INF280: Competitive programming

Basic graph traversals

Louis Jachiet

Louis JACHIET



Introduction

You all know graphs:

e Set of nodes N
e Setof edges EC N x N
e Edges can be undirected or directed, i.e., (a, b) # (b, a)

N {A B,C}

e E {(AB),(A Q) (B, C)}

Louis JACHIET 2/



Data Structures

Several options to represent graphs:

e Adjacency matrix:
e bool GIMAXN][MAXN];
e G[x][y] is true if an edge between node x and y exists
e Replace bool by int to represent weighted edges
e Adjacency list:
e vector <int> Adj[MAXN];
e yis in Adj[x] if an edge between node x and y exists
e Pairs to represent weights
e Edge list:
e vector<pair<int, int> > Edges;
e Edges contains a pair of nodes if an edge exists between
them
e Nodes and edges may also be custom structs or classes

Louis JACHIET 3/20



Simple Traversals



Simple Traversals

Depth-First Search



Depth-First Search

Visit each node in the graph once:

e Recursive implementation below
e Manage stack yourself for iterative version

e First visit child nodes then siblings

int state[ID_NODE_MAX] ;
const int NOT_VISITED = O,
void dfs(int node) {
if (state[node] == NOT_VISITED) {
state[node] = IN_VISIT ;
for(auto v : nxt[node])
dfs(v);
state[node] = VISITED ;

IN_VISIT = 1 , VISITED = 2 ;

3

Louis JACHIET



Applications of DFS

Determine a topological order of nodes

Detect if a cycle exists

Check reachability between nodes
e Decompose graph into connected components

e Decompose graph in strongly connected components

Examples: https://visualgo.net/dfsbfs

Louis JACHIET 5/ 20


https://visualgo.net/dfsbfs

Tarjan representation of DFS

© ®
© © ()
&) ®

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6/ 20



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET




Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET




Tarjan representation of DFS

Backward

Exercise: compute Strongly Connected Component

Louis JACHIET




Simple Traversals

Breadth-First Search



Breadth-First Search

Visit each node in the graph once:
e Similar to DFS, but replaces stack by queue

int seen[NB_NODE_MAX] ;
void bfs(int start) {
vector<int> todo = {start} ;
seen[start] = true ;
for(size_t id = 0 ; id < todo.size() ; id++)
for(auto v : nxt[todo[id]])
if(!seenlv]) {
seen[v] = true;
todo.push_back(v) ;
}

Louis JACHIET 7/20



Applications of BFS

e Shortest path search

e Stop processing when a given node d was found

e Minimizes number of hops, i.e., all edges have same
weight or 0-1 Weights

e Generalization follows next

e Examples: https://visualgo.net/dfsbfs

Louis JACHIET 8/ 20


https://visualgo.net/dfsbfs

Simple Traversals

0-1 Breadth-First Search



Breadth-First Search with edges of bounded distance

vector<int> nodes_at [MAX_DISTANCE] ;
void bfs(int start) {
fill(dist,dist+NB_NODES_MAX, INF);
nodes_at [0] {start} ;
dist[start] = 0 ;
for(int cur_dist = 0 ; cur_dist < MAX_DISTANCE ; cur_dist++ )
for(size_t id = 0 ; id < nodes_at[cur_dist].size() ; id++) {
const int node = nodes_at[cur_dist] [id] ;
if (dist[node] == cur_dist)
for(auto [neigh,len] : nxt[nodel)
if (dist [neigh] > cur_dist+len) {
dist[neigh] = cur_dist+len ;

nodes_at [dist [neigh]] .push_back(neigh) ;
¥

Louis JACHIET 9/ 20



Finding Paths




Finding Paths

Dijkstra



e Dijkstra’s algorithm generalizes BFS
e Constraint: all edges need to have non-negative weights

e Use a priority queue to choose which node to examine next

Louis JACHIET 10 / 20



Finding Paths

Bellman-Ford



Bellman-Ford

e Dijkstra's algorithm is limited to non-negative edge weights

e Bellman-Ford extends this to general edge weights

Louis JACHIET 11 /20



Bellman-Ford

e Dijkstra's algorithm is limited to non-negative edge weights

e Bellman-Ford extends this to general edge weights

Bellman-Ford DP problem: “g(n, k) is the minimal distance of n
from the source node using k intermediate edges”

Louis JACHIET 11 /20



Bellman-Ford

e Dijkstra's algorithm is limited to non-negative edge weights

e Bellman-Ford extends this to general edge weights

Bellman-Ford DP problem: “g(n, k) is the minimal distance of n
from the source node using k intermediate edges”

Bellman-Ford can also be seen as a way to solve a linear system

with inequalities of the form: x; + ¢; < y;

Louis JACHIET 11 /20



Bellman-Ford Algorithm

int from[MAX_NB_EDGES], to[MAX_NB_EDGES],weight[MAX_NB_EDGES] ;
int dist[MAX_PATH_LENGTH+1] [MAX_NB_NODES] ;
bool BellmanFord(int root) {
£i11(dist[0] ,dist [MAX_PATH_LENGTH],INF);
dist [0] [root] = 0;
for(int len = 0 ; len < MAX_PATH_LENGTH ; len++)
for (int e = 0 ; e < nb_edges ; et++)
dist[len+1] [to[e]] = min(dist[len+1] [to[el],
dist[len] [from[e]l]+weight[e]);
// to be explained later; check for negative cycles
return dist[MAX_PATH_LENGTH+1] [target];

e replace dist[1] [n] with dist[n] = min/(dist[1] [n])
e MAX PATH LENGTH is at most nb_nodes long



Bellman-Ford Algorithm

int dist[MAX_NB_NODES];
void BellmanFord(int root, int target) {
£fill(dist, dist+MAX_NB_NODES, INF);
dist[root] = 0;
for(int k = 0 ; k < nb_nodes - 1 ; k++) // N - 1 times
for (int 1 = 0 ; i < nb_edges ; i++)
dist[to[i]] = min(dist[to[i]], dist[from[i]]+weight[i]);

Louis JACHIET 13 /20



Bellman-Ford Algorithm

bool detect_negative_cycle_BellmanFord(int root, int target) {
£i11(dist, dist+MAX_NB_NODES, INF);
dist[root] = 0;
for(int k = 0 ; k < nb_nodes - 1 ; k++) // N - 1 times
for (int 1 = 0 ; i < nb_edges ; i++)
dist[to[i]] = min(dist[to[i]l], dist[from[i]]+weight[i]);
// mow time to check for negative cycles:
int dist_target = dist[targetl; // copy distance
for(int k = 0 ; k < nb_nodes - 1 ; k++) // N - 1 times
for (int 1 = 0 ; i < nb_edges ; i++)
dist[to[i]] = min(dist[to[i]], dist[from[i]]+weight[i]);
return dist[target] < dist_target ; // negative cycle?
}

Louis JACHIET 14 /20



Finding Paths

Floyd-Warshall



Floyd-Warshall

e Dijkstra and Bellman-Ford compute shortest paths

e From a single source (root)
e To all other (reachable) nodes
e This is known as: single-source shortest path problem

e Floyd-Warshall extends this to compute the shortest paths
between all pairs of nodes

e This is known as: all-pairs shortest path problem

Louis JACHIET 15 /20



Floyd-Warshall

e Dijkstra and Bellman-Ford compute shortest paths

e From a single source (root)
e To all other (reachable) nodes
e This is known as: single-source shortest path problem

e Floyd-Warshall extends this to compute the shortest paths
between all pairs of nodes

e This is known as: all-pairs shortest path problem

Floyd-Warshall answers the DP problem: “q(start,end,pivot): what
is the shortest path between start and end going through
intermediate nodes 1..pivot?”

Louis JACHIET 15 /20



Floyd-Warshall Algorithm

int dist[MAX_NB_NODES] [MAX_NB_NODES] ;
// We store q(start,end,pivot) in dist[start][end]
void FloydWarshall() {
// initialize distance
£i11(dist[0] ,dist [MAX_NB_NODES],INF);
for (int e = 0 ; e < nb_edges ; e++)
dist[fr[e]l]l [tol[e]] = min(dist[fr[e]][tole]l], weight[el);
// mow compute
for(int pivot = 0 ; pivot < nb_nodes ; pivot++)
for(int start = 0 ; start < nb_nodes ; start++)
for(int end = 0 ; end < nb_nodes ; end++)
dist[start] [end] = min(dist[start] [end],
dist[start] [pivot]+dist [pivot] [end]) ;
}
// WARNING, the order of the loops %s important!!!
// for french speakers Pivot Début Fim => PDF algorithm

Louis JACHIET 16 / 20



Finding Paths

Improvements



Keeping track of the path

We only considered the length of the path so far:

e All of the above algorithms can track the actual shortest path
e This allows to print each edge/node along the path
e Basic idea:

e Introduce an array int Predecessor [MAXN]
(Use two-dimensional array for Floyd-Warshall)

e Updated whenever Dist[v] changes

e Simply set to the new predecessor u

Louis JACHIET 17 /20



Heuristics — A* Search

Heuristics may speed-up the path search

e Bellman-Ford and Floyd-Warshall equally explore all
possibilities
e Dijkstra prefers nodes with shorter distance
e Basic idea behind A* Search:
e Extension to Dijkstra’s algorithm
e Introduce an estimation of the remaining distance
e Prefer nodes with minimal estimated remaining distance
e Advantages

e May converge faster than Dijkstra
e Can be used to compute approximate solutions

(trading speed for precision)

Louis JACHIET 18 / 20



Eulerian Circuits




Eulerian Circuits

Eulerian path

Use every edge of a graph exactly once. Start and end may differ

Eulerian circuit

Use every edge exactly once. Start and end at the same node

Idea of the algorithm

If you enter a node of even degree you are sure that you can go
out, decreasing the degree of unused by 2. This gives a first
path/circuit. If your graph is connected, you can have remaining
edges unexplored, but at least one in your current path, so you can
re-explore them.

Louis JACHIET 19 /20



We will see more graph algorithms next week...

Louis JACHIET



	Simple Traversals
	Depth-First Search
	Breadth-First Search
	0-1 Breadth-First Search

	Finding Paths
	Dijkstra
	Bellman-Ford
	Floyd-Warshall
	Improvements

	Eulerian Circuits

