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Eulerian Circuits

We study undirected graphs and assume they are connected:

e Eulerian path:
Use every edge of a graph exactly once. Start and end may differ

e Eulerian circuit:
Use every edge exactly once. Start and end at the same node

e Conditions to find Eulerian path:

e All nodes have even degree or
e Precisely two nodes have odd degree

e For Eulerian circuit, all nodes must have even degree
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Hierholzer’s Algorithm for Eulerian Paths (assuming they exist)

set<int> Adj[MAXN]; vector<int> Circuit;

void Hierholzer (int v) {

while (!Adj[v].empty()) { // follow edges until stuck
int tmp = *Adj[v].begin();
Adj[v].erase(tmp); // remove edge, modifying graph

Adj[tmp].erase(v);
Hierholzer (tmp);

}

Circuit.push_back(v); // got stuck: append node at the end of circuit
}
void Hierholzer_main() {

int v = 0; // find node with odd degree, else start with node 0O

for (int u=0; u < N && v == 0; u++)

if (Adj[ul.size() & 1)
v o= u; // node with odd degree

Hierholzer (v);
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https://algorithms.discrete.ma.tum.de/graph-algorithms/hierholzer/index_en.html
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Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:
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Implicit graph

The majority of the algorithms that you will implement can be seen as graph
algorithms:

e directly an application of a graph algorithm
e a modified version of a graph algorithm

e an application of a graph algorithm over a hidden graph

= describing your problem as a graph problem wusually helps
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Examples 1/3

Rabbit

We have a graph where nodes are cells of the grid and edge are between nodes that are
neighbors in the grids. Find the path between two given points?
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Examples 2/3

Piggyback

Given a weighted graph G defining a distance d between nodes.

Find the node v minimizing Bd(v,1) + Ed(v,2) + Pd(v, n).
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Moocast

G is the graph where nodes are cows and an edge (a, b) exists when b can hear a.

Find the node that can reach most other nodes.
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Why explicit the implicit graphs?

Help you reason over the problem:

e is it exactly the same problem?

e what are the properties of this implicit graph?

e can the problem on the implicit graph be simplified?
e can we reduce the number of nodes? of transitions?

e are we lacking important properties from the original graph?

Help you code the problem

The more standard algorithms you use the less likely you are to have bugs.
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Union-Find purpose

Maintain a collection of non-overlapping sets with the following operations

e Add a new element, in its own set
e Get the set of an element

e Merge two sets

Queries we might need to answer

e Given two elements, are they in the same component?
e What the size of the component of x?

e What is the number of components?
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repr[x] ; // initialized to -1
int find(int x) {
if (repr[x] < 0) return x;

return repr[x]=find(reprl[x]); // path compression

+

bool unite(int a, int b) {
a = find(a);
b = find(b);

if(a==b) { return false; }

if (reprlal > repr(bl) { swap(a,b); } // size
reprlal += repr([b] ;

repr[b] = a;

return true;
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Minimum Spanning Trees (MST)




Minimum spanning tree

Spanning tree

Given a connected graph G = (V/, E) a spanning tree is a selection of E’ C E such
that E’ forms a tree covering all nodes in G.

MST Problem

Find the spanning tree that has minimal total weight.

Properties

The MST also minimizes the maximal weight of an edge.
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Example: Minimum Spanning Trees

https://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg, Dcoetzee, public domain
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https://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg

Computing MST

Kruskal’s algorithm

For all edges (a, b) by increasing weight

e if a and b not in the same component
e link aand b
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Computing MST

Kruskal’s algorithm
For all edges (a, b) by increasing weight

e if a and b not in the same component
e link aand b

Prim’s algorithm

Make a modified Dijkstra:

e maintain a set S of nodes, initialized as {x} for any node x

e while there remains a node not in S:
e select an edge {n,n'} € EN(S,V \ S) minimizing w(n, n")
e add {n,n'} to E’
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vector<pair<weight, pair<int,int> > > edges;
/S
sort (edges.begin() ,edges.end());
long long weight_mst = O;
for(auto [w,p] : edges)
if (unite(p.first,p.second))
weight_mst += w;
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long long dist[NB_NODES_MAX];

/7

fill(dist,dist+NB_NODES_MAX, INF) ;

set<pair<long long,int>> p_queue; // (weight, node)

p_queue.insert (make_pair(0,start_node));
dist[start_node] = 0;
while(!p_queue.empty()) {
auto [node_dist, node] = *p_queue.begin() ; // c++17
p_queue.erase(p_queue.begin());
for(auto v : nxt[nodel)
if(v.second < dist[v.first]) {
p_queue.erase(make_pair(dist[v.first],v.first));
dist[v.first] = v.second;
p_queue.insert (make_pair(dist[v.first],v.first));

}
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Flows and matching




Flow network

Definition
A flow network G is a graph where each edge has a capacity value. A flow network

generally has a source s and an target t.

Flow

A flow in a G maps edges (a, b) to values f, , such that:

e the flow along each edge is less than the capacity

the source has an incoming flow equal to 0

the sink has an outgoing flow equal to 0

for other nodes, the total incoming flow is equal to the total outgoing flow

The value of a flow is the outgoing flow from s.
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Max-flow = Min-Cut

Cut

In a flow network G with source s and target t, a cut is a partition of nodes into 2
partitions S and T such that s € S, t € T. The capacity of a cut is the sum of

capacities of edges between S and T.

Theorem

Max-Flow = Min-Cut

This means that the maximal value of a flow is equal to the cut of minimum capacity.

Louis JACHIET 17 / 22



Bipartite Matching

Matching in bipartite graph

In a weighted bipartite graph (V, E) with V = X U Y, a matching is a selection
E’ C E of edges such that no nodes in (V, E’) have degree higher than 1.
Maximum matching

A matching of maximal total weighted.

Reduction to max-flow

Create two new nodes s and t, link s to all nodes in X and t to all nodes in Y. All

edges have capacity 1.
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Ford-Fulkerson “algorithm” for flows

Residual graph

Given a flow network G and a flow f we can compute the residual flow network G’ as
G but where the capacity of an edge (a, b) is ¢, — f5 5. Notice than an edge is
removed when f, , = ¢, » and using the convention f, , = —f, , an edge is created
when f, , < 0.

Ford-Fulkerson Method
e Initialize f with empty flow
e While there exists a path p from s to t in the residual
e increase f with the path p using maximal capacity
= multiple algorithms to find the path lead to various complexities.
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Ford-Fulkerson with DFS

int capalTm] [Tm], flow[Tm] [Tm]; // adjacency matriz
bool visited[Tm];
int dfs(int x, int max_flow) {
if(visited[x]) return 0; // already search/ed for a flow
if (x==target) return max_flow;// found our flow
visited[x] = true; // stop wisiting x
for(int n: nxt[x]) // mizes adjacency lists with matriz
if (flow[x] [n] < capalx][nl) { // residual
const int sub_flow = dfs(n,
min(max_flow,capalx] [n]-flow[x] [n]));
if (sub_flow > 0) {
flow[x] [n]+= sub_flow;
flow[n] [x]-= sub_flow;
return sub_flow;
}
return O; // haven't found a flow
}
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Ford-Fulkerson with DFS

int totalFlow = 0, curFlow = 1 ;

while(curFlow > 0) {
fill(visited,visited+Tm,false) ;
curFlor = dfs(source,INF) ;
totalFlow += curFlow ;

}

// in the worst case the flow increases by one each time
// hence in O(E) x F where F is the final flow
// if using integers
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Flow algorithms

Recognize flow algorithms

Flow problems are usually a bit counter-intuitive and hard to recognize...

Multiple algorithms

The code above is for Ford-Fulkerson with DFS, this is not the fastest method but the
simplest. You can replace the DFS with a BFS to improve the worst-case complexity.

N
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