
INF280: Competitive programming

Louis JACHIET 1 / 25

Competitive programming

Competitive programming

Competitive programming is about solving problems.

Let us solve a first problem!

Louis JACHIET 2 / 25

Competitive programming

Competitive programming is about solving problems.

Let us solve a first problem!

Louis JACHIET 2 / 25

Multiple types of contest

• IOI

• ICPC (including SWERC)

• Top Coder

• USACO

• ...

Different parameters

• team or individual

• duration

• partial points

• ...

Louis JACHIET 3 / 25

Typical contest

A typical contest is generally a list of problems.

Problem statement

• a short story describing the problem

• a specification of the input and output (usually on stdin/stdout)

• limits (time / RAM / etc.)

• In-out example

Solution

A solution is a source code that gives the right outputs for the

given inputs using the time and memory specified.

Louis JACHIET 4 / 25

Why follow this course?

Competitive programming develops a lot of important skills:

• Algorithmic thinking

• Programming and Debugging

• Learning to describe algorithms

• Job interview style of technical questions

It is also fun :)

In this course you will also:

• familiarize yourself with C++

• develop your pseudo code skills

• learn how to methodically solve problems

Louis JACHIET 5 / 25

Why follow this course?

Competitive programming develops a lot of important skills:

• Algorithmic thinking

• Programming and Debugging

• Learning to describe algorithms

• Job interview style of technical questions

It is also fun :)

In this course you will also:

• familiarize yourself with C++

• develop your pseudo code skills

• learn how to methodically solve problems

Louis JACHIET 5 / 25

Organization of a typical course

∼0-15 min question part

Answer questions you might have

∼30-45 min test part

Test on a set of “prepared” exercises (either exercises already

studied or direct applications of studied algorithms)

∼15-45min lesson part

Learn some methods or algorithms

∼1h30 coding

Solving exercise with code, to develop fast programming skills.

Louis JACHIET 6 / 25

Grading

Graded exercises in class

Every class (except today) will have a test on computers

Final exam

The final exam will be 3h exam on a computer

Final grade

Your grade will be computed using the graded exercises in class

and the final exam.

Louis JACHIET 7 / 25

Final exam

• individual participation

• 3 hours

• around 6 problems of varying difficulty

• one programming language: C++

• no Internet but some documentation allowed

Final exam on the 26th of June afternoon!

Louis JACHIET 8 / 25

Graded exercises in class

• individual participation

• 30 min

• 3 problems

• one programming language: C++

• no Internet but some documentation allowed

• 2 of the problems are selected from the set of exercises given

in a previous class

• the last problem is an application of an exercise seen in class

Louis JACHIET 9 / 25

Solving competitive programming

problems

Solving a problem requires to

• (optional) Reading the problem quickly to understand the

context

• Reading the problem very carefully

• Finding an algorithm solving the problem within the specified

limits

• Writing the code

• Testing the code on examples

• Submitting your program

• (optional) Debugging

Louis JACHIET 10 / 25

Solving competitive programming

problems

Program submission

Submitting programs

• You submit the source code on a website

• The system compiles your and then evaluates your programs

on unknown inputs while checking the limits

• After a few seconds or minutes the system produces a verdict

If the verdict is Accepted you have just solved this problem.

Louis JACHIET 11 / 25

Submitting programs

• You submit the source code on a website

• The system compiles your and then evaluates your programs

on unknown inputs while checking the limits

• After a few seconds or minutes the system produces a verdict

If the verdict is Accepted you have just solved this problem.

Louis JACHIET 11 / 25

Other verdicts

Compilation error.

It means your program does not compile...

Time limit exceeded / Memory limit exceeded

A recent CPU can process 5× 107 C++ loop iterations per second

Also possible: infinite loop, memory corruption...

Runtime error.

Something went very wrong: assert failure, out of bounds,

segfault, division by zero, etc.

Wrong answer.

You have the wrong algorithm or a bug...

Presentation error.

Not the right output format (e.g. extra space, caps, etc.).
Louis JACHIET 12 / 25

Solving competitive programming

problems

Testing your program

Testing programs

Cons:

• testing takes time

• it does not guarantee the absence of bugs

Pros:

• refused solutions incur a 20 min penalty

• it might take a few minutes to wait on a verdict

• the verdict itself is not enough to know what is happening

You should test your program in a quick but thorough manner.

Louis JACHIET 13 / 25

Testing programs

Cons:

• testing takes time

• it does not guarantee the absence of bugs

Pros:

• refused solutions incur a 20 min penalty

• it might take a few minutes to wait on a verdict

• the verdict itself is not enough to know what is happening

You should test your program in a quick but thorough manner.

Louis JACHIET 13 / 25

Testing programs

Cons:

• testing takes time

• it does not guarantee the absence of bugs

Pros:

• refused solutions incur a 20 min penalty

• it might take a few minutes to wait on a verdict

• the verdict itself is not enough to know what is happening

You should test your program in a quick but thorough manner.

Louis JACHIET 13 / 25

How to test?

You have limited time...

• no need to generate tests

• no need to write many tests

• adapt the amount of testing to the complexity of your program

... but you do want to test

• use the sample in and out

• write several tests with several outputs

• compute in advance the results

• try to cover as many edge cases as possible

Louis JACHIET 14 / 25

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.

Louis JACHIET 15 / 25

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.

Louis JACHIET 15 / 25

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.

Louis JACHIET 15 / 25

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.Louis JACHIET 15 / 25

Solving competitive programming

problems

Writing code

When you have the idea

Try to reformulate the idea for your solution:

• imagine explaining the idea to a peer

• look for ways to simplify the idea

• does your idea relies on a standard algorithm?

• if so, can you match exactly the algorithm description?

• can you add special values to match the edge cases?

Louis JACHIET 16 / 25

Using pseudo code

Writing pseudo-code has several benefits

• you can concentrate on the idea of the algorithm and not the

implementation details

• you can check that your idea works (correct answer and com-

plexity)

• and in a SWERC competition you free the computer

On simpler problems you can avoid writing pseudo-code or just

give the big picture.

Louis JACHIET 17 / 25

Classical programming errors

• using a non-strict comparison where a strict was required

• making a mistake in a constant (e.g. 100000 instead of

1000000)

• not allocating enough memory (e.g. int t[1000] and then

accessing t[1000])

• not checking for overflow or float type that are not precise

enough

• comparing two different types of things (e.g.

idCow < nbCarrots)

• swapping xs and ys in a function call

• mixing variable and constant

Louis JACHIET 18 / 25

Adopt good and more importantly STANDARD practices

• always use semi intervals [a; b[

• write large constants as product e.g. 1000 * 1000

• constants should be defined with consts, e.g.

const int MAX_NB_COWS = 42;

• note precisely which cells you might access in an array

• compute the maximal values for all dimensions

• always use meaningful variable names (e.g. idCow, nbCows,

etc.)

• fix function parameters order, e.g. f(x,y) and t[y][x]

• store the input in global variables / arrays

Louis JACHIET 19 / 25

Know your types!

For integer types, you can expect:

• char, 8 bits, −27 to 27 − 1

• int, 32 bits, −231 to 231 − 1 not standard

• long long, 64 bits, −263 to 263 − 1

• int128, 128 bits, −2127 to 2127 − 1

There are also the unsigned versions (only positive numbers).

For float types, we have 1 bit for the sign and:

• float, 23 bits fraction, 8 bits exponent

• double, 52 bits fraction, 11 bits exponent

• long double, 64 bits fraction, 15 bits exponent

Louis JACHIET 20 / 25

Know your types!

For integer types, you can expect:

• char, 8 bits, −27 to 27 − 1

• int, 32 bits, −231 to 231 − 1 not standard

• long long, 64 bits, −263 to 263 − 1

• int128, 128 bits, −2127 to 2127 − 1

There are also the unsigned versions (only positive numbers).

For float types, we have 1 bit for the sign and:

• float, 23 bits fraction, 8 bits exponent

• double, 52 bits fraction, 11 bits exponent

• long double, 64 bits fraction, 15 bits exponent

Louis JACHIET 20 / 25

Know your types (string)!

C strings

A string in C is an array of char ended by a value 0 (also written

'\0').

C++ strings

C strings work in C++ but C++ also has a string object. You

can use string(myCstring) to create a C++ string out of a C

string (this will be useful for comparisons!).

Louis JACHIET 21 / 25

Know your types (string)!

C strings

A string in C is an array of char ended by a value 0 (also written

'\0').

C++ strings

C strings work in C++ but C++ also has a string object. You

can use string(myCstring) to create a C++ string out of a C

string (this will be useful for comparisons!).

Louis JACHIET 21 / 25

Use C+ not C++

C++ is a very complete language:

• object-oriented programming

• templates

• exception handling

• lambda functions

We DON’T want those for competitive programming.

We want C+, which is C and:

• auto, const, boolean

• references, foreach

• and all of the STL

Louis JACHIET 22 / 25

Use C+ not C++

C++ is a very complete language:

• object-oriented programming

• templates

• exception handling

• lambda functions

We DON’T want those for competitive programming.

We want C+, which is C and:

• auto, const, boolean

• references, foreach

• and all of the STL

Louis JACHIET 22 / 25

Your first problems

Reminder on reading input

int d ; scanf("%d",&d); // reads the integer d

double f ; scanf("%lf",&f); // read the double f

char t[256] ; // remember that strings are null

// terminated when allocating space

scanf("%s",t); // reads a s string on the input

// until a space or a \n

scanf("%[^\n]",t); // reads a string t on the input

// until a \n (i.e. does not stop

// at a space). DOES NOT READ THE \n

scanf("%[^\n]\n",t);// reads a line, t ends with \0 not \n

scanf("%d %lf\n",&d,&f); // read an int followed by a

// double and eats the final \n (important if you

// want to read a string after)

Note that scanf returns the numbers of items read (-1 when it

has reached the EOF)Louis JACHIET 23 / 25

Reminder on writing output

printf("%d\n",42); // prints 42 and a new line symbol

printf("%s","Hello !"); // prints "Hello !" but

// no new line

printf("%lf",42.5); // prints 42.5

printf("%.2lf",42.5); // prints 42.50

// (.2 = 2 digits precision after .)

printf("%02d",2); // prints 02

// (%2d means at least 2 digits)

printf("%02d",42); // prints 42

printf("%02d",123); // prints 123 (at least 2 digits)

Louis JACHIET 24 / 25

Today’s exercises

Today’s exercises

The exercises are simpler in term of algorithm but:

• the input is hard to read

• double-check the types you use

Louis JACHIET 25 / 25

	Competitive programming
	Solving competitive programming problems
	Program submission
	Testing your program
	Writing code

	Your first problems
	Today's exercises

