl)n
HEl. EEN
1 3 1
2 2

ECE 5DA04 TP

3 3 7

Big Data management architectures

1. Distributed databases (since 1970)

2. Data warehouses (since 1970)

3. Data integration systems (since 1990s)

4. Peer-to-peer databases (since 2000)

5. Data lakes (since 2010), lakehouses (since 2020s)

6. Data mesh (since 2020s)

7. Cloud databases (since 2010s)

ECE 5DA04 TP

b

ca—

rDistributed databases

Oldest distributed architecture ('70s): IBM System R*
lllustrate/introduce the main priciples
Data is relational (tables).

Data is distributed among many nodes (sites, peers...)

Data catalog: information on which data is stored where
» Catalog stored at a master/central server.

» E.g., « Paris sales are stored in Paris », « Lyon sales are stored in Paris », « Client data
is stored in London », etc.

Queries are distributed (may come from any site)
First analyzed through catalog

Query processing is distributed

Operators may run on different sites = network transfer

ECE 5DA04 TP

IIII

Traditional distributed relational databases (since 1970)

Server DB1@sitel: R1(a,b), S1(a,c)
Server DB2@site2: R2(a,b), S2(a,c),
Server DB3@site3: R3(a,b), S3(a,c) defined as:

select * from DB1.S1 union all
select * from DB&.S2 union all
select Rl.aasa, R2.basc
from DB1.R1 rl, DB2.R2 r2
where rl.a=ra.a

DB3@site3 decides what to import from sitel, site2 (« hard links »)

Sitel, site2 are independent servers

ca—
ECE 5DA04 TP

10

r e e .
Query evaluation in distributed databases:

query unfolding

DB1: R1(a,b), S1(a,c) Query on DB3:
DB2: R2(a,b), S2(a,c) select a
from S3

DB3: R3(a,b), S3(a,c) defined as:
where a = 3;

select * from S1 union all
select * from S2 union all The query is formulated on S3,

selectrl.aasa,r2.basc but there is no actual data there!
from DB1.R1r1, DB2.R2 r2

where rl.a=r2.a The query is reformulated (or

unfolded) based on the
definition of S3

In classical DBMSs, a query over a view is also unfolded (demo)

lreeia— 11
ECE 5DA04 TP

IIII

How is a query unfolded?

Based on its logical algebra translation

ECE 5DA04 TP

ca—

12

Distributed query optimization

Example 1: R@s1, S@s2, T@s3, q@s4

q@s4 q@s4 q@s4
‘ One choice:

|
? l><]) {S1, 52, s3, s4}l><] 16 plans! @51[><]
VAN
? [><] T@s3 {s1,s2,s3, s4}|><] T@s3 @s1 S@s2

R@Sl S@s2 R@sl S@s2 R@sl/}@SB

Example 2: R@s1, S@s2, T@s3, U@s4, q@s5
q@s5

Plan pruning criteria if all the sites and network
? l><] connections have equal performance:

/\ * Ship the smaller collection
?
D

7R@sl S@s2 T@s3 U@s4 .

ECE 5DA04 TP

ca—

Distributed query optimization

Example 1: R@sl1, S@s2, T@s3, g@s4

q@s4 q@s4 q@s4
‘ One choice:

? l>‘<]) {51, 52, S3, s4}l><] @52[><]
? [><] T@s3 {s1, s2, s3, s4}|><] T@s3 @sll><] S@s2

R@sl S@s2 R@sl S@s2 R@sl T@s3
Example 2: R@sl1, S@s2, T@s3, U@s4, q@s5
q@s5
Plan pruning criteria if all the sites and network
@55l><] connections have equal performance:
/\ Ship the smaller collection
@ Sll><] @s4 Transfer to join partner or the query site

R@sl S@s2 T@@%

lreeia—

ECE 5DA04 TP

14

Distributed query optimization

Example 1: R@sl1, S@s2, T@s3, g@s4

q@s4 qcf?s4 q@is4
? l><] s {51, 52,53, s4}l><] @52%
? [><] T@s3 {s1,s2, s3, s4}|><] T@s3 @s1 S@s2
R@Sl S@s2 R@sl S@s2 R@sl/}@s3
Example 2: R@sl1, S@s2, T@s3, U@s4, q@s5
q@s5 Plan pruning criteria if all the sites and network
connections have equal performance:
@ 55l><] Ship the smaller collection.
/\ Transfer to join partner or the query site
@s1 @s4
l><] % This plan illustrates total effort != response time
R@sl S@s2 T@s3 U@s4 Lons .

ECE 5DA04 TP

Distributed query optimization technique: semijoin reducers

R join S = (R semijoin S) join S

R.a=S.b R.a=S.b
[><] > N S Or, more ZN S
R}?b < exactly: K
R S
R s R” 5(S.b)

Useful in distributed settings to reduce transfers: if the distinct S.b values
are smaller than the non-joining R tuples

Example: 1.000.000 tuples in R, 1.000.000 tuples in S, 900.000 distinct
values of R.a, 10 distinct values of S.b

ECE 5DA04 TP

Distributed query optimization technique: semijoin reducers

R join S = (R semijoin S) join S

[><] R.a=S.b

. . Or, more /\
/\ S exactly: < >

N\
RS R 0o(S.b)

Useful in distributed settings to reduce transfers: if the distinct S.b values
are smaller than the non-joining R tuples

Symetrical alternative: R join S = R join (S semijoin R)
This gives one more alternative in every join =2 search space explosion
Heuristics [Stocker, Kossmann et al., ICDE 2001]

ECE 5DA04 TP

r

Data warehouse

A data warehouse is a large database with a single consolidated schema.
It is built within one organization with strong control (or a tight collaboration).
Typically, a warehouse schema contains:

 Avery large table, called fact table. (o Dimension Dimension
Each fact is characterized by several ocation_key card account
dimensions. city cerd-number
: acct_number
* A set of small(er) dimension tables e status
which describe dimension values. ostoode ayment 10 default
* A dimension value may be shared by location._key network

acct_number

many facts = avoid redundancy in

date_key
the fa ct ta ble Dimension
table: Date customer_key
Dimension

Usually called a star schema. date_key payments-collected table: Customer
day principal_collected group
Data from many sources can go through [, o e weer interest_collected customer_key
Extract-Transform-Load (ETL) processes month perc-full_payments est_income
to feed the DW quarter perc_min_payments customer_age
. year perc_delinquent_payment

lreeia—~ 18
ECE 5DA04 TP

r

Data warehouse

A data warehouse is a large database with a single consolidated schema.

Further splitting the dimension tables leads to a snowflake schema.

ECE 5DA04 TP

dim_product_details

rproduct_id
product_name

dim_product_cateogry

roduct_category_id

Y product_category_name

dim_product_size

product_category_desctiption

product_size_id 1
size_uk

size_us
size_rest

dim_product

product_id
product_size_id
product_color_id
product_category_id

dim_product_color

product_color_id
product_color_name
product_color_hex
product_color_rgb

dim_store_city

store_city_id
store_city_name

store_id
«| store_city_id
store_country_id
store_region_id

dim_store_country

store_countr_id
store_country_name

v

dim_store_region

store_region_id
store_region_name

order_id
customer_id
product_id
purchase_date
store_id

“q purchase_amount

customer_id
customer_address
customer_address_city_id
customer_address_country_id

dim_date N

purchase_date

purchase_month_id
purchase_quarter_id
purchase_year

customer_address_city_id
customer_address_city_name

dim_customer_country

ccustomer_address_country_id
customer_address_country_name

purchase_month_id
purchase_month_name_short
purchase_month_name_long
purchase_month_number

dim_quarter

purchase_quarter_id
purchase_quarter_name_short

purchase_quarter_name_long
purchase_quarter_number

19

Data integration systems (aka mediation systems)

A number of databases (“data sources”), independently built and operated by
independent organizations, must be used together

* E.g., providers of goods or services that sell something together via a Web site

* E-commerce: buy P from S1 or from S2
* Travel: buy a trip = hotel + restaurant + rental car from S1 and S2 and S3

* E.g., large scientific studies where different labs gather separate experiment data for a
joint study

* Health: patient cohorts followed in separate hospitals

« Climate: measures of ocean water, resp. air temperature and wind

ECE 5DA04 TP

Data integration systems (aka mediation systems)

A number of databases (“data sources”), independently built and operated by
independent organizations, must be used together

Each data source has its own schema

The data integration system shows a single schema to users/applications, hiding the
complexity of: different schema, possibly distributed databases...

No data actually follows the integrated schema!

Mappings (logical formulae) relate the source schemas to the integrated (or mediator)

schema.
Mediator data model

Query Mediator
Q — schema

/’\

Wrapper] Wrapper \
Source 1 Source n
data model data model
Source 1 Source n
Y schema Yy schema

ca—
ECE 5DA04 TP

r

Peer-to-peer databases
Decentralized, highly distributed, symetric architectures

A peer (or node) may publish (share) some data, independently from others.

While the peer is part of the P2P network,
other peers can query its data.

To enable other peers to find the data, need to
advertise

* Propagate to other nodes information about
each node’s data

P2P networks are dynamic (peers may join or leave); peer churn
Data must be re-advertised to reflect

* Changes in the data

 Changes in the peer network

zla— 22
ECE 5DA04 TP

rData lakes

Data files and/or databases accumulate within large organizations

 E.g., Open Data from a large city, a region, or a country: administration and
commerces, restaurants, census, school information...

 E.g., sales data within a company: online sale logs, advertisement campaigns,
market forecasts, consolidated sale numbers...

* E.g., all weather data from a climate studies lab

Large numbers of files (1000s); large or small
Heterogeneous data models; often CSV, TSV, .XLS, ... Documents also possible.

No single schema: too hard or impractical to design, also because of lack of
centralized application focus or control.

ca—
ECE 5DA04 TP

23

r-Data lakes

Data files and/or databases accumulate within large organizations
Large numbers of files (1000s); large or small
Heterogeneous data models; often CSV, TSV, .XLS, ... Documents also possible.

No single schema: too hard or impractical to design, also because of lack of
centralized application focus or control. @

® 6
COLLECT @ @ Q

DISTRIBUTE g @o
© 0

O
INGEST: into large-scale, possibly

cloud-hosted storage, for massively parallel s 556 a2 Wi
processing (see next)

BLEND: combine two or more datasets QTRANSFORM

PUBLISH Q

BLEND and TRANSFORM are reminiscent of ETL (Extract, Transform, Load) in Data
Warehouses

2ia— 24
ECE 5DA04 TP

r .
How to exploit a data lake? @ Op,
COLLECT ® @@e

DISTRIBUTE @o®
© 0

@,-h' Spoiz @ -+ ‘amazon &

webservices” AzUi |.’e

Questions to address: QQ@
TRANSFORM
1. Dataset search: find a dataset by keyword search, format, date, ... gus“Q

2. Dataset annotation: attach ontology concepts to a dataset
3. Find datasets compatible with this one:

 Same-type, same-meaning attribute(s) 2 They may join.
Difficulty: different attribute names, different data types...

* Same schema - They may be unioned.

* Share some attributes =2 They may be joined and/or their projections may be unioned,
etc.

The datasets understood sufficiently well (« clean tables ») may be moved from the lake to a
warehouse

Data lake without proper analysis means: « data swamp »

ECE 5DA04 TP

Data lakehouse

A more recent brand of systems aiming to provide data warehouse-style
processing in a lake-style environment

Metadata: file names, descriptions, tags...
Governance: access rights, predefined workflows for some data processes

Data Warehouse Data Lake Data Lakehouse

£ kD ko @ & o B | &

Reports Reports Data Machine Bl Reports Data Machine
Science Learning Science Learning

T B A

Data Warehouses Data Warehouses

Metadata and
Governance Layer

Data Lake

Data Lake
f

= = = Structured, Semi-structured
Structured Data Structured, Semi-structured and Unstructured Data and Unstructured Data

https://www.databricks.com/glossary/data-lakehouse

https://www.databricks.com/glossary/data-lakehouse

Data lakehouse

A more recent brand of systems aiming to provide data warehouse-style
processing in a lake-style environment

OLTP: online transaction processing CRM: customer relationship management
ERP: Enterprise Resource Planning (HR, manufacturing, supply chain, finance, accounting; generic)

LOB: Line of Business (specific to the company)

Consumption a H M @

Layer Machine

Interactive Business I
learning

Queries intelligence

Processing @

Layer ;
SQL based ELT Big data Near Real-time ETL
processing

Catalog Shared Catalog

Layer
-—

| | Native Integration
Storage
M
Layer L_/‘

Data warehouse Data lake

Structured Unstructured, Semi-structured, Structured

Ingestion

Laye r Batch Streaming Batch Streaming

Data ‘= B 8 B oo =2 5

ourc I
Sources SaaS Applications OLTP ERP CRM LOB File shares Devices Web Sensors Social

https://aws.amazon.com/fr/blogs/big-data/build-a-lake-house-architecture-on-aws/ 7 27

ECE 5DA04 TP

https://aws.amazon.com/fr/blogs/big-data/build-a-lake-house-architecture-on-aws/

r

Sample lakehouse

Schneider et al., 2024 https://doi.org/10.1007/s42979-024-02737-0

Lakehouse
NN . Exch. Rates
Overwrite
oogf ————
Central Bank
m Append Sales LON Sales Sales Live
..... -» > Update
(@ PREREECEETEEEE > -l
v S g In
London Store eﬁ‘é' . A \O'Os
Sales STR YQ?' \:)0 Sold It It Agg1 el i
ales old Iltems ems i
_Append | P : N Overwrite i Reporting
H@ Product Hist. 50\ & \\
Stuttgart Store e L%
P 7
- Product Lists Oqe,(“‘ Training & [items Agg? /'
=" Append > overwmel<. siaiu e aais : A Reporting
Supplier Rec. Prices B Pncmg@ ®
Recommendation \.‘Da
Marketing Model OLAP
992“6 » 4 ﬁ Campaigns
ﬁ y 7"Gin'
4 -l
~4';Js - Prod. Rev. x"‘
Customer§ 'Dean o~ ‘ " oo A8 Senlim‘enl Data M|nmg/
and Marketing ‘%, Success Model s ':AZ&;ZIS'S Machine Learning
\@/;‘7
N
SM Posts S Prod. Sent. v Prod. Trends
Q abend | o Append B IR L - > £
Streaming
Social Media Analytics

Single type of storage

I S— Batch Data Flow

<4 - - Stream Data Flow =

<----- Model Application -

Data Mining/ 2
Structured Machine Learning Underlying
Dataset Model Storage System

ECE 5DA04 TP

28

https://doi.org/10.1007/s42979-024-02737-0

r

Data mesh
Most recent category of systems, some tractions in industry (Netflix, Paypal,
Amazon...)

Four core principles:

1. Domain ownership: domain (application) specialists decide what data to store, how it
should be structured, described, etc.

@
)¢ (il \) Services : 'Q o
O ¢ | ©o
s Marketing
o o ©° o 20
4 o & &
Finance Einan {@ :@ \S

o Resources .
\ Operations

&,zu'a,- 29

ECE 5DA04 TP

IIII

Data mesh

Four core principles:
1. Domain ownership: domain (application) specialists decide what data to store, how it
should be structured, described, etc. E.g., personnel, financial, marketing...
2. Data as a product: each dataset, original or derived, should :
« Bediscoverable
* Be addressable
* Be trustworthy
* Have self-describing semantics and syntax
3. Self-serve data platform: easy for domain teams to add/modify/work on data

4. Federated computational governance across the domain teams + technical
infrastructure

Recent term, durability unclear.
Main emphasis is on organizational, not technical aspects.
Organization is important, too.

ECE 5DA04 TP

Cloud computing and
cloud data management

ECE_5DA04_TP

lreeia—

31

IIII

Cloud computing

Idea: delegate large-scale storage and large-scale computing to
remote centers

Run by the (only) enterprise using them: private clouds

» Large companies can afford the cost to own and operate a cloud
service: La Poste, Orange, ...

Run by a company who rents out storage and computing services:
commercial clouds

» Main players: Amazon (has basically created the industry),
Google, Microsoft

b

ECE 5DA04 TP

ca—

32

r
Advantages of cloud computing

Allow companies to focus on their main business
not on IT

Allow scaling the resource usage up and down according to the needs
Examples:

* Shops with more clients as Christmas approaches
* Tax statements, built once a year

e Satellite image data processing company which
needs significant computing resources (only)
when it has an order from a client

lreeia—~ 33
ECE 5DA04 TP

https://www.wired.com/2015/03/orbital-insight/

r
How cloud services work (1/3)

Data storage at scale

Users upload files to be hosted on cloud provider’s servers
Data is replicated for reliability and quick access

The service is paid by the GB and day
» Total cost = sum(file size x file storage time)

Computing
Users typically buy virtual computers (virtual machines, VIV)

Service paid by the duration of use of the VM

Each VM is hosted by some physical computer in the cloud
provider's cluster

If a physical machine fails, the VM is recreated elsewhere and the
work restarts

lreeia— 34
ECE 5DA04 TP

r
How cloud services work (1/3)

Data storage at scale

Users upload files to be hosted on cloud provider’s servers

Data is replicated for reliabil 11 q separation of storage and

The service is paid by the GE computing, in the way they
» Total cost = sum(file size x file ~ are provided and purchased,
Computing is called disaggregation.

Users typically buy virtual co ¢ js 3 radical departure from the
Service paid by the duration previous database management

Each VM is hosted by some | architectures. It is specific to the
provider's cluster cloud environment.

If a physical machine fails, the VM will be recreated elsewhere and
the work will restart

lreeia— 35
ECE 5DA04 TP

r

How cloud services work (2/3)

Computing (continued)

There are typically different sizes (capacities) of virtual machines

»E.g., Small (S), Medium (M), Large (L), Extra-Large (XL); nowadays
hundreds of sizes (or instance types)

» The difference is in the computing speed (# of cores and their speed),
memory size, network connectivity...

Fast storage of small-granularity data, typically in memory in the cloud

For: metadata (catalog, user management, ...)
Key-value stores, document stores
Pay per operation (put, get)

Other services

E.g. messaging queues to synchronize different applications

ca—

ECE 5DA04 TP

36

r
How cloud services work (3/3):

cloud computing models

Infrastructure-as-a-service (laa$)
The vendor provides access to computing resources such as servers,
storage and networking.

Clients use their own platforms and applications within a service provider’s

infrastructure.
They do not host but they develop, deploy and administer in the cloud.

Platform-as-a-service (Paas)

The vendor provides: storage and other computing resources, prebuilt tools
to develop, customize and test their own applications.

Clients do not host and mostly do not administer either.

They still develop and deploy in the cloud.

zla— 37
ECE 5DA04 TP

r

How cloud services work (3/3):
cloud computing models
Software-as-a-service (SaaS)

The vendor provides: storage and other computing resources; software and
applications via a subscription model (or pay-per-use...)

Clients access the applications remotely.
They do not store, host, develop nor administer.

2ia— 38
ECE 5DA04 TP

r

Example of Microsoft Azure

Cloud Models

On Premises Infrastructure Platform Software
(as a Service) (as a Service) (as a Service)

Applications

Applications

Applications Applications

Data DEYE! Data

You manage

HOSOMIN /('q pabeue

Runtime Runtime Runtime

Runtime

You manage

2 Middleware Middleware Middleware Middleware
©

=

S 0/S /S O/S O/5

= .

2 Virtualization Virtualization Virtualization Virtualization

Servers

Servers Servers Servers

Storage Storage Storage Storage

T
HosonIN Aq pabeuep

HOSODIN /aq pabeue

Networking Networking

Networking

Networking

a2 \Windows Azure

https://docs.microsoft.com/fr-fr/azure/cloud-adoption-framework/strategy/monitoring-strategy

Creia—~ 39
ECE 5DA04 TP

https://docs.microsoft.com/fr-fr/azure/cloud-adoption-framework/strategy/monitoring-strategy

r

Cloud services

File storage service

Virtual machines

Fine-granularity
data store

Queue service

amazon gle Cloud Platf : -
webservicesr O8I (NPT y Ak dows Azure
AR Google Cloud | Windows Azure
SCalableIONaEE Storage BLOB Storage
Service (S3) g &
Amazon Elastic Goosle Windows Azure
Compute Cloud Com utegEn ine Virtual
(EC2) P & Machines
Amazon Google ngh Windows Azure
DynamoDB Hepeliez ion Tables
y Datastore
ATERLL Slm.ple Google Task Windows Azure
Queue Service
Queues Queues

(SQS)

Major vendors still actively publishing new features/tools!

ECE 5DA04 TP

ca—

40

r

Cloud database services

Operational ETL, Data Analytics
(AN \ AL
. Other Services
. i i ' Relational data
Relational OLTP NoSQL services Big Data _analytlc . (OLAP, Streaming,
. (key-value, services warehousing and T
services . . Data pipelines, ...)
document, graph) (Spark, Hadoop) analytics services

Cloud Storage Service

V. Narasayya and S. Chaudhuri (Microsoft). « Cloud Data Services: Workloads, Architectures,
and Multi-tenancy », Foundations and Trends in Data Management, 2021.

zia—~ 4
ECE 5DA04 TP

r

Relational database ranking

v

v

vy

v

v

Cloud-native systems

v

v

ECE 5DA04 TP

v

DB-Engines Ranking of Relational DBMS

The DB-Engines Ranking ranks database management systems according to their popularity. The
ranking is updated monthly.

This is a partial list of the complete ranking showing only relational DBMS.

Read more about the method of calculating the scores.

[0 include secondary database models

Rank

Dec Nov Dec
2023 2023 2022

1. 1 1.
2. 2 2.
3. 3. 3.
4. 4 4.
5. 5. 5.
6. A7 6.
7. A8 As.
8. w6 Y7
9. 9. 9.
10. 10. 10.
11. 11, AN13.
12. 12. Y11,
13. 13. 14,
14. 14. 12
15. 15. 15.
16. 16. 16.
17. 17. 17.
18. A 19. A 19.
19. ¢ 18. A 20.
20. 20. W 18.

DBMS

Oracle

MySQL

Microsoft SQL Server
PostgreSQL

IBM Db2

Microsoft Access

Snowflake

SQLite

MariaDB

Microsoft Azure SQL Database
Databricks

Hive

Google BigQuery

Teradata

FileMaker

SAP HANA

SAP Adaptive Server

Firebird

Microsoft Azure Synapse Analytics
Amazon Redshift

/

ST

trend chart

165 systems in ranking, December 2023

Database Model

Relational, Multi-model
Relational, Multi-model @
Relational, Multi-model @
Relational, Multi-model @
Relational, Multi-model &
Relational

Relational

Relational

Relational, Multi-model
Relational, Multi-model &
Multi-model @

Relational

Relational

Relational, Multi-model &
Relational

Relational, Multi-model &
Relational, Multi-model &
Relational

Relational

Relational

https://db-engines.com/en/ranking

Score
Dec Nov
2023 2023
1257.41 -19.62
1126.64 +11.40
903.83 -7.59
650.90 +14.05
134.60 -1.40
121.75 -2.74
119.88 -1.12
117.95 -6.63
100.43 -1.66
83.04 -0.13
80.31 +3.09
69.41 +0.77
62.17 +2.85
55.69 -1.63
54.18 +1.75
48.80 -0.32
40.66 -0.83
27.93 +2.29
26.64 -0.16
22.23 +0.86

Dec
2022

+7.10
-72.76
-20.52
+32.93
-12.02
-12.08
+5.11
-14.49
-0.50
+1.06
+19.57
-8.49
+6.48
-10.19
+0.33
-1.40
-2.10
+3.70
+4.39
-3.31

42

https://db-engines.com/en/ranking

r

Relational database ranking

ECE 5DA04 TP

(7,

()]

R

>

o

()] B>
m | -
o) >
> >
O >
(@)

c

© >
© P>
(] >
L »
L'(.1_.) >
o >
o >
@] >
2]

<

g >
Q >
) »
7 P>
>

m | -
(]

=

[}

©

<

© >
>

O

@)

O include secondary database models

Rank

Dec Nov
2023 2023
1. 1
2. 2.
3: 3.
4. 4.
5. 5.
6. A7
7. A8
8. We.
9. 9.
10. 10.
11 11.
12. 12.
13. 13.
14. 14.
15. 15.
16. 16.
17. 17.
18. A 19.
19. w18
20. 20.
21. 21.
22. 22.
23. 23.
24. 24.
25. 25.
26. 27,
27. A29.
28. ¥ 26.
29. ¥ 28.
30. 30.
31. 31.
32. 32.
33: 33.
34. 34.

Dec
2022

1.

a|n(s (W IN

s

10.
13,
$ 11,
A 14,
¥ 12,

15.

16.

17.
A 19.
A 20.

¥ 18.
21.

22.
A 24.
A 28.
A 26.
27

¥ 23.
¥ 25.

30.
¥ 29.
¥ 31,
¥ 32.
A 35.

Oracle

MySQL

Microsoft SQL Server
PostgreSQL

IBM Db2

Microsoft Access
Snowflake 3

SQLite 3

MariaDB

Microsoft Azure SQL Database
Databricks

Hive

Google BigQuery
Teradata

FileMaker

SAP HANA

SAP Adaptive Server
Firebird

Microsoft Azure Synapse Analytics
Amazon Redshift
Informix

Spark SQL

Impala

ClickHouse [E3

Presto

dBASE

Apache Flink

Vertica

Netezza

Greenplum

Amazon Aurora

H2

Oracle Essbase
Microsoft Azure Data Explorer

165 systems in ranking, December 2023

Database Model

Relational, Multi-model (@
Relational, Multi-model (@
Relational, Multi-model @
Relational, Multi-model (@
Relational, Multi-model (@
Relational

Relational

Relational

Relational, Multi-model @
Relational, Multi-model (@
Multi-model (@

Relational

Relational

Relational, Multi-model (@
Relational

Relational, Multi-model (@
Relational, Multi-model (@
Relational

Relational

Relational

Relational, Multi-model @
Relational

Relational, Multi-model (@
Relational, Multi-model g
Relational

Relational

Relational

Relational, Multi-model (@
Relational

Relational, Multi-model g
Relational, Multi-model (@
Relational, Multi-model (@
Relational

Relational, Multi-model (@

Score
Dec Nov
2023 2023
1257.41 -19.62
1126.64 +11.40
903.83 -7.59
650.90 +14.05
134.60 -1.40
121.75 -2.74
119.88 -1.12
117.95 -6.63
100.43 -1.66
83.04 -0.13
80.31 +3.09
69.41 +0.77
62.17 +2.85
55.69 -1.63
54.18 +1.75
48.80 -0.32
40.66 -0.83
27.93 +2.29
26.64 -0.16
22.23 +0.86
20.94 +0.29
18.87 -0.37
17.39 -0.85
16.96 +0.98
14.81 +1.04
14.59 +0.92
13.44 +0.19
13.30 -0.46
13.17 -0.44
10.57 -0.17
9.47 -0.22
8.71 -0.33
8.09 +0.31
6.93 -0.06

https://db-engines.com/en/ranking @—

Dec
2022

+7.10
-72.76
-20.52
+32.93
-12.02
-12.08
+5.11
-14.49
-0.50
+1.06
+19.57
-8.49
+6.48
-10.19
+0.33
-1.40
-2.10
+3.70
+4.39
=3.31
-0.97
-1.75
-0.43
+3.29
-0.15
+0.40

-5.21
-3.62
-0.75
-2.14
+0.04
-0.25
+0.25

43

https://db-engines.com/en/ranking

r

Cloud and Big Data management

economist.com

=
Steam engine in the cloud - RollinginIT
How Snowflake raised Worldwide software revenues for
$3bn in a record software database-management systems, $bn
IPO | Business ot
Sep 15th 2020 >0
5-6 minutes Other

40

lAmazon 30

Microsoft 20

10
Oracle 0

201112 13 14 15 16 17 18 19

But competition in the database business is Source: Gartner

heating up

https://www.economist.com/business/2020/09/15/how-snowflake-raised-3bn-in-a-record-software-ipo

ECE 5DA04 TP

https://www.economist.com/business/2020/09/15/how-snowflake-raised-3bn-in-a-record-software-ipo

r

Relational database ranking, December 2024

DB-Engines Ranking of Relational DBMS

1k ————

10

Score (logarithmic scale)

© December 2024, DB-Engines.com

0.1
2014 2016 2018 2020 2022 2024

Oracle
— MySQL
Microsoft SQL Server
PostgreSQL
- Snowflake
— |IBM Db2
SQLite
- Microsoft Access
- Databricks
MariaDB
Microsoft Azure SQL Database
— Apache Hive
Google BigQuery
FileMaker
- SAP HANA

1/6 ¥V

ECE 5DA04 TP

State of the Cloud Computing industry

Amazon Maintains Lead

in the CIOUd M d rket Microsoft, Amazon and Alphabet's collective cloud capex is expected o
Worldwide market share of leading cloud i:ow
n

infrastructure service providers in Q2 2023"

aws

0
32% 1

Arzore I % 1
D Googlecroud | 1 1%
Caiabaciowd [N 4%
Csmcioud [3% J i

- 3% Cloud infrastructure service
revenues in Q2 2023
I 2% $65B
2020 2021 -

&> Tencent Cloud - 2% ’
2022 2023 2024

* Includes platform as a service (PaaS) and infrastructure as a service (laaS) Forecasts for 2023, 2024 and 2025. Excludes Amazon's retail investments.

as well as hosted private cloud services 302';9 Bank of America Global Research

(o
Source: Synergy Research Group
statista %a
rd
7
leeia—~ %

ECE 5DA04 TP

State of the Cloud Computing industry
Public cloud application SaaS end-user spending

350

299.07

300

250

200

150

Market in billion U.S. dollars

100

50

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024~ 2025*

https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/

g

b

ECE 5DA04 TP

7

za—

47

https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/

Cloud data management:
Principles and architectures

ECE_5DA04_TP

lreeia—

48

How to build a data management platform in the cloud?

Recall:
classical

query

Query (e.g. SQL)

1st logical query plan

|

Query optimizer

processing @

in a
database

ECE 5DA04 TP

Chosen physical plan

L

Execution engine

Moving to large-scale distribution
Store (distribute) the data in a
distributed file system
How to split it?

How to provide efficient access to this data?
Process queries in cloud

How to evaluate operators over distributed
data, in a distributed architecture?

How to optimize queries?

w

49

Distributing a large table

Goal: distribute a table into several fragments (or tablets, splits...) to leverage distributed

storage
e
: : n
3 g R=R1 UR2 U .. URn

When there are many fragments, this horizontal distribution is
also called sharding (shard: small fragment, typically of wood)

Good properties that the distribution could ensure:
O Relatively uniform distribution of data volume across the machines

O Finding easily where each record is stored

ECE 5DA04 TP

b

ca—

50

Distributing a large table via hashing

Let R be a table sharded into R1 U R2 U ... U Rn.

Assume the key for R is a.

Assume available a hash function which, given an input,

R1
BN g
1

returns an output in the 0... 2", for some integer n. T
Then, for each tuple r from R: 2 :
3

6

» Compute h(r.a) =k

o v s wn s

» Tuple r will be part of shard number k

» When looking for an R tuple, we know it is on machine
number k=h(a)

Hashing ensures (with high probability) uniform
distribution

Also, it facilitates searching by the key

ECE 5DA04 TP

IIII

Massively parallel data data management using
Map/Reduce

Cloud platforms provide distributed file systems, in which we can store very
large collections of data.

Popular framework (~2010-...) for processing very large amounts of data stored
on multiple machines, in a massively parallel way: Map-Reduce

ldea:

 Ask users to describe their desired computations by defining a set of
functions

d Implement in a common framework:

O Calling the function on all the data fragments
L Gathering the results

L Intra-node communication, etc.

ECE 5DA04 TP

2ia— 52

rMap/Reduce outline

S mappery 1 @Rl——ro reducer,
i <] 1 i
(e RO R = B e a
| sorted key-value pairs i | .I i
T T T G pper - [k v | /reduce §
| <l kv |
—fmep. -v.v-vkv;E;_;k — I 5
| sorted key-value pairs | | Y |
o mappery || mRMl——y reducer
5 L 5
i .V K|v L!_.-ﬁ .:> V|iV]| V]|V i
| sorted key-value pairs | i v |
A S S, | e ; |
T mapper - reauce :
i Lo g i
| —| map .v K|v|k|v : > kv%kvvv i
i sorted key-value pairs | | k [v |
Reduce
Input _Z MaP gop¢ Shuffle Merge : Output
function function
&,zub,-

ECE 5DA04 TP

IIII

Sample queries and their implementation in Map-Reduce

Assume Customer, Order are large, distributed tables

1. SELECT city 3. SELECT c.name, o.total
FROM customer c FROM customer c, order o

WHERE c.name='Anne' WHERE c.id=o0.cid

2. SELECT MONTH(c.start_date), COUNT(*) 4. SELECT c.name, SUM(o.total)
FROM customer c FROM customer c, order o

GROUP BY MONTH(c.start_date) WHERE c.id=o0.cid

GROUP BY c.name

ECE 5DA04 TP

r

Making a selection query more efficient

. ' mapper
1. SELECT city | gt
FROM customer c —>-v KV R®v]k]v] =
WHERE c.name='Anne' ' sorted key-value pairs |

g g S g g g U M S S SRR —————

How to reduce the effort involved in reading the data?

J Add header information to each data split, summarizing split attribute
values

 E.g., Split #110 has name in {'Anna’,... 'Bruce’}, or [A*...B*]
[Possible false positives, depending on the values

 Optimization in Hadoop, leading MapReduce implementation: Enhance
the data-read request method of HDFS (Hadoop Distributed File System)

into read(customer, attrl=vall, ..., attrn=valn) to avoid reading data that
does not match

ECE 5DA04 TP

I : ..
Making a selection query more efficient

1. SELECT city i TR |

FROM customer c —’-v .v -v e :
WHERE c.name='Anne' | sorted key-value pairs :

g g S g g g U M S S SRR —————

How to reduce the effort involved in reading the data?

(1 On each node, build in-memory index of the split on that node, e.g., on
c.name

d For maximum efficiency, the index should be clustered = the split
should be stored ordered by c.name

- Hadoop typical replication factor is 3 = three indexes are possible!
J Appropriately route queries

Example: c.name, c.age, c.city

&zu?z,-
ECE 5DA04 TP

MRecall: query processing pipeline in DBMS

sQL

select driver.name
from driver, car
where
driver.ID=car.driver
and
car.license=123APB’

ECE 5DA04 TP

select... from driver, car, accident where...

Trdriver.name,
| driver.address

|date=‘1/11/13’

X
2N

driver car accident

4

1st logical query plan

Query optimizer

L

L

| /\O-date=‘1/11/13’

TI-driver.name,

driver.address

~—\

PN

driver car acLident

Chosen physical plan

L

Execution engine

SR —
name ID || driver | license
Julie 1 1 “123AB’
Damien | 2 y) ‘171KZ’

Query language

v

Chosen logical plan

N4

Chosen physical plan

£]
Besults
ea—

I-GoaI: query processing pipeline on top of MapReduce

Data management
task specified in
dedicated language

€

Language parser

et

Possibly algebraic optimizer

et

MapReduce compiler and optimizer

@

Hadoop Oc) - Results
MapReduce

Il
Il
il

I
ltummu)
Il

M

Il
IHW|||

VX7,
ECE 5DA04 TP 58

rArchitecture: a MR program for every operator

Query (e.g. SQL
Query (e.g. SQL) uery (e.e)

Database B 4 1st logical query plan MapReduce
management 1st |ogical query plan H setting
system]

Query optimizer for MR

Query optimizer QL

Chosen MR-based physical plan

Chosen physical plan JL
JL Parallel execution engine
Execution engine * 1 master
* Nslaves

. Data storage: HDFS

ECE 5DA04 TP - 59

IIII

Implementing physical operators on MapReduce

To avoid writing code for each query!

If each operator is a (small) MapReduce program, we can evaluate queries
by composing such small programs

The optimizer can then chose the best MR physical operators and their
orders (just like in the traditional setting)

Translate:
1 Unary operators (selection and projection)
[Binary operators (mostly:] on equality, i.e. equijoin)

 N-ary operators (complex join expressions)

ECE 5DA04 TP

60

r :
Implementing unary operators on MapReduce

Selection opred(R): Projection 1t ,s(R):
Map: Map: foreach t
foregc.h t which satisfies pred in the input » Output (hn(t), Ti.(t))
partition

o] S Jhn 5 Reduce:
» Output (hn(t.toString()), t); n fonction de _

hashp (hn{ g0) » Concatenate all the inputs
Reduce:

» Concatenate all the inputs

ECE 5DA04 TP

ca—

61

r

Recall: basic physical operators for binary joins in a DBMS

Assume we need to join R, Son R.a=S.b

Nested loops join:
Nested Ioo. s join O(|R|x]|S])
foreach t1 in R{

foreacht2in S {

if t1.a = t2.b then output (t1 | | t2)
}

}

Merge join: // requires sorted inputs

repeat{
while (!aligned) { advance Ror S };

while (aligned) { copy R into topR, S into topS };

output topR x tops;
} until (endOf(R) or endOf(S));

O(IR[+[S])

Hash join: // builds a hash table in memory Also:

While (lendOf(R)) { t € R.next; put(hash(t.a), t); }
While (lendOf(S)) {t € S.next;
matchingR = get(hash(S.b));
output(matchingR x t);

O(RI+ISD

Block nested loops join
Index nested loops join
Hybrid hash join

Hash groups / teams

ECE 5DA04 TP

za—~ 62

Implementing equi-joins on MapReduce (1)

Repartition join (¥symetric hash)

R.a=S.b Map:

foreachtinR
R \S

» Output (t.a, («R», t))
foreachtinS
» Output (t.b, («S», t))

Reduce:

Foreach input key k

» Res, = set of all R tuples on k x
set of all S tuples on k

» Output Res,

ECE 5DA04 TP

r

Implementing equi-joins on MapReduce (1): Repartition join

R(rID, rVal) join(rID = SID) S(sID, sVal)

Partitioning by key (Round Robin)

Tagging origins
NG
e N
Mapper 1
R
Key | Value Key @ Value
1 R1 o 1 | ‘R)R1
2 | R2 »EH 2 | ‘R'R2
3 R3 3 | ‘R,R3
4 R4 4 | ‘R,R4
Mapper 2
S
Key | Value Key | Value
1 S1 a 1 | 881
2 | S2 #EH 5 | 9,82
3 S3 3 5,83
4 S4 4 | ‘S,54
N g

ECE 5DA04 TP

Map Phase

Grouping by keys Local join
A A
g N e N
Reducer 1
Key | Tuple
» ‘R’,R1 @ Result
1 3]
| ¥ ,S1 #%» R1 | S1
3 ‘R’,R3 = R3 S3
‘S’,S3
Reducer 2
Key | Tuple |
9 ‘R’,R2 Q Result
S,52 mmlp| S) R2 | S2
4 RR4 2 R4 | S4
‘S’,54
S — ~
Reduce Phase

Implementing equi-joins on MapReduce (2):
Semijoin-based MapReduce join

: Key Value

1

¢ 3 .
1 .
4

ECE 5DA04 TP

Extracting join keys
--/\»_

R

R1
A

R4

~

Job 1
Full MapReduce job

MapReduce ’

1 (L
3 \r Mapper 2
4

Broadcasting keys of R to all the
splits of S and join S with keys of R

s

Broadcasting the results of the
previous job (S") to all the splits
of R, and locally joining R with S

65

Mapper 1 Mapper 1
{Key|1|3|4 md[| s
, | S : ' Key Value
/1 : 2 » Key Value 1 1 s1
[|Key [Valwe | IEFPTT ST | oo
1 S1 ' ‘ o } _
2 82 4 54 o |, | Result
N o/ R2 S3
‘ Key Value ' '
' . : /0 3 R2 T
S - Key | Value |/ - L)
' Key Value g » 3 S3 2 R
3 83 4| B4 4
4 S4 { Mapper 2]
N > 1 X
~ ~
Job 2 Job 3 .
Map-only job Map-only job
lreeia—

r : -
Implementing equi-joins on MapReduce (3)

Broadcast (map-only) MapReduce join
[><] If |R| << |S|, broadcast R to all nodes!
R.a=S.b
R N S Example: Sis a log data collection (e.g. log table)

R is a reference table e.g. with user names, countries,
age, ...

Facebook: 6 TB of new log data/day

Map: Join a partition of S with R.

Reduce: nothing (« map-only join »)

lreeia— 66
ECE 5DA04 TP

r

Implementing equi-joins on MapReduce (4)

Trojan Join [Dittrich 2010]

A Map task is sufficient for the join if relations are already co-partitioned by

the join key

The split of R with a given join key is already next to the split of S with the same

join key

This can be achieved by a MapReduce job similar to repartition join, but which
builds co-partitions at the end

Co-partitioned split

Co-group

HR

DR

HS

DS

Co-group

HR

DR

HS

DS

Co-partitioned split

Co-group

HR

DR

HS

DS

Useful when the joins can be known in advance (e.g. keys — foreign keys)

ECE 5DA04 TP

ca—

67

r

Implementing binary equi-joins in MapReduce

Algorith EE

Repartition Join Most general Not always the most
efficient
Semijoin-based Join Efficient when semijoin Requires several jobs,
is selective (has small one must first do the
results) semi-join
Broadcast Join Map-only One table must be very
small
Trojan Join Map-only The relations should be

co-partitioned

lreeia—
ECE 5DA04 TP

68

r : :
Implementing n-ary (multiway)

join expressions in MapReduce

R(RID, C) join T(RID, SID, O) join S(SID, L)

« Mega » operator for the whole join expression?...

Three relations, two join attributes (RID and SID)

Split the SIDs into Ns groups and the RIDs in Nr groups. Assume Nr x Ns reducers
available.

Hash T tuples according to a composite key made of the two attributes. Each T
tuple goes to one reducer.

Hash R and S tuples on partial keys (RID, null) and (null, SID)

Distribute R and S tuples to each reducer where the non-null component matches
(potentially multiple times!)

lreeia— 69
ECE 5DA04 TP

r

ECE 5DA04 TP

Generating keys and tagging origins
A

Joining the three

e N
Mapper 1
R
Rid | Value o Key | Value
1 C1 1, null ‘C,C1
2 C2 2, null | ‘C’,C2
Mapper 2
T
Rid | Sid | Value Key = Value
1 1 L1 =3 1,1 ‘LL1
1 2 L2 g 1,2 ‘LL2
2 2 L3 22 ‘TUL3
Mapper 3
S
Sid | Value = Key | Value
1 01 null,1 | ‘0,01
2 02 null,2 ‘O0’,02
. 7
N
Map Phase

tables locally
- N
Reducer 1
RID=1 SID=1
Key | Value 3
» 1,null ‘C,C1 Result
3 ’ =}
11 | T, L #EP C1,L1,01
g' null,1 | ‘0", 01
§ L
E > (Reducer 2 |
e RID=1 SID=2
- g Key | Value
25 mp| Loun C,C1 ' 8 Result
S8 1,2 ‘L, L2 'g C1,L.2,02
g™ null,2 ‘O’, 02
a,
3 .5 _ J
_gg) \
Reducer 3
,'é"s RID=2 SID=1
8 § » Key | Value
g £ 2,null | ‘C’, C2 Result
J null,1 ‘0’, 01
A, b
% Reducer 4
2 RID=2 SID=2
Key Value 5
#)| 2nul | C,co g Result
2,2 ‘L, L3 "é C2,L3,02
null,2 ‘O’, 02
g -
Ve
Reduce Phase

IIII

Particular case of multi-way joins:

star joins on MapReduce

Same join attribute in all relations: Ry 1
R(x, y) join S(x, z) join T(x, u) ¢ X S\I\‘
|
2
P_.

If N reducers are available, it suffices to partition the space of x
values in N

Then co-partition R, S, T = map-only join

ECE 5DA04 TP

lreeia—

71

rQuery optimization for MapReduce

Given a query over relations R1, R2, ..., Rn, how to translate it into a MapReduce
program?
1 Use one replicated join?

O The space of composite join keys (Attl|Att2]...| Attk) is limited by the number of
reducers 2
may shuffle some tuples to many reducers.

1 Use n-1 binary joins
[Use n-ary (multiway) joins only

What is the full space of alternatives?
How to explore it?

ca—
ECE 5DA04 TP

72

r
RDF query optimization for MapReduce

How can we manage
large volumes of
Linked Open Data

Data management

task specified in Y INIRE EEEI ¥

(RDF) based on dedicated language &E voronscinroos s
MapReduce? Cloud-Based RDF
2 Data Management

Language parser

et

Possibly algebraic optimizer

N e

Zoi Kaoudi
Ioana Manolescu
Stamatis Zampetakis

. 7 ON Dat4 MANAGEMENT
v, U v 1
)) 9]
((0

MapReduce compiler and optimizer

-
Hadoop Q‘) - Results
- MapReduce

N o e

————————
N o o

ECE 5DA04 TP

r C e ..
RDF query optimization for MapReduce

RDF queries need more joins than « equivalent » relational ones

Relational: 2 atoms
Person(id, name, birthdate), Address(pID, street, city, zipcode, country)

RDF: 7 atoms

triple(plD, hasName, ?name), triple(plID, bornOn, ?birthDate), triple(plID,
hasAddress, ?alD), triple(?alD, hasStreet, ?street), triple(?alD, hasCity, ?city),
triple(?alD, hasZip, ?zipCode), triple(?alD, hasCountry, ?country)

pid

W name street % zipcode
hasAddress <
N / aSCountr
0rnOn birthdate city hasCity

country

SPARQL query optimization is a stress test for MapReduce platforms

ECE 5DA04 TP

Fa

uery plans on MapReduce

Query: X
SELECT ?x ?y "\
WHERE { A Ti1
T1: ?w :propl <C1>. ¥ 110
T2: ?w :prop2 <C2>. PN
T3: ?w :prop3 ?x. X 19
T4: ?X :prop4 <C3> . /\
T5: ?X :prop5 <C4> . X T8 r:E
T6: ?X :prop6 ?z. N &
T7: ?z :prop7 ?f. X 17 =y
T8: ?f :prop8 ?y. /\ 'i
T9: ?f :prop9 7h . X T6 o
T10: <C5> :propl0 ’n.
T11: ?y :propll <C6> .} [><]/\TS
AN
Xl T4
Left deep plan with binary joins: /\
X T3
N\
T1 T2

ECE 5DA04 TP

75

rQuery plans on MapReduce

SELECT ?x ?y

WHERE {

T1: ?w :propl <C1>.
T2: ?w :prop2 <C2>.
T3: ?w :prop3 ?x.
T4: ?x :prop4 <C3>.
T5: ?X :prop5 <C4> .
T6: ?X :propb6 ?z .
T7: ?z :prop7 ?f.

T8: ?f :prop8 ?y.
T9: ?f :prop9

T10: <C5> :prop1l0
T11: ?y :propll <C6> .}

Left deep plan with n-ary joins:

L=W319H

ECE 5DA04 TP

76

IIII

Query plans on MapReduce

SELECT ?x ?y

WHERE {

T1: ?w :propl <C1>.
T2: ?w :prop2 <C2>.
T3: ?w :prop3 ?x.
T4: ?x :prop4 <C3>.
T5: ?X :prop5 <C4> .
T6: ?X :propb6 ?z .
T7: ?z :prop7 ?f.

T8: ?f :prop8 ?y.
T9: ?f :prop9

T10: <C5> :prop10
T11: ?y :propll <C6> .}

Bushy plan with binary joins:

X

M} X X
N /N NN

T1

T2 T3 T4 T57T6

T7

T8

G=1Y319H

ECE 5DA04 TP

g

b

7

ca—

77

rQuery plans on MapReduce

SELECT ?x ?y

WHERE {
T1:
T2:
T3:
T4:
T5:
T6:
T17:
T8:
T9:
T10:
T11:

Bushy plan with n-ary joins only at leaves:

?w :propl <C1>.
?w :prop2 <C2>.
?w :prop3 ?x.
?x :prop4 <C3>.
?X :prop5 <C4> .
?X :propb6 ?z .

?z :prop7 ?f.

?f :prop8 ?y.

?f :prop9

<C5> :prop10

?y :propll <C6> .}

T1

X
T

T2 T3

/\ o
/\ %
| E

T4 T5T6 T7 T8 T9

ECE 5DA04 TP

g

&z/zw 78

rQuery plans on MapReduce

SELECT ?x ?y

WHERE {

T1: ?w :propl <C1>.

T2: ?w :prop2 <C2>.

T3: ?w :prop3 ?x.

T4: ?x :prop4 <C3>.

T5: ?X :prop5 <C4> .

T6: ?X :propb6 ?z . 4

T7: ?z :prop7 ?f. X -
T8: ?f :prop8 ?y. /\ o
T9: ?f :prop9 ’h. X X &

T10: <C5> :propl0 h. /\ /I\ Z
T11: ?y :propll <C6> .} 5 X 5 [><] X &)
Bushy plan with n-ary joins: TN VANV NN /\ V

T T2 T3 T4T1T5T6 T7 T8 Ti10 T9 Ti1

ECE 5DA04 TP

rQuery plans on MapReduce

K Each join layer leads to one or more
YT MR jobs (1 job =1 map + 1 reduce)
PN
/Di T10 The plan height = the number of
X T successive jobs
[><]/\T8 - Impacts execution time!
VN)
/D(* 7 0%
x| T6 I& 5 /
/\ ° /\ 3
o ~ N &
/N N\ 3
X T4 /I\ Il
N\ L RE AR
)N\ T3 TL T2 T3 7147576 T7 T8 T10 T9 T11V
T1 T2 \

lreeia— 80
ECE 5DA04 TP

<
rHow to build flat plans with n-ary joins? L I I:U_I EZ

N-ary joins not studied in relational database management, because:
1 Fewer joins in all, and thus, fewer star (n-ary) joins

1 Limited memory to be shared between few binary joins = little interest
in fitting n-ary joins...

|dea for SPARQL (Basic Graph Pattern) queries:
 Identify cliques = subsets of n >= 2 triples sharing a common variable.
A Pick a cligue, use an n-ary join to combine these triples

O Then find another cligue in the query thus simplified, and similarly join them,
etc.

I
dUntil all triples have been joined

&2/2&22/- 81
ECE 5DA04 TP

r

SELECT ?x ?y

WHERE {

T1: ?x takesCourse ?y .
T2: ?X member ?z.
T3: ?w advisor ?x.

T4. ?W name ?u .}

& 2
CliqueSquare algorithm: Variable Graphs L I I:U_I E

Represent queries and intermediary results

Nodes are connected with an edge if they share a variable

ECE 5DA04 TP

&Z’Z&&/- 82

States

CliqueSquare: optimization with n-ary joins

Each node of a graph corresponds to a clique of
nodes of the previous graph.

A join operator corresponds to the "collapsing"
of one clique (triples that all join on the same
variables) into a single node

X
N
/\ /I\
X X X X X

//\/\/\/\

T2 T3 T4 T5T6 T7 T8 T11 T9 Ti10

ECE 5DA04 TP

83

IIII

From the logical plan to a MapReduce physical plan

;
N/\
X

AN AN A A

o o MS o o MS MS MS o MS ©

S/ Nl | N\ el [171 18 | [r9] |
MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]

» Reading the triples from HDFS requires a Map Scan (MS) operator

&'L’Z&ZI/- 84
ECE 5DA04 TP

r

From the logical plan to a MapReduce physical plan

M/N\M
/\ /I\

X X X X

pANVA /N\/\/\

FFmsFF MSMSMSFMSF

/ N\ | N\ e (71 gy | M1 |
MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]

» Logical selections (o) are translated to physical selections (F)

&'L’Z&ZI/- 85
ECE 5DA04 TP

rFrom the logical plan to a MapReduce physical plan

t

|
X

N/\lxl
MI M MY m

pANVA /\/\/\

FF ms FF MS MS MS MS F
/ N\um |\ 6] (171 [18] \ [Tl
MS MS MS MS MS MS

[T1] [T2] [T4] [T5] [T11] [T10]

» First level joins are translated to Map side joins (MJ) taking advantage of the
data partitioning (triples stored three times, hashed by subject, property, object)

&2«7422/- 86
ECE 5DA04 TP

r

From the logical plan to a MapReduce physical plan

1t
|
/N\
RJ X R} X
MJ | MJ X MJ X MJ g MJ X

pANVA A A NVA

FF mMs FF ms Ms ms P MSF
/ N\.m | \ mel 71 g | ™|
MS MS MS MS MS MS

[T1] [T2] [T4] [T5] [T11] [T10]

» All subsequent joins are translated to Reduce side joins (RJ)

&2«7422/- 87
ECE 5DA04 TP

r

From a MapReduce physical plan to a MapReduce program
(sequence of jobs)

n
RI I
Msjh/\MSQ
R X RI X
MJ X MJ X MJ X M) MY

A A 4 Y AN

F Fms F F ms mMms ms F o MSF
| e | | [re] [17] ma] | ol |

MS MS MS MS MS MS

[T1] [T2] [T4] [T5] [T11] [T10]

» Group the physical operators into Map/Reduce tasks and jobs

&2«7422/- 88
ECE 5DA04 TP

';rom a MapReduce physical plan to a MapReduce

program (sequence of jobs)

/

F

|
MS

[T1]

F

|
MS

[T2]

MS XN

RJ

TN
%\

MS

(T3]

MJ[><]

M)

nt

|
MS

[T4]

f'\f

MS

[T5]

|
X
L~

MJ 14
N\
MS MS

[T6] [T7]

T
/

MS

[T8]

N

[T9]

» Selections (F) and projections () belong to the same task as their child operator

ECE 5DA04 TP

g

b

7

ca—

89

FFrom a MapReduce physical plan to a MapReduce
program (sequence of jobs)

M)

n
I
RJ | X
/C
MS N MS 2N
. < e
AT RIS RIOTTY MJ/I><
F F MS F F MS MS MS F MS F
| | 3] | | r6] (77 ms] | ol |
MS MS MS MS MS MS
[T1] [T2] [ta] [T5] [T11] [T10]
- AN AN J I/

» Map joins (MJ) along with all their descendants are executed in the same task

ECE 5DA04 TP

g

b

7

ca—

90

FFrom a MapReduce physical plan to a MapReduce
program (sequence of jobs)

)

n

RJ

|
X
S

IRJ X |
\/ J
4 MJDZ]\/%\/ =N N~

MJ I MJ X /MJ[><] MJ X

F F ms|| F F |lms ms||ms F || MS F

[| mall | | ||ma m || s | ol |
MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]
o '\ AN J A

» Any other operator (RJ or VIS) is executed in a separate task

ECE 5DA04 TP

r-MapReduce program (jobs)

. JOB 2
R
M s |
e Ee e R — e EEEE R ———————————-

L L L |
RI lm X JOB 1
. N
X .
oM (M V(Mg) (M (Mo

—7\ | /\ ,//’\; /\

F F Ms F F MS MS MS F
| | maf | | ||wa ma|| ms | ol |
MS MS MS MS MS MS
[T1] [T2] [T4] [T5] [T11] [T10]
\ AN VAN AN N

» Tasks are grouped into jobs in a bottom-up traversal

&'L’Z&b/- 92
ECE 5DA04 TP

Questions?

ECE_5DA04_TP

lreeia—

93

