
ARCHITECTURES FOR BIG DATA: 
HANDLING HETEROGENEITY

Ioana Manolescu 1ECE_5DA04_TP



From databases to Big Data
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From databases to Big Data
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Relational DBMS: 

Schema: set of tables
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HETEROGENEOUS DATA 
INTEGRATION: MEDIATOR SYSTEMS
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Common data model 
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language, 

and schema (also called source schemas). 
– DM and QL may or may not differ across sources

• A mediator with its own DM, QL and mediator schema
– Queries are asked against the mediator schema

• Wrappers interface the sources to the mediator’s model 
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Common data model 
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language, 

and schema (also called source schemas). 
– DM and QL may differ across sources

• A mediator with its own DM, QL and mediator schema

• ACID: mostly read-only; size: small
• Control: Independent publishing; mediator-driven integration
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Many-mediator systems
• Each mediator interacts with a subset of 

the sources
• Mediators interact w/ each other

– A mediator can play the role of a
source for processing a given query
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Many-mediator systems
• Each mediator interacts with a 

subset of the sources
• Mediators interact w/ each other
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Connecting the source schemas
to the global schema
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Wrapper 1 Wrapper 3

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

Wrapper 2

• Sample scenario: 



Connecting the source schemas
to the global schema
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• Data only exists in the sources.
• Applications only have access to, and only query, 

the mediator schema. 

• How to express the relation between
– the mediator schema acccessible to applications, and
– the source schemas reflecting the real data
– so that a query over the mediator schema can be

automatically translated into a query over the source 
schemas ?

• Three approaches exist (see next)



Connecting the source schemas to the 
global schema: Global-as-view (GAV)

s1:ParisHotels(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price), 

Restaurant(city, street, name, rating)

Defining Hotel as a view over the source schemas:
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel
Defining Restaurant as a view over the source schemas:
define view Restaurant as select * from s3:Restaurant
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Connecting the source schemas to the 
global schema: Global-as-View
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



Query processing in global-as-view (GAV)
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel

Query: 

select * from Hotel where city='Paris' and price<200 becomes:

select * from (select 'Paris' as city... union... select 'Lyon' as city...)
where city='Paris' and price < 200                      which becomes:

select * from (select 'Paris' as city...)
where city='Paris' and price < 200                     which becomes: 

select * from s1:ParisHotels where price < 200
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Query processing in global-as-view (GAV)
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define view Hotel as
select 'Paris' as city, street, name, null as roomDesc, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, descr as roomDesc, price from s2:LyonHotel
define view Restaurant as select * from s3:Restaurant

Query: 
select h.street, r.rating from Hotels h, Restaurant r where h.city=r.city and 
r.city='Lyon' and and h.street=r.street and h.price<200                                becomes: 
select h.street, r.rating from (select 'Paris' as city... from s1:ParisHotels
union all select 'Lyon' as city... from s2:LyonHotel) h, (select * from s3:Restaurant) r 
where h.city=r.city and r.city='Lyon' and h.street=r.street and h.price<200 

which becomes: 
select h.street,r.rating from (select ... from s2:LyonHotel) h, s3:Restaurant r where
r.city='Lyon' and h.street=r.street and h.price<200                                which becomes:
select h.street, r.rating from s2:LyonHotel h, s3.Restaurant r where r.city='Lyon' and 
h.price<200 and h.street=r.street



Concluding remarks on global-as-view
(GAV)

• Query processing = view unfolding: replacing the 
view name with its definition
– Just like queries over views in a centralized database
– Heuristic: push as many operators (select, project, join; 

navigate…) on the sources as possible

• Weakness: changes in the data sources require
changes of the global schema
– In the worst case, all applications written based on this

global schema need to be updated
– Hard to maintain
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Global-as-View: Adding a new source
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 4  schema
GrenobleHotel(street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



Global-as-View: Removing a source (1)
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



Global-as-View: Removing a source (2)
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
ParisPackage(hotelName, hotelAddress, 
restaurantName, restaurantRating)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

If Source3.Restaurant withdraws, the ParisPackage relation in the 
global schema becomes empty; applications cannot even access
Source1.ParisHotels, even though they are still available.



Connecting the source schemas to the 
global schema: Local-as-view (LAV)

s1:ParisHotel(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price), Restaurant(city, street, name, rating)

Defining s1:ParisHotels as a view over the global schema:
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
Defining s2:LyonHotel as a view over the global schema:
define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice
from Hotel where city='Lyon'
Defining s3:Restaurant as a view over the global schema:
define view s3:Restaurant as
select * from Restaurant
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Connecting the source schemas to the 
global schema: Local-as-View
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Source 3  schema
Restaurants(city, street, 
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users



GAV and LAV  have different expressive 
power

• Some GAV scenarios cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress, 

r.name as restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The view only contains (hotel, restaurant) pairs that are 
on the same street in Paris

• Not possible to express this with LAV mappings
– LAV describes each source individually w.r.t. the global schema
– Not in correlation with data available in other sources !
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GAV and LAV  have different expressive 
power

• There exist LAV scenarios that cannot be
expressed in GAV

• Example: s3:MHotels(city, street, name, price) only has 
data about Marseille hotels, s4:WHotels(city, street, 
name price) has only data about Wien hotels
– Assume Hotels is defined as: 

select * from Mhotels union all     select * from WHotels
– A query about hotels in Rome will also be sent to s3 and s4, 

although it will bring no results
– LAV query processing avoids this (see next)
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GAV and LAV  have different expressive 
power

• There exist GAV scenarios that cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress, r.name as 
restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The closest we can do is define s1.ParisHotel and s3.Restaurants each as a 
projection over ParisPackage

• But this changes the semantics of ParisPackage: 
– It does not express that only Paris restaurants are in ParisPackage
– Not possible to express that only (hotel, restaurants) on the same street are 

available through the integration system  
– ParisPackage becomes the cartesian product of ParisHotel with all 

restaurants... 
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Query processing in Local-as-View (LAV)
Simple scenario 1

define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

Query: 
select street, name from Hotel

No equivalent rewriting exists.
• We should not use a rewriting that has some wrong answers (not 

contained in those of the query)!
• We should aim for contained rewritings
• Better: Maximally contained rewritings, such as: 

Select street, name from s1:ParisHotels
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Query processing in Local-as-View (LAV)
Simple scenario 2

define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

Query: 
select street, name from Hotel

S1:ParisHotels has some useful answers. So does s7:CheapHotels.
They may overlap (or not); no way of knowing.

Maximally contained rewriting:

select street, name from s1:ParisHotels union
select street, name from s7:CheapHotels
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define view s7:CheapHotels as
select street, name
from Hotel where price<80



Query processing in Local-as-View (LAV)
Simple scenario 3

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query: 
select street, name from Hotel where city=‘Paris’ 

Maximally contained rewriting:

None exists! ❌
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Query processing in Local-as-View (LAV)
Simple scenario 4

define view s7:CheapHotels as
select street, name, city
from Hotel where price<80

Query: 
select street, name from Hotel where city=‘Paris’ 

Maximally contained rewriting:

select street, name from s7:CheapHotels where city=‘Paris’
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Query processing in Local-as-View (LAV)
Simple scenario 5

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query: 
select street, name, price from Hotel where city=‘Paris’ 

Maximally contained rewriting:

None exists! ❌
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Query processing in Local-as-View (LAV)
Observation

A view may fail to be usable to answer a query if :
- The query applies a restriction the view does not apply

and the rewriting cannot apply it either
- And/or, the view fails to project (store) an attribute

that the query needs

ECE_5DA04_TP Ioana Manolescu 29

define view s7:CheapHotels as
select street, name
from Hotel where price<80
Query: 
select street, name, price
from Hotel where city=‘Paris’ 

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query: 
select street, name
from Hotel where city=‘Paris’ 



Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice from Hotel
where city='Lyon’

define view s3:Restaurant as
select * from Restaurant

Query: 
select h.street, h.price, r.rating
from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street
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Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice from Hotel
where city='Lyon’

define view s3:Restaurant as
select * from Restaurant

Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r where
r.city=h.city and h.street=r.street
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Step 1: identify
potentially useful
views



Query processing in Local-as-View (LAV)

Step 2: generate view combinations that may be
used to answer the query (one view per table):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and each view, 
check:

– If the view returns the attributes we
need:
• Those returned by the query, and 
• Those on which possible query

joins are based
– If the view selections (if any) are 

compatible with those of the query
If one condition is not met, discard the view
combination.

define view s1:ParisHotels as 
select street, name, price as roomPrice
from Hotel where city='Paris'
The  query needs: 
– street, price, rating (returned): the view

provides them
– city and street for the join: street is

provided, city is not (but it is a constant, thus
known)

The view has a selection on the city which the 
query does not have à The view provides part
of the data needed by the query.  The view
selection is compatible with the query.
The view s1:ParisHotels is OK.

define view s3:Restaurant as select * from
Restaurant
The view s3:Restaurants is OK. 
The view combination s1:ParisHotels, 
s3:Restaurants is OK provided that
Restaurant.city is set to Paris. 
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Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street



Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one 
view per query table): 

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and 
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views, 
possibly selections and projections à
rewriting

Query rewriting using s1:ParisHotels and 
s3:Restaurant:
select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street

This is a partial rewriting, and so is:

Query rewriting using s2:LyonHotel and 
s3:Restaurant:
select h.street, h.price, r.rating
from s2:LyonHotels h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street
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Query: 
select h.street, h.price, r.rating from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one 
view per query table): 

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and 
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views, 
possibly selections and projections à
rewriting
Step 5: return the union of the rewritings 
thus obtained

Full query rewriting:

select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street
union all 
select h.street, h.price, r.rating
from s2:LyonHotel h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street
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Query processing in Local-as-View (LAV)
define view s1:ParisHotels as... from Hotel where city='Paris'
define view s2:LyonHotel as... from Hotel where city='Lyon'
define view s3:Restaurant as select * from Restaurant
Query: 
select h.street, h.price, r.rating
from Hotel h, Restaurant r 
where r.city=h.city and h.street=r.street

Rewriting of the query using the views:

select h1.street, h1.price, r3.rating
from s1:ParisHotels h1, s3:Restaurant r3
where h1.city=r3.city and h1.street=r3.street

union all 

select h2.street, h2.price, r3.rating
from s2:LyonHotels h2, s3:Restaurant r3
where h2.city=r3.city and h2.street=r3.street
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Concluding remarks on
Local-as-View (LAV)

Query processing
• The problem of finding all rewritings given the source and 

global schemas and the view definitions = view-based
query rewriting, NP-hard in the size of the (schema+view
definitions). 
– These are often much smaller than the data

The schema definition is more robust:
• One can independently add/remove sources from the 

system without the global schema being affected at all 
(see next)

• Thus, no application needs to be aware of the changes in 
the schema
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Local-as-View: adding a new source
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Source 1 schema
ParisHotels(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Source 4  schema
GrenobleHotel(street, 
name, rating)

We add a new mapping
relating the new source 
to the global schema. 
Invisible to the applications!



Local-as-View: Removing a source
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Source 1 schema
ParisHotels(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

We remove the mapping
of the removed source.
ParisHotels still available.
Invisible to the applications!



Connecting the source schemas to the global 
schema: Global-Local-as-View (GLAV)

Generalizes both GAV and LAV
1 mapping = 1 pair (query over 1 or several sources schemas, 

query over the mediator schema)

Semantics: there is a tuple in QiMediator(...) for each result of QiSources(...)
• A GAV mapping is a particular case of GLAV mapping where QMediator is exactly

one mediator relation
• A LAV mapping is a particular case of GLAV mapping where QSources is exactly

one source relation
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Q1Mediator(m:r1, m:r2, m:r3, ...) ßà Q1Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q2Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q3Sources(s1:t1, s2:t1, ...)



Connecting the source schemas to the global 
schema: Global-Local-as-View (GLAV)
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Source 1 schema
Source 3  schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Q1Mediator

Q1Sources



Connecting the source schemas to the global 
schema: Global-Local-as-View (GLAV)
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Source 1 schema
Source 3  schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Q2Mediator

Q2Sources



Global-Local-as-View: example
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Previous LAV mapping of Source 1:
Q1Mediator: select street, name, price as roomPrice from Hotel where city='Paris'
Q1Sources:    select * from ParisHotel

Source 3  schema
Restaurants(city, street, 
name, rating)



Global-Local-as-View: example
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Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

Previous GAV mapping of Hotel:
Q2Mediator: select * from Hotel
Q2Sources:    select 'Paris' as city, street, name, null as descr, roomPrice as price from ParisHotel

union 
select 'Lyon' as city, street, name, roomDesc as descr, roomPrice as price from LyonHotel

Source 3  schema
Restaurants(city, street, 
name, rating)



Global-Local-as-View: example

ECE_5DA04_TP Ioana Manolescu 44

Source 1 schema
ParisHotel(street, name, 
roomPrice)

Mediator schema
SuperOffer(Hotel, Restaurant, hCity, 
hPrice, rRating) 

Source 2 schema
LyonHotel(street, name, 
roomDesc, roomPrice)

User query Query results

Sources hidden
to the 

applications/
users

Mediator schema
available to 

applications/users

New GLAV mapping: 
Q3Mediator: select * from SuperOffer where hCity='Lyon'
Q3Sources:   select lh.name, r.name, h.roomPrice * 0.5 as hPrice, r.rating as rRating

from LyonHotel lh, Restaurants r 
where r.city='Lyon' and r.name='Lion d'Or' and r.street=lh.street

Source 3  schema
Restaurants(city, street, 
name, rating)

This cannot be expressed
either in LAV or GAV.

This mapping says: "each result of Q3Sources leads to a SuperOffer in Lyon".
Other mappings could define more SuperOffers in Lyon, or in other cities, or with rRating=3... 



Query Processing in GLAV
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Source 1 
schema

Mediator schema

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

R1(...)       R2(...)       R3(...)       R4(...) ...

Source 1 
schema

Source 1 
schema

User queries asked on the 
mediator schema.
Q1Mediator, Q2Mediator, ... are 
queries over this schema
1. Apply LAV-style rewriting 

considering each QiMediator
as a view over the mediator
schema.
– This leads to rewritings 

of Q over QiMediator
relations (Q1Mediator, 
Q2Mediator, ...)

2. For each such rewriting, in 
GAV style, replace the symbol
QiMediator by the query
QiSources. 
– Then unfold à query

over the sources 
themselves. 

Examples: find all super offers in 
Paris? in Lyon? 



Concluding remarks on GLAV

• The most flexible approach
– Can express LAV, GAV, and more

• If a source changes or sources are added, as long as 
Q1Sources can be rewritten, applications will not be
impacted
– Only the "invisible" part of the system (the mappings) may

have to be adapted

• Query rewriting remains expensive because it
includes view-based query rewriting (NP-hard) as 
well as query unfolding (simple)
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Modern mediators: 
GLAV with RDF global schema
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Source 1 
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1 
schema

Source 1 
schema

Advantages:

q Heterogeneity of RDF allows a 
wide variety of data sources to be
mapped

q Ontology at the level of the
mediated (virtual) graph to 
describe application constraints

q E.g., subclass (specialization)
hierarchies of classes; property
typing (domain, range…)



Modern mediators: 
GLAV with RDF global schema
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Source 1 
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1 
schema

Source 1 
schema

Sample GLAV mappings:
1. Q1Sources: an SQL query

returning (x, y, z) tuples

Q1Mediator: 
(x, 'friend', y), (y, 'worksfor' z)
Q1Mediator "creates RDF out of 
relational data »

2. Q2Sources: a JSON query
returning (z) nodes

Q2Mediator: 
(z, 'type', Company) 

If common z value, the graphs built
by Q1,2Mediator connect!

Final lab next week. 


