INF280: Competitive programming

More advanced graph algorithms

Louis Jachiet

Louis JACHIET



Eulerian Circuits



Eulerian Circuits

We study undirected graphs and assume they are connected:

e Eulerian path:
Use every edge of a graph exactly once. Start and end may differ

e Eulerian circuit:
Use every edge exactly once. Start and end at the same node

e Conditions to find Eulerian path:

e All nodes have even degree or
e Precisely two nodes have odd degree

e For Eulerian circuit, all nodes must have even degree

Louis JACHIET 2/

N
N



Hierholzer’s Algorithm for Eulerian Paths (assuming they exist)

set<int> Adj[MAXN]; vector<int> Circuit;

void Hierholzer (int v) {

while (!Adj[v].empty()) { // follow edges until stuck
int tmp = *Adj[v].begin();
Adj[v].erase(tmp); // remove edge, modifying graph

Adj[tmp].erase(v);
Hierholzer (tmp);

}

Circuit.push_back(v); // got stuck: append node at the end of circuit
}
void Hierholzer_main() {

int v = 0; // find node with odd degree, else start with node 0O

for (int u=0; u < N && v == 0; u++)

if (Adj[ul.size() & 1)
v o= u; // node with odd degree

Hierholzer (v);

Louis JACHIET 3/22


https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html

Implicit graphs



Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:

Louis JACHIET 4 /22



Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:

e directly an application of a graph algorithm

Louis JACHIET 4 /22



Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:

e directly an application of a graph algorithm

e a modified version of a graph algorithm

Louis JACHIET 4 /22



Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:

e directly an application of a graph algorithm
e a modified version of a graph algorithm

e an application of a graph algorithm over a hidden graph

Louis JACHIET 4 /22



Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:

e directly an application of a graph algorithm
e a modified version of a graph algorithm

e an application of a graph algorithm over a hidden graph

= describing your problem as a graph problem wusually helps

Louis JACHIET 4 /22



Examples 1/3

Rabbit

We have a graph where nodes are cells of the grid and edge are between nodes that are
neighbors in the grids. Find the path between two given points?

Louis JACHIET 5/ 22



Examples 2/3

Piggyback

Given a weighted graph G defining a distance d between nodes.

Find the node v minimizing Bd(v,1) + Ed(v,2) + Pd(v, n).

Louis JACHIET 6 /22



Moocast

G is the graph where nodes are cows and an edge (a, b) exists when b can hear a.

Find the node that can reach most other nodes.

Louis JACHIET 722



Why explicit the implicit graphs?

Help you reason over the problem:

e is it exactly the same problem?

e what are the properties of this implicit graph?

e can the problem on the implicit graph be simplified?
e can we reduce the number of nodes? of transitions?

e are we lacking important properties from the original graph?

Help you code the problem

The more standard algorithms you use the less likely you are to have bugs.

Louis JACHIET 8/22



Union-find




Union-Find purpose

Maintain a collection of non-overlapping sets with the following operations

e Add a new element, in its own set
e Get the set of an element

e Merge two sets

Queries we might need to answer

e Given two elements, are they in the same component?
e What the size of the component of x?

e What is the number of components?

Louis JACHIET 9/22



repr[x] ; // initialized to -1
int find(int x) {
if (repr[x] < 0) return x;

return repr[x]=find(reprl[x]); // path compression

+

bool unite(int a, int b) {
a = find(a);
b = find(b);

if(a==b) { return false; }

if (reprlal > repr(bl) { swap(a,b); } // size
reprlal += repr([b] ;

repr[b] = a;

return true;

Louis JACHIET 10 / 22



Minimum Spanning Trees (MST)




Minimum spanning tree

Spanning tree

Given a connected graph G = (V/, E) a spanning tree is a selection of E’ C E such
that E’ forms a tree covering all nodes in G.

MST Problem

Find the spanning tree that has minimal total weight.

Properties

The MST also minimizes the maximal weight of an edge.

Louis JACHIET 11 /22



Example: Minimum Spanning Trees

https://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg, Dcoetzee, public domain

uis JACHIET 12 / 22



https://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg

Computing MST

Kruskal’s algorithm

For all edges (a, b) by increasing weight

e if a and b not in the same component
e link aand b

Louis JACHIET 13 / 22



Computing MST

Kruskal’s algorithm
For all edges (a, b) by increasing weight

e if a and b not in the same component
e link aand b

Prim’s algorithm

Make a modified Dijkstra:

e maintain a set S of nodes, initialized as {x} for any node x

e while there remains a node not in S:
e select an edge {n,n'} € EN(S,V \ S) minimizing w(n, n")
e add {n,n'} to E’

Louis JACHIET 13 / 22



vector<pair<weight, pair<int,int> > > edges;
/S
sort (edges.begin() ,edges.end());
long long weight_mst = O;
for(auto [w,p] : edges)
if (unite(p.first,p.second))
weight_mst += w;

Louis JACHIET



long long dist[NB_NODES_MAX];

/7

fill(dist,dist+NB_NODES_MAX, INF) ;

set<pair<long long,int>> p_queue; // (weight, node)

p_queue.insert (make_pair(0,start_node));
dist[start_node] = 0;
while(!p_queue.empty()) {
auto [node_dist, node] = *p_queue.begin() ; // c++17
p_queue.erase(p_queue.begin());
for(auto v : nxt[nodel)
if(v.second < dist[v.first]) {
p_queue.erase(make_pair(dist[v.first],v.first));
dist[v.first] = v.second;
p_queue.insert (make_pair(dist[v.first],v.first));

}

Louis JACHIET




Flows and matching




Flow network

Definition
A flow network G is a graph where each edge has a capacity value. A flow network

generally has a source s and an target t.

Flow

A flow in a G maps edges (a, b) to values f, , such that:

e the flow along each edge is less than the capacity

the source has an incoming flow equal to 0

the sink has an outgoing flow equal to 0

for other nodes, the total incoming flow is equal to the total outgoing flow

The value of a flow is the outgoing flow from s.

Louis JACHIET 16 / 22



Max-flow = Min-Cut

Cut

In a flow network G with source s and target t, a cut is a partition of nodes into 2
partitions S and T such that s € S, t € T. The capacity of a cut is the sum of

capacities of edges between S and T.

Theorem

Max-Flow = Min-Cut

This means that the maximal value of a flow is equal to the cut of minimum capacity.

Louis JACHIET 17 / 22



Bipartite Matching

Matching in bipartite graph

In a weighted bipartite graph (V, E) with V = X U Y, a matching is a selection
E’ C E of edges such that no nodes in (V, E’) have degree higher than 1.
Maximum matching

A matching of maximal total weighted.

Reduction to max-flow

Create two new nodes s and t, link s to all nodes in X and t to all nodes in Y. All

edges have capacity 1.

Louis JACHIET 18 / 22



Ford-Fulkerson “algorithm” for flows

Residual graph

Given a flow network G and a flow f we can compute the residual flow network G’ as
G but where the capacity of an edge (a, b) is ¢, — f5 5. Notice than an edge is
removed when f, , = ¢, » and using the convention f, , = —f, , an edge is created
when f, , < 0.

Ford-Fulkerson Method
e Initialize f with empty flow
e While there exists a path p from s to t in the residual
e increase f with the path p using maximal capacity
= multiple algorithms to find the path lead to various complexities.

Louis JACHIET 19 / 22



Ford-Fulkerson with DFS

int capalTm] [Tm], flow[Tm] [Tm]; // adjacency matriz
bool visited[Tm];
int dfs(int x, int max_flow) {
if(visited[x]) return 0; // already search/ed for a flow
if (x==target) return max_flow;// found our flow
visited[x] = true; // stop wisiting x
for(int n: nxt[x]) // mizes adjacency lists with matriz
if (flow[x] [n] < capalx][nl) { // residual
const int sub_flow = dfs(n,
min(max_flow,capalx] [n]-flow[x] [n]));
if (sub_flow > 0) {
flow[x] [n]+= sub_flow;
flow[n] [x]-= sub_flow;
return sub_flow;
}
return O; // haven't found a flow
}

Louis JACHIET



Ford-Fulkerson with DFS

int totalFlow = 0, curFlow = 1 ;

while(curFlow > 0) {
fill(visited,visited+Tm,false) ;
curFlor = dfs(source,INF) ;
totalFlow += curFlow ;

}

// in the worst case the flow increases by one each time
// hence in O(E) x F where F is the final flow
// if using integers

Louis JACHIET 21 /22



Flow algorithms

Recognize flow algorithms

Flow problems are usually a bit counter-intuitive and hard to recognize...

Multiple algorithms

The code above is for Ford-Fulkerson with DFS, this is not the fastest method but the
simplest. You can replace the DFS with a BFS to improve the worst-case complexity.

N
N
N

Louis JACHIET 22/



	Eulerian Circuits
	Implicit graphs
	Union-find
	Minimum Spanning Trees (MST)
	Flows and matching

