
A CLOSER LOOK AT TODAY’S CLOUD
DATA MANAGEMENT SERVICES

1

CLOUD / DATA CENTER HARDWARE
ARCHITECTURES

2

Cloud data center architecture
• Cloud data centers are clustered in physical locations around

the world, called regions.
• Within a Region, there are often several Availability Zones (AZ),

each with its own redundant power and networking.

3

• AZs are physically separated, within a
latency-defined parameter (e.g., tens
of km)

• All AZ within a region are
interconnected with high-bandwidth,
low-latency network, e.g., few ms
round-trip
– Allows synchronous replication!
– Increase protection to failure

• Latency across regions much higher,
e.g., 100 ms

Data center servers

• A data center server commonly has
– Two or more sockets
– 10s of physical cores per socket
– 100GB… few TB RAM
– 10s of TB / local SSD
– These numbers are constantly evolving

• One such powerful servers is rarely 100% busy
with a client task!
– Thus, multi-tenancy (see later)

4

On-premises (traditional) data center
architecture and networking

5

Server rack

Hierarchical
organization

Server-to-server
bandwidth is
limited

Big Data workloads
need quick data
transfers across
servers!

Modern data center
architecture and networking

6

Clos network (Charles Clos,
1952): network topology
allowing any node to exhange
data with any other
• Overhead only when

connection starts (as
opposed to packet-switching
networks)

• Many paths between any
two servers

• Extra techniques to spread
traffic across paths

Hardware implications
• Traditional (on-premises) data center:

– Storage and computing coupled on same nodes
– High availability and durability achieved by running multiple “hot”

standby database servers
– Efficient, but expensive!

• Cloud data center
– Sharing hardware across clients à economy of scale!
– File storage much cheaper than own SSDs; provides replication for

durability
– Computation capacity decoupled from storage, only booked

when needed
– SSD storage local to compute nodes: only as cache
– Challenging to achieve high performance, due to network limits
– Effective data caching crucial for performance

7

$$$

$

Latency (response time) of parallel
processing across several servers

8

Dean and Barroso (Google), “The tail at scale”, Communications of the ACM, vol. 56 (2013)

Most servers answers in 10 ms; 1 in N answers in 1 s

CLOUD WORKLOAD
CLASSIFICATION

9

Cloud database services

10

Services that run on hot data,
facing the users of the cloud client
High responsiveness needed

Services that run on hot and history data
Usually more data is involved
Lower responsiveness requirements

Operational ETL, Data Analytics

Operational cloud services

• Relational Online Transaction Processing
– Transaction: modifications to the data
– Online: must be very responsive!
– Typical example: e-commerce

• NoSQL workloads: also OLTP, but on key-
value-data, JSON documents, or graphs
– Typical example: social media

11

ETL and Data Analytics services
ETL: extract, transform, load (“massage/pre-process” the
data): for data integration; before ML…
• Big Data Analytics services (Spark, Hadoop)

– Ingest & process data in a Hadoop or Spark cluster

• Relational data warehousing & analytics
– E.g., analyze sales by brand, category, season, shop

• Other (streams, recursive processing, etc.)

Classes not fully disjoint; active areas of research

12

ARCHITECTURES FOR CLOUD OLTP
SERVICES

13

Cloud OLTP services

• Requirements:
– High availability
– Durability
– Scalability with data volume
– Controlling cost

• Two types of architectures:
– Coupled storage and computing (first to appear)
– Next generation: decoupled architectures

14

Coupled cloud OLTP architectures

15

• The DB runs in a primary server
• One or more secondary servers are

hot replicas, in standby
• Because the servers run

transactions, the log is also
completely replicated!

• When the primary fails, elections
designate a secondary who takes its
place, then a new secondary is
spawned with a copy of the data
• For >= 99.99 availability, 3+

secondary servers
• High performance is achieved by

using SSDs for data and log files

Azure SQL Database Business Critical
Amazon Relational Database Service
(RDS)

Coupled cloud OLTP architectures

16

• Scalability ultimately limited by
the compute and storage capacity
of 1 single node (e.g., 10TB…)
• Many businesses can fit their

data in this budget.
• All primary and secondaries need

full SSD storage
• Quite high storage cost

• Some cost control by chosing how
much compute resources (CPU,
memory, etc.) to provision

• Smart efficient replication method
(at block level, through OS, etc.)

• Some enterprise OLTP
applications that require
maximum performance still run
this way

Disaggregated (decoupled) cloud OLTP
architectures

• Decoupling:
– Data is stored on cheap, replicated storage server
– Compute servers are allocated on demand
– Storage and computation can independently scale out
– The entire database is no longer available on each

compute node à aggressive caching is needed to
offset the latency of data access!

• AWS (Amazon Web Services) Aurora,
Azure SQL Hyperscale, Google Cloud Spanner

17

AWS Aurora (Amazon)

18

Simple Storage
Service: files

Relational data

The storage service
replicates the data across
multiple AZs for high
availability

The storage service
continuously applies log
records on all the
secondary replicas to
keep them up to date.

When a compute node
requests a page,
the storage service
returns the current
version of the page.

SSD cache on compute
and storage service
nodes.

Storage Service
(distributed)

Azure SQL Hyperscale (Microsoft)

19

Log handled separately by
dedicated log service
• Multiple replicas +

quorum-based protocol
for reconciliation

• Keeps recent log records
in memory (likely to be
neded again),
across multiple nodes

• Older log records moved
to secondary storage

Each page server holds a copy of a partition of the
data
• Answers compute nodes’ page requests
• Caches the partition on local SSD, warm data in

memory
• Checkpoints the data and creates backups

Cloud Spanner (Google)

20

• Shared-nothing architecture, based on append-only Colossus distributed file
system

• Each table is sharded across a data center, then replicated for high-availability in
other data centers

• Transactions use a replicated write-ahead redo log (WAL)
• Paxos consensus algorithm used to reconcile log content.

Spanner tables
• Each table has a primary key (one or more attributes)
• Tables can be organized in hierarchies

– Tables whose primary key extends the key of the parent
can be stored interleaved with the parent

– Example: photo album metadata organized first by the
user, then by the album

21

Spanner query processing

q Distributed SQL query processing engine
q Optimization such as:

qPruning partitions that are not relevant for a given query
qKey-foreign key joins exploiting shard colocation…

q If a node fails during query processing, the query is
automatically restarted
qSimplifies application development
qAllows to handle node upgrades

22

Low-cost cloud architectures
q Low-cost = low performance

q Run 1 DBMS attached to storage and log on (slow) inexpensive
storage

q Azure SQL Database General Purpose
q Failure à DBMS restart (after downtime)

23

ARCHITECTURES FOR DATA
ANALYTICS SERVICES

24

Data Analytics services in the cloud

qData warehousing (DW)
qData is loaded before it can be queried
qPerformance optimizations enabled by indexes,

materialized views, data partitioning
qBig Data Analytics services allow analyzing data

residing in a storage subsystem, e.g., HDFS on
premises, or blog storage in the cloud
qNo need to load the data in advance
qTypically much cheaper, much larger scale than DW
qHeterogeneous data sources: data lake

25

Dimensions of Cloud Data Analytics
services in the cloud

1. Shared nothing vs. shared data
2. Programming API: SQL vs. MapReduce
3. Pre-loaded data vs. in-situ querying
4. Interactive vs. batch querying
5. Sophistication of the query optimizer

26

DW cloud service: Snowflake

27

Shared data in a remote storage; SQL API; interactive querying
Pre-loaded data (and statistics computed for each partition during loading, managed by
the metadata service, in particular for query optimization)

Each virtual machine (VM) is a
complete database

The VM caches data on local SSD

A Virtual Warehouse (VW) is
used by 1 client; scale up
by adding VMs

No indexes (bad for queries;
simplifies transaction
processing)

Query evaluation in Snowflake
1. Selective data access

– Each table is stored as as set of shards
– Inside each shard, data is stored as a set of (compressed)

columns
– Headers built for each column within the shard

• Minimum and maximum values
• No need to read a shard if the query predicate is

incompatible with the header information
2. Query optimizer

– Cost- and statistic-based
– Headers computed even on intermediary results
– Some decisions taken at runtime

3. Intermediary query results written in node local disks,
then (if needed) to S3

28

Concurrency control in Snowflake

qHandled globally using fine-granularity data store
qAn update creates a new version of a table (multi

version concurrency control, MVCC): no finer-
granularity update

qEach version has a timestamp
qPossible to explicitly query the version at or after

a certain timestamp
qEach version stays available 90 days after deletion

29

DW cloud service: AWS Redshift
Shared-nothing; SQL API; pre-loaded data; interactive querying

30

Cluster = 1 leader + n compute
nodes
Leader coordinates query exec.
A cluster hosts databases (sets of
tables).
A table can be:
• Distributed across the

compute nodes by specifying
a distribution key

• Replicated to all the compute
nodes

Efficient scale-up is difficult since
adding nodes requires
redistributing the data (costly!)

Recent optimizations: automatic move of cold data to S3, to reduce costs

DW cloud service: Google BigQuery

SQL dialect on nested
relational data

Data either pre-loaded
or processed from files

Efficient column-oriented
format (Capacitor)

Data automatically
sharded and loaded in
Colossus

31

Query processing in Google BigQuery
Started with 1-table
queries over large sharded
tables
• Irrelevant partition skip
• Skip indexes to read

only part of a partition
Added distributed joins à
shuffle!
• Distributed, efficient

transient storage for
the shuffled data
(~ memory!)

• Serves also as
checkpoint

• More flexibility for
scheduling queries

32

DW cloud service: Spark

Spark:
q Shared-data (distributed

file system, e.g., HDFS, or
cloud, e.g., AWS S3 or
Azure blob)

q MapReduce API
q Batch-oriented
q Programming model

based on RDD
q Spark SQL: SQL extra

layer

33

Spark: brief overview

34

q Extremely popular Big Data management framework
q Main concept: Resilient Distributed Datasets (RDD) until v2.0;

then just Dataset (more optimizations supported)
q A Dataset can be created from a (distributed) file, or through

processing. Sample snippets using pySpark:

>>> textFile = spark.read.text("README.md")
>>> textFile.count() # Number of rows in this DataFrame
126
>>> textFile.first() # First row in this DataFrame
Row(value=u'# Apache Spark’)
>>> linesWithSpark = textFile.filter(textFile.value.contains("Spark"))
>>> textFile.filter(textFile.value.contains("Spark")).count()
15

Spark programming

35

q Extremely popular Big Data management framework
q Main concept: Resilient Distributed Datasets (RDD) until v2.0;

then just Dataset (more optimizations supported)
q A Dataset can be created from a (distributed) file, or through

processing. Sample snippets using pySpark:

>>> textFile = spark.read.text("README.md")
>>> textFile.count() # Number of rows in this DataFrame
126
>>> textFile.first() # First row in this DataFrame
Row(value=u'# Apache Spark’)

>>> linesWithSpark = textFile.filter(textFile.value.contains("Spark"))
>>> textFile.filter(textFile.value.contains("Spark")).count()
15

Could be distributed!

Dataset transformation

Aggregation

Spark: more complex
programming

36

A Dataset can be created from a (distributed) file, or through
processing. Sample snippets using pySpark:

Find the row having the most words:
>>> textFile.select(size(split(textFile.value, "\s+")).name("numWords"))

.agg(max(col("numWords"))).collect()
[Row(max(numWords)=15)]

Compute the frequencies of all words, MapReduce style:
>>> wordCounts = textFile.select(explode(split(textFile.value, "\s+"))

.alias("word")).groupBy("word").count()
>>> wordCounts.collect()
[Row(word=u'online', count=1), Row(word=u'graphs', count=1), ...]

>>> linesWithSpark.cache() Explicit cache control

Spark optimizer: Catalyst
Optimizes users’ queries for massively parallel processing

0. Use cached Datasets,
if possible

1. Rule-based
optimizations:
push selections,
projections,
transitive equalities,
etc.

2. Cost-based optimization

37

Spark optimizer: Catalyst

1. Rule-based
optimizations:
push selections,
projections,
transitive
equalities,
etc.

2. Cost-based
 optimization

38

Rule-based
optimizations

Cost-based
optimizations

0. Cache

https://www.unraveldata.com/resources/catalyst-analyst-a-deep-dive-into-sparks-optimizer/

https://www.unraveldata.com/resources/catalyst-analyst-a-deep-dive-into-sparks-optimizer/

PRICING AND SLA:
FINANCIALS OF CLOUD SERVICES

39

What does the bill look like?
Pricing models

Storage costs by far dominated by compute costs,
cost discussion mostly focused on the latter

Two main classes of pricing models
• Provisioned capacity
– The client books a set of compute nodes and keeps

them always on, whether or not they are used
• On demand (aka serverless)
– Clients only book the resources they need and release

them when the work is finished

40

What am I paying for? Quality of
Service (QOS) guarantees

• Also called Service Level Agreement (SLA)
– The service level is described by a set of metrics, aka Key

Performance indicators (KPIs), aka Service-level indicators
• A Service-Level Objective (SLO) is a target value or

range for a KPI
– E.g., “availability>=99.99%” for expensive nodes, or

“availability>=99.9%” for less expensive ones
– “2 nines” (10-2 unavailability) vs “1 nine”

• Metrics and SLOs are checked internally at every new
release or proposed evolution of a product

• An SLO contractually promised to a client is an SLA

41

Resource-level SLAs

• Fixed resource SLA: fixed promises made to
tenant (=cloud service user)

• Min-Max SLA:
– A minimum amount of resources are guaranteed

to every database + an upper limit per database
– Once all the databases have received the

minimum, the remaining capacity is allocated
according to some policy, e.g., a weight of each
database

42

Example: pricing model in
Azure SQL database serverless

43

Resource-level SLAs
• Burstable SLA

– Tenants are given credits per time when they do not run
– Tenants spend credits by running tasks
– Appropriate for low-average, bursty workflows, e.g., testing

44

Pricing incentives
How to make sure cloud capacity is never wasted?
q Make reserved instances cheaper to encourage long

bookings.

q Spot prices:
qThe cloud provider publishes a price updated every 5 minutes
qTenants bid on how much they are willing to pay
q If the bid exceeds the price, the VM is allocated immediately
q Spot priced instances can be 90% cheaper; terminated by the

service provider
qAppropriate for short-lived tasks, when the loss of work in case

of termination is not problematic

q Pre-emptible compute: cheaper, e.g., by 80%, but could be
stopped by the provider with 30 sec notice to save work

45

Sample cost-service trade-offs in the cloud

46

V. Leis and M. Kuschewski, "Towards Cost-Optimal Query Processing in the Cloud", CIDR 2021

Sample cost-service trade-offs in the cloud

47

Fixed workload
For each cloud configuration, e.g., c5d.2, vary the number of nodes

V. Leis and M. Kuschewski, "Towards Cost-Optimal Query Processing in the Cloud", CIDR 2021

Sample cost-service trade-offs in the cloud

48

The best offer varies over time, (also) as new configurations are proposed

V. Leis and M. Kuschewski, "Towards Cost-Optimal Query Processing in the Cloud", CIDR 2021

MULTI-TENANCY

49

Multi-tenancy objective and
challenges

qDegree of consolidation: the number of databases
(=software services) that are hosted on a single server
or cluster (=hardware)
qThe greater the consolidation, the larger reduction in costs

qBut: integrating databases (or tenants) closely can
qRuin performance for each of them
qExpose the applications to security risks

qSolution: virtualize the available resources to facilitate
consolidation while preserving performance and
security

50

Key aspects impacted by virtualization

• Degree of consolidation: the more we can virtualize from the
execution stack (bottom=hardware à … up to the application),
the greater the degree of consolidation

• Degree of isolation: the lower down the stack is virtualization
supported, the greater security and performance offered to tenants

• Ease of provisioning: the time taken to create a new database or
upsize/downsize is lower if virtualization implemented up the stack

• Impact of failures: depending on where failures occur, a single
failure may afect 1 or >1 tenant

51

Virtualization models (1)

52

Virtualization models (2)

53

Virtualization models:
consolidation/isolation trade-off

54

CONCLUDING REMARKS

55

