
A CLOSER LOOK AT TODAY’S CLOUD 
DATA MANAGEMENT SERVICES
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CLOUD / DATA CENTER HARDWARE 
ARCHITECTURES
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Cloud data center architecture
• Cloud data centers are clustered in physical locations around 

the world, called regions. 
• Within a Region, there are often several Availability Zones (AZ), 

each with its own redundant power and networking.
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• AZs are physically separated, within a 
latency-defined parameter (e.g., tens 
of km)

• All AZ within a region are 
interconnected with high-bandwidth, 
low-latency network, e.g., few ms
round-trip
– Allows synchronous replication!
– Increase protection to failure

• Latency across regions much higher, 
e.g., 100 ms



Data center servers

• A data center server commonly has
– Two or more sockets
– 10s of physical cores per socket
– 100GB… few TB RAM
– 10s of TB / local SSD 
– These numbers are constantly evolving

• One such powerful servers is rarely 100% busy 
with a client task!
– Thus, multi-tenancy (see later) 
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On-premises (traditional) data center 
architecture and networking

5

Server rack

Hierarchical 
organization

Server-to-server 
bandwidth is 
limited

Big Data workloads 
need quick data 
transfers across 
servers!



Modern data center 
architecture and networking
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Clos network (Charles Clos, 
1952): network topology 
allowing any node to exhange 
data with any other
• Overhead only when 

connection starts (as 
opposed to packet-switching 
networks)

• Many paths between any 
two servers 

• Extra techniques to spread 
traffic across paths



Hardware implications
• Traditional (on-premises) data center:

– Storage and computing coupled on same nodes
– High availability and durability achieved by running multiple “hot” 

standby database servers
– Efficient, but expensive!

• Cloud data center
– Sharing hardware across clients à economy of scale!
– File storage much cheaper than own SSDs; provides replication for 

durability 
– Computation capacity decoupled from storage, only booked 

when needed
– SSD storage local to compute nodes: only as cache
– Challenging to achieve high performance, due to network limits
– Effective data caching crucial for performance
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Latency (response time) of parallel 
processing across several servers
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Dean and Barroso (Google), “The tail at scale”, Communications of the ACM, vol. 56 (2013)

Most servers answers in 10 ms; 1 in N answers in 1 s 



CLOUD WORKLOAD 
CLASSIFICATION
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Cloud database services
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Services that run on hot data, 
facing the users of the cloud client
High responsiveness needed

Services that run on hot and history data
Usually more data is involved
Lower responsiveness requirements

Operational ETL, Data Analytics



Operational cloud services

• Relational Online Transaction Processing
– Transaction: modifications to the data
– Online: must be very responsive!
– Typical example: e-commerce

• NoSQL workloads: also OLTP, but on key-
value-data, JSON documents, or graphs
– Typical example: social media 
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ETL and Data Analytics services
ETL: extract, transform, load (“massage/pre-process” the 
data): for data integration; before ML…
• Big Data Analytics services (Spark, Hadoop)

– Ingest & process data in a Hadoop or Spark cluster

• Relational data warehousing & analytics
– E.g., analyze sales by brand, category, season, shop

• Other (streams, recursive processing, etc.)

Classes not fully disjoint; active areas of research
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ARCHITECTURES FOR CLOUD OLTP 
SERVICES
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Cloud OLTP services

• Requirements:
– High availability
– Durability
– Scalability with data volume
– Controlling cost

• Two types of architectures: 
– Coupled storage and computing (first to appear)
– Next generation: decoupled architectures
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Coupled cloud OLTP architectures
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• The DB runs in a primary server
• One or more secondary servers are 

hot replicas, in standby
• Because the servers run 

transactions, the log is also 
completely replicated!

• When the primary fails, elections 
designate a secondary who takes its 
place, then a new secondary is 
spawned with a copy of the data
• For >= 99.99 availability, 3+ 

secondary servers
• High performance is achieved by 

using SSDs for data and log files

Azure SQL Database Business Critical
Amazon Relational Database Service 
(RDS) 



Coupled cloud OLTP architectures
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• Scalability ultimately limited by 
the compute and storage capacity 
of 1 single node (e.g., 10TB…)
• Many businesses can fit their 

data in this budget.
• All primary and secondaries need 

full SSD storage
• Quite high storage cost

• Some cost control by chosing how 
much compute resources (CPU, 
memory, etc.) to provision

• Smart efficient replication method 
(at block level, through OS, etc.)

• Some enterprise OLTP 
applications that require 
maximum performance still run 
this way



Disaggregated (decoupled) cloud OLTP 
architectures

• Decoupling:
– Data is stored on cheap, replicated storage server
– Compute servers are allocated on demand
– Storage and computation can independently scale out
– The entire database is no longer available on each 

compute node à aggressive caching is needed to 
offset the latency of data access!

• AWS (Amazon Web Services) Aurora, 
Azure SQL Hyperscale, Google Cloud Spanner 
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AWS Aurora (Amazon)
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Simple Storage   
Service: files

Relational data

The storage service 
replicates the data across 
multiple AZs for high 
availability

The storage service 
continuously applies log 
records on all the 
secondary replicas to 
keep them up to date.

When a compute node 
requests a page, 
the storage service 
returns the current 
version of the page. 

SSD cache on compute 
and storage service 
nodes.

Storage Service
(distributed)



Azure SQL Hyperscale (Microsoft)
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Log handled separately by 
dedicated log service
• Multiple replicas + 

quorum-based protocol
for reconciliation

• Keeps recent log records 
in memory (likely to be
neded again), 
across multiple nodes

• Older log records moved
to secondary storage

Each page server holds a copy of a partition of the 
data
• Answers compute nodes’ page requests
• Caches the partition on local SSD, warm data in 

memory
• Checkpoints the data and creates backups 



Cloud Spanner (Google)
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• Shared-nothing architecture, based on append-only Colossus distributed file 
system

• Each table is sharded across a data center, then replicated for high-availability in 
other data centers

• Transactions use a replicated write-ahead redo log (WAL) 
• Paxos consensus algorithm used to reconcile log content.



Spanner tables
• Each table has a primary key (one or more attributes)
• Tables can be organized in hierarchies

– Tables whose primary key extends the key of the parent
can be stored interleaved with the parent

– Example: photo album metadata organized first by the 
user, then by the album
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Spanner query processing

q Distributed SQL query processing engine
q Optimization such as: 

qPruning partitions that are not relevant for a given query
qKey-foreign key joins exploiting shard colocation…

q If a node fails during query processing, the query is 
automatically restarted 
qSimplifies application development
qAllows to handle node upgrades
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Low-cost cloud architectures
q Low-cost = low performance

q Run 1 DBMS attached to storage and log on (slow) inexpensive 
storage

q Azure SQL Database General Purpose 
q Failure à DBMS restart (after downtime)
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ARCHITECTURES FOR DATA 
ANALYTICS SERVICES
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Data Analytics services in the cloud

qData warehousing (DW)
qData is loaded before it can be queried
qPerformance optimizations enabled by indexes, 

materialized views, data partitioning
qBig Data Analytics services allow analyzing data 

residing in a storage subsystem, e.g., HDFS on 
premises, or blog storage in the cloud
qNo need to load the data in advance
qTypically much cheaper, much larger scale than DW
qHeterogeneous data sources: data lake
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Dimensions of Cloud Data Analytics 
services in the cloud

1. Shared nothing vs. shared data
2. Programming API: SQL vs. MapReduce
3. Pre-loaded data vs. in-situ querying
4. Interactive vs. batch querying
5. Sophistication of the query optimizer
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DW cloud service: Snowflake
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Shared data in a remote storage; SQL API;  interactive querying
Pre-loaded data (and statistics computed for each partition during loading, managed by
the metadata service, in particular for query optimization)

Each virtual machine (VM) is a 
complete database

The VM caches data on local SSD

A Virtual Warehouse (VW)  is 
used by 1 client; scale up
by adding VMs 

No indexes (bad for queries;  
simplifies transaction 
processing)



Query evaluation in  Snowflake
1. Selective data access

– Each table is stored as as set of shards
– Inside each shard, data is stored as a set of (compressed) 

columns
– Headers built for each column within the shard

• Minimum and maximum values
• No need to read a shard if the query predicate is

incompatible with the header information
2. Query optimizer

– Cost- and statistic-based
– Headers computed even on intermediary results
– Some decisions taken at runtime

3. Intermediary query results written in node local disks, 
then (if needed) to S3
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Concurrency control in Snowflake

qHandled globally using fine-granularity data store
qAn update creates a new version of a table (multi 

version concurrency control, MVCC): no finer-
granularity update 

qEach version has a timestamp
qPossible to explicitly query the version at or after

a certain timestamp
qEach version stays available 90 days after deletion
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DW cloud service: AWS Redshift
Shared-nothing; SQL API; pre-loaded data; interactive querying
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Cluster = 1 leader + n compute 
nodes
Leader coordinates query exec.
A cluster hosts databases (sets of 
tables).
A table can be: 
• Distributed across the 

compute nodes by specifying  
a distribution key

• Replicated to all the compute 
nodes

Efficient scale-up is difficult since 
adding nodes requires 
redistributing the data (costly!)

Recent optimizations: automatic move of cold data to S3, to reduce costs



DW cloud service: Google BigQuery

SQL dialect on nested 
relational data

Data either pre-loaded 
or processed from files

Efficient column-oriented
format (Capacitor)

Data automatically 
sharded and loaded in
Colossus
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Query processing in Google BigQuery
Started with 1-table 
queries over large sharded 
tables
• Irrelevant partition skip
• Skip indexes to read 

only part of a partition
Added distributed joins à 
shuffle!
• Distributed, efficient 

transient storage for 
the shuffled data 
(~ memory!)

• Serves also as 
checkpoint

• More flexibility for 
scheduling queries
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DW cloud service: Spark

Spark:
q Shared-data (distributed 

file system, e.g., HDFS, or 
cloud, e.g., AWS S3 or 
Azure blob)

q MapReduce API
q Batch-oriented
q Programming model 

based on RDD
q Spark SQL: SQL extra 

layer
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Spark: brief overview
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q Extremely popular Big Data management framework
q Main concept: Resilient Distributed Datasets (RDD) until v2.0; 

then just Dataset (more optimizations supported)
q A Dataset can be created from a (distributed) file, or through 

processing. Sample snippets using pySpark: 

>>> textFile = spark.read.text("README.md")
>>> textFile.count() # Number of rows in this DataFrame
126 
>>> textFile.first() # First row in this DataFrame
Row(value=u'# Apache Spark’)
>>> linesWithSpark = textFile.filter(textFile.value.contains("Spark"))
>>> textFile.filter(textFile.value.contains("Spark")).count()
15



Spark programming
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q Extremely popular Big Data management framework
q Main concept: Resilient Distributed Datasets (RDD) until v2.0; 

then just Dataset (more optimizations supported)
q A Dataset can be created from a (distributed) file, or through 

processing. Sample snippets using pySpark: 

>>> textFile = spark.read.text("README.md")
>>> textFile.count() # Number of rows in this DataFrame
126 
>>> textFile.first() # First row in this DataFrame
Row(value=u'# Apache Spark’)

>>> linesWithSpark = textFile.filter(textFile.value.contains("Spark"))
>>> textFile.filter(textFile.value.contains("Spark")).count()
15

Could be distributed!

Dataset transformation

Aggregation



Spark: more complex 
programming
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A Dataset can be created from a (distributed) file, or through 
processing. Sample snippets using pySpark: 

## Find the row having the most words: 
>>> textFile.select(size(split(textFile.value, "\s+")).name("numWords"))

.agg(max(col("numWords"))).collect() 
[Row(max(numWords)=15)]

## Compute the frequencies of all words, MapReduce style:  
>>> wordCounts = textFile.select(explode(split(textFile.value, "\s+"))

.alias("word")).groupBy("word").count()
>>> wordCounts.collect() 
[Row(word=u'online', count=1), Row(word=u'graphs', count=1), ...]

>>> linesWithSpark.cache() Explicit cache control



Spark optimizer: Catalyst
Optimizes users’ queries for massively parallel processing

0. Use cached Datasets,
if possible

1. Rule-based 
optimizations:
push selections, 
projections,
transitive equalities,
etc.

2. Cost-based optimization
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Spark optimizer: Catalyst

1. Rule-based 
optimizations:
push selections, 
projections,
transitive 
equalities,
etc.

2. Cost-based
 optimization
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Rule-based      
optimizations

Cost-based 
optimizations

0. Cache

https://www.unraveldata.com/resources/catalyst-analyst-a-deep-dive-into-sparks-optimizer/

https://www.unraveldata.com/resources/catalyst-analyst-a-deep-dive-into-sparks-optimizer/


PRICING AND SLA: 
FINANCIALS OF CLOUD SERVICES
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What does the bill look like? 
Pricing models

Storage costs by far dominated by compute costs, 
cost discussion mostly focused on the latter

Two main classes of pricing models 
• Provisioned capacity
– The client books a set of compute nodes and keeps 

them always on, whether or not they are used
• On demand (aka serverless)
– Clients only book the resources they need and release 

them when the work is finished
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What am I paying for? Quality of 
Service (QOS) guarantees

• Also called Service Level Agreement (SLA)
– The service level is described by a set of metrics, aka Key 

Performance indicators (KPIs), aka Service-level indicators
• A Service-Level Objective (SLO) is a target value or 

range for a KPI
– E.g., “availability>=99.99%” for expensive nodes, or 

“availability>=99.9%” for less expensive ones
– “2 nines” (10-2 unavailability) vs “1 nine”

• Metrics and SLOs are checked internally at every new 
release or proposed evolution of a product

• An SLO contractually promised to a client is an SLA
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Resource-level SLAs

• Fixed resource SLA: fixed promises made to 
tenant (=cloud service user)

• Min-Max SLA: 
– A minimum amount of resources are guaranteed 

to every database + an upper limit per database
– Once all the databases have received the 

minimum, the remaining capacity is allocated 
according to some policy, e.g., a weight of each 
database
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Example: pricing model in 
Azure SQL database serverless
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Resource-level SLAs
• Burstable SLA

– Tenants are given credits per time when they do not run 
– Tenants spend credits by running tasks
– Appropriate for low-average, bursty workflows, e.g., testing
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Pricing incentives
How to make sure cloud capacity is never wasted?
q Make reserved instances cheaper to encourage long 

bookings.

q Spot prices:
qThe cloud provider publishes a price updated every 5 minutes
qTenants bid on how much they are willing to pay
q If the bid exceeds the price, the VM is allocated immediately
q Spot priced instances can be 90% cheaper; terminated by the 

service provider
qAppropriate for short-lived tasks, when the loss of work in case 

of termination is not problematic

q Pre-emptible compute: cheaper, e.g., by 80%, but could be 
stopped by the provider with 30 sec notice to save work 
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Sample cost-service trade-offs in the cloud
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V. Leis and M. Kuschewski, "Towards Cost-Optimal Query Processing in the Cloud",  CIDR 2021



Sample cost-service trade-offs in the cloud
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Fixed workload
For each cloud configuration, e.g., c5d.2,  vary the number of nodes

V. Leis and M. Kuschewski, "Towards Cost-Optimal Query Processing in the Cloud",  CIDR 2021



Sample cost-service trade-offs in the cloud
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The best offer varies over time, (also) as new configurations are proposed

V. Leis and M. Kuschewski, "Towards Cost-Optimal Query Processing in the Cloud",  CIDR 2021



MULTI-TENANCY
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Multi-tenancy objective and 
challenges

qDegree of consolidation: the number of databases 
(=software services) that are hosted on a single server 
or cluster (=hardware)
qThe greater the consolidation, the larger reduction in costs

qBut: integrating databases (or tenants) closely can 
qRuin performance for each of them
qExpose the applications to security risks

qSolution: virtualize the available resources to facilitate 
consolidation while preserving performance and 
security
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Key aspects impacted by virtualization

• Degree of consolidation: the more we can virtualize from the 
execution stack (bottom=hardware à … up to the application), 
the greater the degree of consolidation

• Degree of isolation: the lower down the stack is virtualization 
supported, the greater security and performance offered to tenants

• Ease of provisioning: the time taken to create a new database or 
upsize/downsize is lower if virtualization implemented up the stack

• Impact of failures: depending on where failures occur, a single 
failure may afect 1 or >1 tenant
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Virtualization models (1)
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Virtualization models (2)
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Virtualization models: 
consolidation/isolation trade-off
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CONCLUDING REMARKS
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