
ARCHITECTURES FOR BIG DATA:
HANDLING HETEROGENEITY

Ioana Manolescu 1ECE_5DA04_TP

From databases to Big Data

ECE_5DA04_TP Ioana Manolescu 2

Relational DBMS:
i. Data stored on disk

ii. Single server
iii. Company server

Data stored
in memory

Main-memory
databases Distributed

main-memory
databases

Distribute
the data

across many
machines

Database
hosted and operated

by commercial provider

Cloud Databases
(or data services)

Distributed
databases

Mediator
systems

P2P
systems

Distributed
transactions

Disaggregated
architectures

From databases to Big Data

ECE_5DA04_TP Ioana Manolescu 3

Relational DBMS:

Schema: set of tables

Denormalize
the data

JSON
DBMS

XML
DBMS

Give up on
a priori
schema

Add semantics
to data

Allow multiple
object types

RDF
DBMS

Property
 graph
DBMS

Key-value
DBMS

Property
 graph + RDF

DBMS

Heterogeneous
data model DBMS:
mediator, data lake,

data space, data mesh

HETEROGENEOUS DATA
INTEGRATION: MEDIATOR SYSTEMS

ECE_5DA04_TP Ioana Manolescu 4

Common data model
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language,

and schema (also called source schemas).
– DM and QL may or may not differ across sources

• A mediator with its own DM, QL and mediator schema
– Queries are asked against the mediator schema

• Wrappers interface the sources to the mediator’s model

ECE_5DA04_TP Ioana Manolescu 5

Source 1
schema

Source n
schema

…

Mediator
schema

Query
Q

Mediator data model

Source 1
schema

Source n
schema…

Mediator
schema

Source n
data model

Query
Q

Source 1
data model

Wrapper Wrapper

Common data model
(sources+mediator)

Mediator systems
• A set of data sources, each with: data model, query language,

and schema (also called source schemas).
– DM and QL may differ across sources

• A mediator with its own DM, QL and mediator schema

• ACID: mostly read-only; size: small
• Control: Independent publishing; mediator-driven integration

ECE_5DA04_TP Ioana Manolescu 6

Source 1
schema

Source n
schema

…

Mediator
schema

Query
Q

Mediator data model

Source 1
schema

Source n
schema…

Mediator
schema

Source n
data model

Query
Q

Source 1
data model

Wrapper Wrapper

Many-mediator systems
• Each mediator interacts with a subset of

the sources
• Mediators interact w/ each other

– A mediator can play the role of a
source for processing a given query

ECE_5DA04_TP Ioana Manolescu 7

Mediator DM

Source 1
schema

Source 3
schema…

Mediator
schema

Source 3
data model

Query
Q

Source 1
data model

Wrapper 1 Wrapper 3

Source 4
schema

Source 6
schema…

Mediator
schema

Source 6
data model

Source 4
data model

Wrapper 4 Wrapper 6

Source 7
schema

Source 9
schema…

Mediator
schema

Source 9
data model

Source 7
data model

Wrapper 7 Wrapper 9

Mediator DM

Mediator DM

Q1.1 Q1.3

Q2

Q2.4 Q2.6

Many-mediator systems
• Each mediator interacts with a

subset of the sources
• Mediators interact w/ each other

ECE_5DA04_TP Ioana Manolescu 8

Mediator DM

Source 1
schema

Source 3
schema…

Mediator
schema

Source 3
data model

Q result

Source 1
data model

Wrapper 1 Wrapper 3

Source 4
schema

Source 6
schema…

Mediator
schema

Source 6
data model

Source 4
data model

Wrapper 4 Wrapper 6

Source 7
schema

Source 9
schema…

Mediator
schema

Source 9
data model

Source 7
data model

Wrapper 7 Wrapper 9

Mediator DM

Mediator DM

Q1.1 res. Q1.3 res.

Q2
result

Q2.4 res. Q2.6 res.

• Size: Small
• Data mapping/query translation

have complex logics

Connecting the source schemas
to the global schema

ECE_5DA04_TP Ioana Manolescu 9

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Wrapper 1 Wrapper 3

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

Wrapper 2

• Sample scenario:

Connecting the source schemas
to the global schema

ECE_5DA04_TP Ioana Manolescu 10

• Data only exists in the sources.
• Applications only have access to, and only query,

the mediator schema.

• How to express the relation between
– the mediator schema acccessible to applications, and
– the source schemas reflecting the real data
– so that a query over the mediator schema can be

automatically translated into a query over the source
schemas ?

• Three approaches exist (see next)

Connecting the source schemas to the
global schema: Global-as-view (GAV)

s1:ParisHotels(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price),

Restaurant(city, street, name, rating)

Defining Hotel as a view over the source schemas:
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel
Defining Restaurant as a view over the source schemas:
define view Restaurant as select * from s3:Restaurant

ECE_5DA04_TP Ioana Manolescu 11

Connecting the source schemas to the
global schema: Global-as-View

ECE_5DA04_TP Ioana Manolescu 12

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Query processing in global-as-view (GAV)
define view Hotel as
select 'Paris' as city, street, name, null as descr, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, roomDesc as descr, price
from s2:LyonHotel

Query:

select * from Hotel where city='Paris' and price<200 becomes:

select * from (select 'Paris' as city... union... select 'Lyon' as city...)
where city='Paris' and price < 200 which becomes:

select * from (select 'Paris' as city...)
where city='Paris' and price < 200 which becomes:

select * from s1:ParisHotels where price < 200

ECE_5DA04_TP Ioana Manolescu 13

Query processing in global-as-view (GAV)

ECE_5DA04_TP Ioana Manolescu 14

define view Hotel as
select 'Paris' as city, street, name, null as roomDesc, roomPrice as price
from s1:ParisHotels
union all
select 'Lyon' as city, street, name, descr as roomDesc, price from s2:LyonHotel
define view Restaurant as select * from s3:Restaurant

Query:
select h.street, r.rating from Hotels h, Restaurant r where h.city=r.city and
r.city='Lyon' and and h.street=r.street and h.price<200 becomes:
select h.street, r.rating from (select 'Paris' as city... from s1:ParisHotels
union all select 'Lyon' as city... from s2:LyonHotel) h, (select * from s3:Restaurant) r
where h.city=r.city and r.city='Lyon' and h.street=r.street and h.price<200

which becomes:
select h.street,r.rating from (select ... from s2:LyonHotel) h, s3:Restaurant r where
r.city='Lyon' and h.street=r.street and h.price<200 which becomes:
select h.street, r.rating from s2:LyonHotel h, s3.Restaurant r where r.city='Lyon' and
h.price<200 and h.street=r.street

Concluding remarks on global-as-view
(GAV)

• Query processing = view unfolding: replacing the
view name with its definition
– Just like queries over views in a centralized database
– Heuristic: push as many operators (select, project, join;

navigate…) on the sources as possible

• Weakness: changes in the data sources require
changes of the global schema
– In the worst case, all applications written based on this

global schema need to be updated
– Hard to maintain

ECE_5DA04_TP Ioana Manolescu 15

Global-as-View: Adding a new source

ECE_5DA04_TP Ioana Manolescu 16

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 4 schema
GrenobleHotel(street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Global-as-View: Removing a source (1)

ECE_5DA04_TP Ioana Manolescu 17

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Global-as-View: Removing a source (2)

ECE_5DA04_TP Ioana Manolescu 18

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
ParisPackage(hotelName, hotelAddress,
restaurantName, restaurantRating)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

If Source3.Restaurant withdraws, the ParisPackage relation in the
global schema becomes empty; applications cannot even access
Source1.ParisHotels, even though they are still available.

Connecting the source schemas to the
global schema: Local-as-view (LAV)

s1:ParisHotel(street, name, roomPrice)
s2:LyonHotel(street, name, roomDesc, roomPrice)
s3:Restaurant(city, street, name, rating)
Global: Hotel(city, street, name, descr, price), Restaurant(city, street, name, rating)

Defining s1:ParisHotels as a view over the global schema:
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
Defining s2:LyonHotel as a view over the global schema:
define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice
from Hotel where city='Lyon'
Defining s3:Restaurant as a view over the global schema:
define view s3:Restaurant as
select * from Restaurant

ECE_5DA04_TP Ioana Manolescu 19

Connecting the source schemas to the
global schema: Local-as-View

ECE_5DA04_TP Ioana Manolescu 20

Source 1 schema
ParisHotel(street, name,
roomPrice)

Source 3 schema
Restaurants(city, street,
name, rating)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

GAV and LAV have different expressive
power

• Some GAV scenarios cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress,

r.name as restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The view only contains (hotel, restaurant) pairs that are
on the same street in Paris

• Not possible to express this with LAV mappings
– LAV describes each source individually w.r.t. the global schema
– Not in correlation with data available in other sources !

ECE_5DA04_TP Ioana Manolescu 21

GAV and LAV have different expressive
power

• There exist LAV scenarios that cannot be
expressed in GAV

• Example: s3:MHotels(city, street, name, price) only has
data about Marseille hotels, s4:WHotels(city, street,
name price) has only data about Wien hotels
– Assume Hotels is defined as:

select * from Mhotels union all select * from WHotels
– A query about hotels in Rome will also be sent to s3 and s4,

although it will bring no results
– LAV query processing avoids this (see next)

ECE_5DA04_TP Ioana Manolescu 22

GAV and LAV have different expressive
power

• There exist GAV scenarios that cannot be expressed in LAV
• Example:

create view ParisPackage as
select ph.name as hotelName, ph.street as hotelAddress, r.name as
restaurantName, r.rating as restaurantRating
from s1:ParisHotel ph, s3:Restaurants r
where r.city='Paris' and r.street=ph.street

• The closest we can do is define s1.ParisHotel and s3.Restaurants each as a
projection over ParisPackage

• But this changes the semantics of ParisPackage:
– It does not express that only Paris restaurants are in ParisPackage
– Not possible to express that only (hotel, restaurants) on the same street are

available through the integration system
– ParisPackage becomes the cartesian product of ParisHotel with all

restaurants...

ECE_5DA04_TP Ioana Manolescu 23

Query processing in Local-as-View (LAV)
Simple scenario 1

define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

Query:
select street, name from Hotel

No equivalent rewriting exists.
• We should not use a rewriting that has some wrong answers (not

contained in those of the query)!
• We should aim for contained rewritings
• Better: Maximally contained rewritings, such as:

Select street, name from s1:ParisHotels

ECE_5DA04_TP Ioana Manolescu 24

Query processing in Local-as-View (LAV)
Simple scenario 2

define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

Query:
select street, name from Hotel

S1:ParisHotels has some useful answers. So does s7:CheapHotels.
They may overlap (or not); no way of knowing.

Maximally contained rewriting:

select street, name from s1:ParisHotels union
select street, name from s7:CheapHotels

ECE_5DA04_TP Ioana Manolescu 25

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query processing in Local-as-View (LAV)
Simple scenario 3

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query:
select street, name from Hotel where city=‘Paris’

Maximally contained rewriting:

None exists! ❌

ECE_5DA04_TP Ioana Manolescu 26

Query processing in Local-as-View (LAV)
Simple scenario 4

define view s7:CheapHotels as
select street, name, city
from Hotel where price<80

Query:
select street, name from Hotel where city=‘Paris’

Maximally contained rewriting:

select street, name from s7:CheapHotels where city=‘Paris’

ECE_5DA04_TP Ioana Manolescu 27

Query processing in Local-as-View (LAV)
Simple scenario 5

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query:
select street, name, price from Hotel where city=‘Paris’

Maximally contained rewriting:

None exists! ❌

ECE_5DA04_TP Ioana Manolescu 28

Query processing in Local-as-View (LAV)
Observation

A view may fail to be usable to answer a query if :
- The query applies a restriction the view does not apply

and the rewriting cannot apply it either
- And/or, the view fails to project (store) an attribute

that the query needs

ECE_5DA04_TP Ioana Manolescu 29

define view s7:CheapHotels as
select street, name
from Hotel where price<80
Query:
select street, name, price
from Hotel where city=‘Paris’

define view s7:CheapHotels as
select street, name
from Hotel where price<80

Query:
select street, name
from Hotel where city=‘Paris’

Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice from Hotel
where city='Lyon’

define view s3:Restaurant as
select * from Restaurant

Query:
select h.street, h.price, r.rating
from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

ECE_5DA04_TP Ioana Manolescu 30

Query processing in Local-as-View (LAV)
define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris’

define view s2:LyonHotel as
select street, name, descr as roomDesc, price as roomPrice from Hotel
where city='Lyon’

define view s3:Restaurant as
select * from Restaurant

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r where
r.city=h.city and h.street=r.street

ECE_5DA04_TP Ioana Manolescu 31

Step 1: identify
potentially useful
views

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that may be
used to answer the query (one view per table):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and each view,
check:

– If the view returns the attributes we
need:
• Those returned by the query, and
• Those on which possible query

joins are based
– If the view selections (if any) are

compatible with those of the query
If one condition is not met, discard the view
combination.

define view s1:ParisHotels as
select street, name, price as roomPrice
from Hotel where city='Paris'
The query needs:
– street, price, rating (returned): the view

provides them
– city and street for the join: street is

provided, city is not (but it is a constant, thus
known)

The view has a selection on the city which the
query does not have à The view provides part
of the data needed by the query. The view
selection is compatible with the query.
The view s1:ParisHotels is OK.

define view s3:Restaurant as select * from
Restaurant
The view s3:Restaurants is OK.
The view combination s1:ParisHotels,
s3:Restaurants is OK provided that
Restaurant.city is set to Paris.

ECE_5DA04_TP Ioana Manolescu 32

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one
view per query table):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views,
possibly selections and projections à
rewriting

Query rewriting using s1:ParisHotels and
s3:Restaurant:
select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street

This is a partial rewriting, and so is:

Query rewriting using s2:LyonHotel and
s3:Restaurant:
select h.street, h.price, r.rating
from s2:LyonHotels h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street

ECE_5DA04_TP Ioana Manolescu 33

Query:
select h.street, h.price, r.rating from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Query processing in Local-as-View (LAV)

Step 2: generate view combinations that
may be used to answer the query (one
view per query table):

s1:ParisHotels and s3:Restaurant
s2:LyonHotels and s3:Restaurant

Step 3: for each view combination and
each view, check:

[...]
If one condition is not met, discard
the view combination.

Step 4: for each view combination, add
the necessary joins among the views,
possibly selections and projections à
rewriting
Step 5: return the union of the rewritings
thus obtained

Full query rewriting:

select h.street, h.price, r.rating
from s1:ParisHotels h and s3:Restaurant r
where r.city='Paris' and h.street=r.street
union all
select h.street, h.price, r.rating
from s2:LyonHotel h and s3:Restaurant r
where r.city='Lyon' and h.street=r.street

ECE_5DA04_TP Ioana Manolescu 34

Query processing in Local-as-View (LAV)
define view s1:ParisHotels as... from Hotel where city='Paris'
define view s2:LyonHotel as... from Hotel where city='Lyon'
define view s3:Restaurant as select * from Restaurant
Query:
select h.street, h.price, r.rating
from Hotel h, Restaurant r
where r.city=h.city and h.street=r.street

Rewriting of the query using the views:

select h1.street, h1.price, r3.rating
from s1:ParisHotels h1, s3:Restaurant r3
where h1.city=r3.city and h1.street=r3.street

union all

select h2.street, h2.price, r3.rating
from s2:LyonHotels h2, s3:Restaurant r3
where h2.city=r3.city and h2.street=r3.street

ECE_5DA04_TP Ioana Manolescu 35

Concluding remarks on
Local-as-View (LAV)

Query processing
• The problem of finding all rewritings given the source and

global schemas and the view definitions = view-based
query rewriting, NP-hard in the size of the (schema+view
definitions).
– These are often much smaller than the data

The schema definition is more robust:
• One can independently add/remove sources from the

system without the global schema being affected at all
(see next)

• Thus, no application needs to be aware of the changes in
the schema

ECE_5DA04_TP Ioana Manolescu 36

Local-as-View: adding a new source

ECE_5DA04_TP Ioana Manolescu 37

Source 1 schema
ParisHotels(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Source 4 schema
GrenobleHotel(street,
name, rating)

We add a new mapping
relating the new source
to the global schema.
Invisible to the applications!

Local-as-View: Removing a source

ECE_5DA04_TP Ioana Manolescu 38

Source 1 schema
ParisHotels(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurants(street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

We remove the mapping
of the removed source.
ParisHotels still available.
Invisible to the applications!

Connecting the source schemas to the global
schema: Global-Local-as-View (GLAV)

Generalizes both GAV and LAV
1 mapping = 1 pair (query over 1 or several sources schemas,

query over the mediator schema)

Semantics: there is a tuple in QiMediator(...) for each result of QiSources(...)
• A GAV mapping is a particular case of GLAV mapping where QMediator is exactly

one mediator relation
• A LAV mapping is a particular case of GLAV mapping where QSources is exactly

one source relation

ECE_5DA04_TP Ioana Manolescu 39

Q1Mediator(m:r1, m:r2, m:r3, ...) ßà Q1Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q2Sources(s1:t1, s2:t1, ...)
Q2Mediator(m:r1, m:r2, m:r3, ...) ßà Q3Sources(s1:t1, s2:t1, ...)

Connecting the source schemas to the global
schema: Global-Local-as-View (GLAV)

ECE_5DA04_TP Ioana Manolescu 40

Source 1 schema
Source 3 schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Q1Mediator

Q1Sources

Connecting the source schemas to the global
schema: Global-Local-as-View (GLAV)

ECE_5DA04_TP Ioana Manolescu 41

Source 1 schema
Source 3 schema

Mediator schema

Source 2 schema

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Q2Mediator

Q2Sources

Global-Local-as-View: example

ECE_5DA04_TP Ioana Manolescu 42

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Previous LAV mapping of Source 1:
Q1Mediator: select street, name, price as roomPrice from Hotel where city='Paris'
Q1Sources: select * from ParisHotel

Source 3 schema
Restaurants(city, street,
name, rating)

Global-Local-as-View: example

ECE_5DA04_TP Ioana Manolescu 43

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
Hotel(city, street, name, descr, price)
Restaurant(city, street, name, rating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

Previous GAV mapping of Hotel:
Q2Mediator: select * from Hotel
Q2Sources: select 'Paris' as city, street, name, null as descr, roomPrice as price from ParisHotel

union
select 'Lyon' as city, street, name, roomDesc as descr, roomPrice as price from LyonHotel

Source 3 schema
Restaurants(city, street,
name, rating)

Global-Local-as-View: example

ECE_5DA04_TP Ioana Manolescu 44

Source 1 schema
ParisHotel(street, name,
roomPrice)

Mediator schema
SuperOffer(Hotel, Restaurant, hCity,
hPrice, rRating)

Source 2 schema
LyonHotel(street, name,
roomDesc, roomPrice)

User query Query results

Sources hidden
to the

applications/
users

Mediator schema
available to

applications/users

New GLAV mapping:
Q3Mediator: select * from SuperOffer where hCity='Lyon'
Q3Sources: select lh.name, r.name, h.roomPrice * 0.5 as hPrice, r.rating as rRating

from LyonHotel lh, Restaurants r
where r.city='Lyon' and r.name='Lion d'Or' and r.street=lh.street

Source 3 schema
Restaurants(city, street,
name, rating)

This cannot be expressed
either in LAV or GAV.

This mapping says: "each result of Q3Sources leads to a SuperOffer in Lyon".
Other mappings could define more SuperOffers in Lyon, or in other cities, or with rRating=3...

Query Processing in GLAV

ECE_5DA04_TP Ioana Manolescu 45

Source 1
schema

Mediator schema

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

R1(...) R2(...) R3(...) R4(...) ...

Source 1
schema

Source 1
schema

User queries asked on the
mediator schema.
Q1Mediator, Q2Mediator, ... are
queries over this schema
1. Apply LAV-style rewriting

considering each QiMediator
as a view over the mediator
schema.
– This leads to rewritings

of Q over QiMediator
relations (Q1Mediator,
Q2Mediator, ...)

2. For each such rewriting, in
GAV style, replace the symbol
QiMediator by the query
QiSources.
– Then unfold à query

over the sources
themselves.

Examples: find all super offers in
Paris? in Lyon?

Concluding remarks on GLAV

• The most flexible approach
– Can express LAV, GAV, and more

• If a source changes or sources are added, as long as
Q1Sources can be rewritten, applications will not be
impacted
– Only the "invisible" part of the system (the mappings) may

have to be adapted

• Query rewriting remains expensive because it
includes view-based query rewriting (NP-hard) as
well as query unfolding (simple)

ECE_5DA04_TP Ioana Manolescu 46

Modern mediators:
GLAV with RDF global schema

ECE_5DA04_TP Ioana Manolescu 47

Source 1
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1
schema

Source 1
schema

Advantages:

q Heterogeneity of RDF allows a
wide variety of data sources to be
mapped

q Ontology at the level of the
mediated (virtual) graph to
describe application constraints

q E.g., subclass (specialization)
hierarchies of classes; property
typing (domain, range…)

Modern mediators:
GLAV with RDF global schema

ECE_5DA04_TP Ioana Manolescu 48

Source 1
schema

Mediator schema: RDF graphs

User query Query results

Q2Mediator

Q2Sources

Q1Mediator

Q1Sources

Q3Mediator

Q3Sources

Source 1
schema

Source 1
schema

Sample GLAV mappings:
1. Q1Sources: an SQL query

returning (x, y, z) tuples

Q1Mediator:
(x, 'friend', y), (y, 'worksfor' z)
Q1Mediator "creates RDF out of
relational data »

2. Q2Sources: a JSON query
returning (z) nodes

Q2Mediator:
(z, 'type', Company)

If common z value, the graphs built
by Q1,2Mediator connect!

Final lab next week.

