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Abstract We combine Malliavin calculus with Stein’s method, in order to derive
explicit bounds in the Gaussian and Gamma approximations of random variables in a
fixed Wiener chaos of a general Gaussian process. Our approach generalizes, refines
and unifies the central and non-central limit theorems for multiple Wiener–Itô inte-
grals recently proved (in several papers, from 2005 to 2007) by Nourdin, Nualart,
Ortiz-Latorre, Peccati and Tudor. We apply our techniques to prove Berry–Esséen
bounds in the Breuer–Major CLT for subordinated functionals of fractional Brownian
motion. By using the well-known Mehler’s formula for Ornstein–Uhlenbeck semi-
groups, we also recover a technical result recently proved by Chatterjee, concerning
the Gaussian approximation of functionals of finite-dimensional Gaussian vectors.
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76 I. Nourdin, G. Peccati

1 Introduction and overview

1.1 Motivations

Let Z be a random variable whose law is absolutely continuous with respect to the
Lebesgue measure (for instance, Z is a standard Gaussian random variable or a Gamma
random variable). Suppose that {Zn : n ≥ 1} is a sequence of random variables
converging in distribution towards Z , that is:

for all z ∈ R, P(Zn ≤ z) −→ P(Z ≤ z) as n → ∞. (1.1)

It is sometimes possible to associate an explicit uniform bound with the convergence
(1.1), providing a global description of the error one makes when replacing P(Zn ≤ z)
with P(Z ≤ z) for a fixed n ≥ 1. One of the most celebrated results in this direction is
the following Berry–Esséen Theorem (see, e.g. Feller [17] for a proof), that we record
here for future reference:

Theorem 1.1 (Berry–Esséen) Let (U j ) j≥1 be a sequence of independent and iden-
tically distributed random variables, such that E(|U j |3) = ρ < ∞, E(U j ) = 0
and E(U 2

j ) = σ 2. Then, by setting Zn = 1
σ
√

n

∑n
j=1 U j , n ≥ 1, one has that

Zn
Law−→ Z ∼ N (0, 1), as n → ∞, and moreover:

sup
z∈R

|P(Zn ≤ z)− P(Z ≤ z)| ≤ 3ρ

σ 3
√

n
. (1.2)

The aim of this paper is to show that one can combine Malliavin calculus (see,
e.g. [35]) and Stein’s method (see, e.g. [11]), in order to obtain bounds analogous to
(1.2), whenever the random variables Zn in (1.1) can be represented as functionals
of a given Gaussian field. Our results are general, in the sense that (i) they do not
rely on any specific assumption on the underlying Gaussian field, (ii) they do not
require that the variables Zn have the specific form of partial sums, and (iii) they
allow to deal (at least in the case of Gaussian approximations) with several different
notions of distance between probability measures. As suggested by the title, a pro-
minent role will be played by random variables belonging to a Wiener chaos of order
q (q ≥ 2), that is, random variables having the form of a multiple stochastic
Wiener–Itô integral of order q (see Sect. 2 for precise definitions). It will be shown that
our results provide substantial refinements of the central and non-central limit theorems
for multiple stochastic integrals, recently proved in [33,37]. Among other applications
and examples, we will provide explicit Berry–Esséen bounds in the Breuer–Major CLT
(see [5]) for fields subordinated to a fractional Brownian motion.

Concerning point (iii), we shall note that, as a by-product of the flexibility of
Stein’s method, we will indeed establish bounds for Gaussian approximations related
to a number of distances of the type

dH (X,Y ) = sup {|E(h(X))− E(h(Y ))| : h ∈ H } , (1.3)
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Stein’s method on Wiener chaos 77

where H is some suitable class of functions. For instance: by taking H =
{h : ‖h‖L ≤ 1}, where ‖·‖L denotes the usual Lipschitz seminorm, one obtains the
Wasserstein (or Kantorovich–Wasserstein) distance; by taking H = {h : ‖h‖BL ≤1},
where ‖·‖BL = ‖·‖L + ‖·‖∞, one obtains the Fortet–Mourier (or bounded
Wasserstein) distance; by taking H equal to the collection of all indicators 1B of Borel
sets, one obtains the total variation distance; by taking H equal to the class of all indi-
cators functions 1(−∞,z], z ∈ R, one has the Kolmogorov distance, which is the one ta-
ken into account in the Berry–Esséen bound (1.2). In what follows, we shall sometimes
denote by dW(., .), dFM(., .), dTV(., .) and dKol(., .), respectively, the Wasserstein,
Fortet–Mourier, total variation and Kolmogorov distances. Observe that dW(., .) ≥
dFM(., .) and dTV(., .) ≥ dKol(., .). Also, the topologies induced by dW, dTV and dKol
are stronger than the topology of convergence in distribution, while one can show that
dFM metrizes the convergence in distribution (see, e.g. [16, Chap. 11] for these and
further results involving distances on spaces of probability measures).

1.2 Stein’s method

We shall now give a short account of Stein’s method, which is basically a set of
techniques allowing to evaluate distances of the type (1.3) by means of differential
operators. This theory has been initiated by Stein in the path-breaking paper [48], and
then further developed in the monograph [49]. The reader is referred to [11,43,44] for
detailed surveys of recent results and applications. The paper by Chatterjee [8] provides
further insights into the existing literature. In what follows, we will apply Stein’s
method to two types of approximations, namely Gaussian and (centered) Gamma. We
shall denote by N (0, 1) a standard Gaussian random variable. The centered Gamma
random variables we are interested in have the form

F(ν)
Law= 2G(ν/2)− ν, ν > 0, (1.4)

where G(ν/2) has a Gamma law with parameter ν/2. This means that G(ν/2) is a

(a.s. strictly positive) random variable with density g(x) = x
ν
2 −1e−x

�(ν/2) 1(0,∞)(x), where
� is the usual Gamma function. We choose this parametrization in order to facilitate
the connection with our previous paper [33] (observe in particular that, if ν ≥ 1 is an
integer, then F(ν) has a centered χ2 distribution with ν degrees of freedom).

Standard Gaussian distribution. Let Z ∼ N (0, 1). Consider a real-valued function
h : R → R such that the expectation E(h(Z)) is well-defined. The Stein equation
associated with h and Z is classically given by

h(x)− E(h(Z)) = f ′(x)− x f (x), x ∈ R. (1.5)

A solution to (1.5) is a function f which is Lebesgue a.e.-differentiable, and such that
there exists a version of f ′ verifying (1.5) for every x ∈ R. The following result is
basically due to Stein [48,49]. The proof of point (i) (whose content is usually referred
as Stein’s lemma) involves a standard use of the Fubini theorem (see, e.g. [47] or
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78 I. Nourdin, G. Peccati

[11, Lemma 2.1]). Point (ii) is proved e.g. in [11, Lemma 2.2]; point (iii) can be
obtained by combining e.g. the arguments in [49, p. 25] and [9, Lemma 5.1]; a proof
of point (iv) is contained in [49, Lemma 3, p. 25]; point (v) is proved in [8, Lemma 4.3].

Lemma 1.2 (i) Let W be a random variable. Then, W
Law= Z ∼ N (0, 1) if, and

only if,

E[ f ′(W )− W f (W )] = 0, (1.6)

for every continuous and piecewise continuously differentiable function f
verifying the relation E | f ′(Z)| < ∞.

(ii) If h(x) = 1(−∞,z](x), z ∈ R, then (1.5) admits a solution f which is bounded
by

√
2π/4, piecewise continuously differentiable and such that ‖ f ′‖∞ ≤ 1.

(iii) If h is bounded by 1/2, then (1.5) admits a solution f which is bounded by
√
π/2,

Lebesgue a.e. differentiable and such that ‖ f ′‖∞ ≤ 2.
(iv) If h is bounded and absolutely continuous (then, in particular, Lebesgue-a.e.

differentiable), then (1.5) has a solution f which is bounded and twice diffe-
rentiable, and such that ‖ f ‖∞ ≤ √

π/2‖h − E(h(Z))‖∞, ‖ f ′‖∞ ≤ 2‖h −
E(h(Z))‖∞ and ‖ f ′′‖∞ ≤ 2‖h′‖∞.

(v) If h is absolutely continuous with bounded derivative, then (1.5) has a solution
f which is twice differentiable and such that ‖ f ′‖∞ ≤ ‖h′‖∞ and ‖ f ′′‖∞ ≤
2‖h′‖∞.

We also recall the relation:

2dTV(X,Y ) = sup{|E(u(X))− E(u(Y ))| : ‖u‖∞ ≤ 1}. (1.7)

Note that point (ii) and (iii) [via (1.7)] imply the following bounds on the Kolmogorov
and total variation distance between Z and an arbitrary random variable Y :

dKol(Y, Z) ≤ sup
f ∈FKol

|E( f ′(Y )− Y f (Y ))| (1.8)

dTV(Y, Z) ≤ sup
f ∈FTV

|E( f ′(Y )− Y f (Y ))| (1.9)

where FKol and FTV are, respectively, the class of piecewise continuously differen-
tiable functions that are bounded by

√
2π/4 and such that their derivative is bounded

by 1, and the class of piecewise continuously differentiable functions that are bounded
by

√
π/2 and such that their derivative is bounded by 2.

Analogously, by using (iv) and (v) along with the relation ‖h‖L = ‖h′‖∞, one
obtains

dFM(Y, Z) ≤ sup
f ∈FFM

|E( f ′(Y )− Y f (Y ))|, (1.10)

dW(Y, Z) ≤ sup
f ∈FW

|E( f ′(Y )− Y f (Y ))|, (1.11)
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Stein’s method on Wiener chaos 79

where: FFM is the class of twice differentiable functions that are bounded by
√

2π ,
whose first derivative is bounded by 4, and whose second derivative is bounded by 2;
FW is the class of twice differentiable functions, whose first derivative is bounded by
1 and whose second derivative is bounded by 2.

Centered Gamma distribution. Let F(ν) be as in (1.4). Consider a real-valued func-
tion h : R → R such that the expectation E[h(F(ν))] exists. The Stein equation
associated with h and F(ν) is:

h(x)− E[h(F(ν))] = 2(x + ν) f ′(x)− x f (x), x ∈ (−ν,+∞). (1.12)

The following statement collects some slight variations around results proved by
Diaconis and Zabell [15], Luk [26], Pickett [41], Schoutens [46] and Stein [49]. It
is the “Gamma counterpart” of Lemma 1.2. The proof is detailed in Sect. 7.

Lemma 1.3 (i) Let W be a real-valued random variable [not necessarily with
values in (−ν,+∞)] whose law admits a density with respect to the Lebesgue

measure. Then, W
Law= F(ν) if, and only if,

E[2(W + ν)+ f ′(W )− W f (W )] = 0, (1.13)

where a+ := max(a, 0), for every smooth function f such that the mapping
x 
→ 2(x + ν)+ f ′(x)− x f (x) is bounded.

(ii) If |h(x)| ≤ c exp(ax) for every x > −ν and for some c > 0 and a < 1/2,
and if h is twice differentiable, then (1.12) has a solution f which is bounded
on (−ν,+∞), differentiable and such that ‖ f ‖∞ ≤ 2‖h′‖∞ and ‖ f ′‖∞ ≤
‖h′′‖∞.

(iii) Suppose that ν ≥ 1 is an integer. If |h(x)| ≤ c exp(ax) for every x > −ν and
for some c > 0 and a < 1/2, and if h is twice differentiable with bounded
derivatives, then (1.12) has a solution f which is bounded on (−ν,+∞), dif-
ferentiable and such that ‖ f ‖∞ ≤ √

2π/ν‖h‖∞ and ‖ f ′‖∞ ≤ √
2π/ν‖h′‖∞.

Now define

H1 = {h ∈ C 2
b : ‖h‖∞ ≤ 1, ‖h′‖∞ ≤ 1}, (1.14)

H2 = {h ∈ C 2
b : ‖h‖∞ ≤ 1, ‖h′‖∞ ≤ 1, ‖h′′‖∞ ≤ 1}, (1.15)

H1,ν = H1 ∩ C 2
b (ν) (1.16)

H2,ν = H2 ∩ C 2
b (ν) (1.17)

where C 2
b denotes the class of twice differentiable functions (with support in R) and

with bounded derivatives, and C 2
b (ν) denotes the subset of C 2

b composed of functions
with support in (−ν,+∞). Note that point (ii) in the previous statement implies that,
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by adopting the notation (1.3) and for every ν > 0 and every real random variable Y
[not necessarily with support in (−ν,+∞)],

dH2,ν (Y, F(ν)) ≤ sup
f ∈F2,ν

|E[2(Y + ν) f ′(Y )− Y f (Y )]| (1.18)

where F2,ν is the class of differentiable functions with support in (−ν,+∞), bounded
by 2 and whose first derivatives are bounded by 1. Analogously, point (iii) implies that,
for every integer ν ≥ 1,

dH1,ν (Y, F(ν)) ≤ sup
f ∈F1,ν

|E[2(Y + ν) f ′(Y )− Y f (Y )]|, (1.19)

where F1,ν is the class of differentiable functions with support in (−ν,+∞), bounded
by

√
2π/ν and whose first derivatives are also bounded by

√
2π/ν. A little inspection

shows that the following estimates also hold: for every ν > 0 and every random
variable Y ,

dH2(Y, F(ν)) ≤ sup
f ∈F2

|E[2(Y + ν)+ f ′(Y )− Y f (Y )]| (1.20)

where F2 is the class of functions (defined on R) that are continuous and differen-
tiable on R\{ν}, bounded by max{2, 2/ν}, and whose first derivatives are bounded by
max{1, 1/ν + 2/ν2}. Analogously, for every integer ν ≥ 1,

dH1(Y, F(ν)) ≤ sup
f ∈F1

|E[2(Y + ν)+ f ′(Y )− Y f (Y )]|, (1.21)

where F1 is the class of functions (on R) that are continuous and differentiable on
R\{ν}, bounded by max{√2π/ν, 2/ν}, and whose first derivatives are bounded by
max{√2π/ν, 1/ν + 2/ν2}.

Now, the crucial issue is how to estimate the right-hand side of (1.8)–(1.11) and
(1.18)–(1.21) for a given choice of Y . Since Stein’s initial contribution [48], an impres-
sive panoply of techniques has been developed in this direction (see again [10] or [43]
for a survey; here, we shall quote e.g.: exchangeable pairs [49], diffusion generators
[3,19], size-bias transforms [20], zero-bias transforms [21], local dependency graphs
[10] and graphical-geometric rules [8]). Starting from the next section, we will show
that, when working within the framework of functionals of Gaussian fields, one can
very effectively estimate expressions such as (1.8)–(1.11), (1.18) and (1.19) by using
techniques of Malliavin calculus. Interestingly, a central role is played by an infinite
dimensional version of the same integration by parts formula that is at the very heart
of Stein’s characterization of the Gaussian distribution.
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Stein’s method on Wiener chaos 81

1.3 The basic approach (with some examples)

Let H be a real separable Hilbert space and, for q ≥ 1, let H⊗q (resp. H
q ) be the qth
tensor product (resp. qth symmetric tensor product) of H. We write

X = {X (h) : h ∈ H} (1.22)

to indicate a centered isonormal Gaussian process on H. For every q ≥ 1, we denote
by Iq the isometry between H
q (equipped with the norm

√
q!‖ · ‖H⊗q ) and the qth

Wiener chaos of X . Note that, if H is a σ -finite measure space with no atoms, then
each random variable Iq(h), h ∈ H
q , has the form of a multiple Wiener–Itô integral
of order q. We denote by L2(X) = L2(�, σ (X), P) the space of square integrable
functionals of X , and by D

1,2 the domain of the Malliavin derivative operator D (see
the forthcoming Sect. 2 for precise definitions). Recall that, for every F ∈ D

1,2, the
derivative DF is a random element with values in H.

We start by observing that, thanks to (1.6), for every h ∈ H such that ‖h‖H = 1
and for every smooth function f , we have E[X (h) f (X (h))] = E[ f ′(X (h))]. Our
point is that this last relation is a very particular case of the following corollary of the
celebrated integration by parts formula of Malliavin calculus: for every Y ∈ D

1,2 with
zero mean,

E[Y f (Y )] = E[〈DY,−DL−1Y 〉H f ′(Y )], (1.23)

where the linear operator L−1 is the inverse of the generator of the Ornstein–Uhlebeck
semigroup, noted L . The reader is referred to Sects. 2 and 3 for definitions and for a full
discussion of this point; here, we shall note that L is an infinite-dimensional version of
the generator associated with Ornstein–Uhlenbeck diffusions (see [35, Sect. 1.4] for
a proof of this fact), an object which is also crucial in the Barbour–Götze “generator
approach” to Stein’s method [3,19].

It follows that, for every Y ∈ D
1,2 with zero mean, the expressions appearing on

the right-hand side of (1.8)–(1.11) [or (1.18)–(1.21)] can be assessed by first replacing
Y f (Y ) with 〈DY,−DL−1Y 〉H f ′(Y ) inside the expectation, and then by evaluating
the L2 distance between 1 (resp. 2Y + 2ν) and the inner product 〈DY,−DL−1Y 〉H.
In general, these computations are carried out by first resorting to the representation
of 〈DY,−DL−1Y 〉H as a (possibly infinite) series of multiple stochastic integrals. We
will see that, when Y = Iq(g), for q ≥ 2 and some g ∈ H
q , then 〈DY,−DL−1Y 〉H =
q−1‖DY‖2

H. In particular, by using this last relation one can deduce bounds involving
quantities that are intimately related to the central and non-central limit theorems
recently proved in [33,36,37].

Remark 1.4 1. The crucial equality E[Iq(g) f (Iq(g))] = E[q−1‖DIq(g)‖2
H

f ′(Iq(g))], in the case where f is a complex exponential, has been first used
in [36], in order to give refinements (as well as alternate proofs) of the main CLTs
in [37,39]. The same relation has been later applied in [33], where a characteri-
zation of non-central limit theorems for multiple integrals is provided. Note that
neither [33] nor [36] are concerned with Stein’s method or, more generally, with
bounds on distances between probability measures.
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82 I. Nourdin, G. Peccati

2. We will see that formula (1.23) contains as a special case a result recently proved
by Chatterjee [9, Lemma 5.3], in the context of limit theorems for linear statistics
of eigenvalues of random matrices. The connection between the two results can be
established by means of the well-known Mehler’s formula (see, e.g. [28, Sect. 8.5,
Chap. I] or [35, Sect. 1.4]), providing a mixture-type representation of the infinite-
dimensional Ornstein–Uhlenbeck semigroup. See Remarks 3.6 and 3.12 for a
precise discussion of this point. See, e.g. [31] for a detailed presentation of the
infinite-dimensional Ornstein–Uhlebeck semigroup.

3. We stress that the random variable 〈DY,−DL−1Y 〉H appearing in (1.23) is in
general not measurable with respect to σ(Y ). For instance, if X is taken to be
the Gaussian space generated by a standard Brownian motion {Wt : t ≥ 0} and
Y = I2(h) with h ∈ L2

s ([0, 1]2), then Dt Y = 2
∫ 1

0 h(u, t)dWu , t ∈ [0, 1], and

〈DY,−DL−1Y 〉L2([0,1]) = 2 I2(h ⊗1 h)+ 2‖h‖2
L2([0,1]2)

which is, in general, not measurable with respect to σ(Y ) (the symbol h ⊗1 h
indicates a contraction kernel, an object that will be defined in Sect. 2).

4. Note that (1.23) also implies the relation

E[Y f (Y )] = E[τ(Y ) f ′(Y )], (1.24)

where τ(Y ) = E[〈DY,−DL−1Y 〉H|Y ]. Some general results for the existence
of a real-valued function τ satisfying (1.24) are contained e.g. in [6]. Note that,
in general, it is very hard to find an analytic expression for τ(Y ), especially when
Y is a random variable with a very complex structure, such as e.g. a multiple
Wiener–Itô integral. On the other hand, we will see that, in many cases, the ran-
dom variable 〈DY,−DL−1Y 〉H is remarkably tractable and explicit. See the for-
thcoming Sect. 6, which is based on [49, Lecture VI], for a general discussions
of equations of the type (1.24). See Remark 3.10 for a connection with Goldstein
and Reinert’s zero bias transform [20].

5. The reader is referred to [42] for applications of integration by parts techniques
to the Stein-type estimation of drifts of Gaussian processes. See [23] for a Stein
characterization of Brownian motions on manifolds by means of integration by
parts formulae. See [13] for a connection between Stein’s method and algebras of
operators on configuration spaces.

Before proceeding to a formal discussion, and in order to motivate the reader, we
shall provide two examples of the kind of results that we will obtain in the subsequent
sections. The first statement involves double Wiener–Itô integrals, that is, random
variables living in the second chaos of X . The proof is given in Sect. 7.

Theorem 1.5 Let (Zn)n≥1 be a sequence belonging to the second Wiener chaos of X.

1. Assume that E(Z2
n) → 1 and E(Z4

n)→ 3 as n → ∞. Then Zn
Law−→ Z ∼ N (0, 1)

as n → ∞. Moreover, we have:
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dTV(Zn, Z) ≤ 2

√
1

6

∣
∣
∣
∣E(Z

4
n)− 3

∣
∣
∣
∣+

3 + E(Z2
n)

2

∣
∣
∣
∣ E(Z2

n)− 1

∣
∣
∣
∣.

2. Fix ν > 0 and assume that E(Z2
n) → 2ν and E(Z4

n)− 12E(Z3
n) → 12ν2 − 48ν

as n → ∞. Then, as n → ∞, Zn
Law−→ F(ν), where F(ν) has a centered Gamma

distribution of parameter ν. Moreover, we have:

dH2(Zn, F(ν)) ≤ max{1, 1/ν, 2/ν2}
√
√
√
√1

6

∣
∣
∣
∣
∣
E(Z4

n)−12E(Z3
n)−12ν2 + 48ν

∣
∣
∣
∣
∣
+
∣
∣8 − 6ν + E(Z2

n)
∣
∣

2

∣
∣
∣
∣
∣

E(Z2
n)−2ν

∣
∣
∣
∣
∣
,

where H2 is defined by (1.15).

Note that, in the statement of Theorem 1.5, there is no mention of Malliavin ope-
rators (however, these operators will appear in the general statements presented in
Sect. 3). For instance, when applied to the case where X is the isonormal process
generated by a fractional Brownian motion, the first point of Theorem 1.5 can be used
to derive the following bound for the Kolmogorov distance in the Breuer–Major CLT
associated with quadratic transformations:

Theorem 1.6 Let B be a fractional Brownian motion with Hurst index H ∈ (0, 3/4).
We set

σ 2
H = 1

2

∑

t∈Z

(
|t + 1|2H + |t − 1|2H − 2|t |2H

)2
< ∞,

and

Zn = 1

σH
√

n

n−1∑

k=0

(
n2H (B(k+1)/n − Bk/n)

2 − 1
)
, n ≥ 1.

Then, as n → ∞, Zn
Law−→ Z ∼ N (0, 1). Moreover, there exists a constant cH

(depending uniquely on H ) such that, for any n ≥ 1 :

dKol(Zn, Z) ≤ cH

n
1
2 ∧( 3

2 −2H)
. (1.25)

Note that both Theorem 1.5 and 1.6 will be significantly generalized in Sects. 3
and 4 (see, in particular, the forthcoming Theorems 3.1, 3.11 and 4.1).

Remark 1.7 1. When H = 1/2, then B is a standard Brownian motion (and therefore
has independent increments), and we recover from the previous result the rate
n−1/2, that could be also obtained by applying the Berry–Esséen Theorem 1.1.
This rate is still valid for H < 1/2. But, for H > 1/2, the rate we can prove in the

Breuer–Major CLT is n2H− 3
2 .

123



84 I. Nourdin, G. Peccati

2. To the authors knowledge, Theorem 1.6 and its generalizations are the first
Berry–Esséen bounds ever established for the Breuer–Major CLT.

3. To keep the length of this paper within limits, we do not derive the explicit
expression of some of the constants [such as the quantity cH in formula (1.25)]
composing our bounds. As will become clear later on, the exact value of these
quantities can be deduced by a careful bookkeeping of the bounding constants
appearing at the different stages of the proofs.

1.4 Plan

The rest of the paper is organized as follows. In Sect. 2 we recall some notions of
Malliavin calculus. In Sect. 3 we state and discuss our main bounds in Stein-type
estimates for functionals of Gaussian fields. Section 4 contains an application to the
Breuer–Major CLT. Section 5 deals with Gamma-type approximations. Section 6 pro-
vides a unified discussion of approximations by means of absolutely continuous dis-
tributions. Proofs and further refinements are collected in Sect. 7.

2 Elements of Malliavin calculus

The reader is referred to [25] or [35] for any unexplained notion discussed in this
section. As in (1.22), we denote by X = {X (h) : h ∈ H} an isonormal Gaussian
process over H. By definition, X is a centered Gaussian family indexed by the elements
of H and such that, for every h, g ∈ H,

E [X (h)X (g)] = 〈h, g〉H. (2.26)

As before, we use the notation L2(X) = L2(�, σ (X), P). It is well-known (see again
[25] or [35, Chap. 1]) that any random variable F belonging to L2(X) admits the
following chaotic expansion:

F =
∞∑

q=0

Iq( fq), (2.27)

where I0( f0) := E[F], the series converges in L2 and the symmetric kernels fq ∈
H
q , q ≥ 1, are uniquely determined by F . As already discussed, in the particu-
lar case where H = L2(A,A , µ), where (A,A ) is a measurable space and µ is a
σ -finite and non-atomic measure, one has that H
q = L2

s (A
q ,A ⊗q , µ⊗q) is the space

of symmetric and square integrable functions on Aq . Moreover, for every f ∈ H
q ,
the random variable Iq( f ) coincides with the multiple Wiener-Itô integral (of order q)
of f with respect to X (see [35, Chap. 1]). Observe that a random variable of the type
Iq( f ), with f ∈ H
q , has finite moments of all orders (see, e.g. [25, Chap. VI]). See
again [35, Chap. 1] or [45] for a connection between multiple Wiener–Itô and Her-
mite polynomials. For every q ≥ 0, we write Jq to indicate the orthogonal projection
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operator on the qth Wiener chaos associated with X , so that, if F ∈ L2(�,F , P) is
as in (2.27), then Jq F = Iq( fq) for every q ≥ 0.

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H
p and
g ∈ H
q , for every r = 0, . . . , p ∧ q, the r th contraction of f and g is the element of
H⊗(p+q−2r) defined as

f ⊗r g =
∞∑

i1,...,ir =1

〈 f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r. (2.28)

Note that, in the particular case where H = L2(A,A , µ) (with µ non-atomic), one
has that

f ⊗r g

=
∫

Ar

f (t1, . . . , tp−r , s1, . . . , sr ) g(tp−r+1, . . . , tp+q−2r , s1, . . . , sr )dµ(s1) . . . dµ(sr ).

Moreover, f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for p = q,
f ⊗p g = 〈 f, g〉H⊗p . Note that, in general (and except for trivial cases), the contraction
f ⊗r g is not a symmetric element of H⊗(p+q−2r). The canonical symmetrization of
f ⊗r g is written f ⊗̃r g. We also have the useful multiplication formula: if f ∈ H
p

and g ∈ H
q , then

Ip( f )Iq(g) =
p∧q∑

r=0

r !
(

p

r

)(
q

r

)

Ip+q−2r ( f ⊗̃r g). (2.29)

Let S be the set of all smooth cylindrical random variables of the form

F = g (X (φ1), . . . , X (φn))

where n ≥ 1, g : R
n → R is a smooth function with compact support and φi ∈ H.

The Malliavin derivative of F with respect to X is the element of L2(�,H) defined as

DF =
n∑

i=1

∂g

∂xi
(X (φ1), . . . , X (φn)) φi .

In particular, DX (h) = h for every h ∈ H. By iteration, one can define the mth
derivative Dm F (which is an element of L2(�,H⊗m)) for every m ≥ 2. As usual, for
m ≥ 1, D

m,2 denotes the closure of S with respect to the norm ‖ · ‖m,2, defined by
the relation

‖F‖2
m,2 = E

[
F2
]

+
m∑

i=1

E
[
‖Di F‖2

H⊗i

]
.

Note that, if F �= 0 and F is equal to a finite sum of multiple Wiener-Itô integrals,
then F ∈ D

m,2 for every m ≥ 1 and the law of F admits a density with respect to the
Lebesgue measure. The Malliavin derivative D satisfies the following chain rule: if
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ϕ : R
n → R is in C 1

b (that is, the collection of continuously differentiable functions
with a bounded derivative) and if {Fi }i=1,...,n is a vector of elements of D

1,2, then
ϕ(F1, . . . , Fn) ∈ D

1,2 and

Dϕ(F1, . . . , Fn) =
n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi .

Observe that the previous formula still holds when ϕ is a Lipschitz function and the
law of (F1, . . . , Fn) has a density with respect to the Lebesgue measure on R

n (see,
e.g. Proposition 1.2.3 in [35]).

We denote by δ the adjoint of the operator D, also called the divergence operator.
A random element u ∈ L2(�,H) belongs to the domain of δ, noted Domδ, if, and
only if, it satisfies

|E〈DF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S ,

where cu is a constant depending uniquely on u. If u ∈ Domδ, then the random variable
δ(u) is defined by the duality relationship (customarily called “integration by parts
formula”):

E(Fδ(u)) = E〈DF, u〉H, (2.30)

which holds for every F ∈ D
1,2. One sometimes needs the following property: for

every F ∈ D
1,2 and every u ∈ Domδ such that Fu and Fδ(u)+ 〈DF, u〉H are square

integrable, one has that Fu ∈ Domδ and

δ(Fu) = Fδ(u)− 〈DF, u〉H. (2.31)

The operator L , acting on square integrable random variables of the type (2.27), is
defined through the projection operators {Jq }q≥0 as L = ∑∞

q=0 −q Jq , and is called the
infinitesimal generator of the Ornstein–Uhlenbeck semigroup. It verifies the following
crucial property: a random variable F is an element of DomL (= D

2,2) if, and only
if, F ∈ DomδD (i.e. F ∈ D

1,2 and DF ∈ Domδ), and in this case: δDF = −L F.
Note that a random variable F as in (2.27) is in D

1,2 (resp. D
2,2) if, and only if,

∞∑

q=1

q‖ fq‖2
H
q < ∞

⎛

⎝resp.
∞∑

q=1

q2‖ fq‖2
H
q < ∞

⎞

⎠ ,

and also E[‖DF‖2
H] = ∑

q≥1 q‖ fq‖2
H
q . If H = L2(A,A , µ) (with µ non-atomic),
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then the derivative of a random variable F as in (2.27) can be identified with the
element of L2(A ×�) given by

Da F =
∞∑

q=1

q Iq−1
(

fq(·, a)
)
, a ∈ A. (2.32)

We also define the operator L−1, which is the inverse of L , as follows: for every
F ∈ L2(X) with zero mean, we set L−1 F = ∑

q≥1 − 1
q Jq(F). Note that L−1 is an

operator with values in D
2,2. The following Lemma contains two statements: the first

one [formula (2.33)] is an immediate consequence of the definition of L and of the
relation δD = −L , whereas the second [formula (2.34)] corresponds to Lemma 2.1
in [33].

Lemma 2.1 Fix an integer q ≥ 2 and set F = Iq( f ), with f ∈ H
q . Then,

δDF = q F. (2.33)

Moreover, for every integer s ≥ 0,

E
(

Fs‖DF‖2
H

)
= q

s + 1
E
(

Fs+2
)
. (2.34)

3 Stein’s method and integration by parts on Wiener space

3.1 Gaussian approximations

Our first result provides explicit bounds for the normal approximation of random
variables that are Malliavin derivable. Although its proof is quite easy to obtain, the
following statement will be central for the rest of the paper.

Theorem 3.1 Let Z ∼ N (0, 1), and let F ∈ D
1,2 be such that E(F) = 0. Then, the

following bounds are in order:

dW(F, Z) ≤ E[(1 − 〈DF,−DL−1 F〉H)2]1/2, (3.35)

dFM(F, Z) ≤ 4E[(1 − 〈DF,−DL−1 F〉H)2]1/2. (3.36)

If, in addition, the law of F is absolutely continuous with respect to the Lebesgue
measure, one has that

dKol(F, Z) ≤ E[(1 − 〈DF,−DL−1 F〉H)2]1/2, (3.37)

dTV(F, Z) ≤ 2E[(1 − 〈DF,−DL−1 F〉H)2]1/2. (3.38)

Proof Start by observing that one can write F = L L−1 F = −δDL−1 F . Now let
f be a real differentiable function. By using the integration by parts formula and the
fact that D f (F) = f ′(F)DF (note that, for this formula to hold when f is only a.e.
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differentiable, one needs F to have an absolutely continuous law, see Proposition 1.2.3
in [35]), we deduce

E(F f (F)) = E[ f ′(F)〈DF,−DL−1 F〉H].

It follows that E[ f ′(F) − F f (F)] = E( f ′(F)(1 − 〈DF,−DL−1 F〉H)) so that
relations (3.35)–(3.38) can be deduced from (1.8)–(1.11) and the Cauchy–Schwarz
inequality. ��

We shall now prove that the bounds appearing in the statement of Theorem 3.1 can
be explicitly computed, whenever F belongs to a fixed Wiener chaos.

Proposition 3.2 Let q ≥ 2 be an integer, and let F = Iq( f ), where f ∈ H
q . Then,
〈DF,−DL−1 F〉H = q−1‖DF‖2

H, and

E[(1 − 〈DF,−DL−1 F〉H)2] = E[(1 − q−1‖DF‖2
H)

2] (3.39)

−(1 − q! ‖ f ‖2
H⊗q )

2 + q2
q−1∑

r=1

(2q − 2r)!(r − 1)!2
(

q − 1

r − 1

)4

×‖ f ⊗̃r f ‖2
H⊗2(q−r) (3.40)

≤ (1 − q! ‖ f ‖2
H⊗q )

2 + q2
q−1∑

r=1

(2q − 2r)!(r − 1)!2
(

q − 1

r − 1

)4

×‖ f ⊗r f ‖2
H⊗2(q−r) . (3.41)

Proof The equality 〈DF,−DL−1 F〉H = q−1‖DF‖2
H is an immediate consequence

of the relation L−1 Iq( f ) = −q−1 Iq( f ). From the multiplication formulae between
multiple stochastic integrals, see (2.29), one deduces that

‖D[Iq( f )]‖2
H=qq! ‖ f ‖2

H⊗q + q2
q−1∑

r=1

(r −1)!
(

q − 1

r − 1

)2

I2(q−r)
(

f ⊗̃r f
)

(3.42)

(see also [36, Lemma 2]). We therefore obtain (3.40) by using the orthogonality and
isometric properties of multiple stochastic integrals. The inequality in (3.41) is just a
consequence of the relation ‖ f ⊗̃r f ‖H⊗2(q−r) ≤ ‖ f ⊗r f ‖H⊗2(q−r) . ��

The previous result should be compared with the forthcoming Theorem 3.3,
where we collect the main findings of [36,37]. In particular, the combination of
Proposition 3.2 and Theorem 3.3 shows that, for every (normalized) sequence
{Fn : n ≥ 1} living in a fixed Wiener chaos, the bounds given in (3.35) and (3.36) are
“tight” with respect to the convergence in distribution towards Z ∼ N (0, 1), in the
sense that these bounds converge to zero if, and only if, Fn converges in distribution
to Z .
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Theorem 3.3 [36,37] Fix q ≥ 2, and consider a sequence {Fn : n ≥ 1} such that
Fn = Iq( fn), n ≥ 1, where fn ∈ H
q . Assume moreover that E[F2

n ] = q!‖ fn‖2
H⊗q →

1. Then, the following four conditions are equivalent, as n → ∞:

(i) Fn converges in distribution to Z ∼ N (0, 1);
(ii) E[F4

n ] → 3;
(iii) for every r = 1, . . . , q − 1, ‖ fn ⊗r fn‖H⊗2(q−r) → 0;
(iv) ‖DFn‖2

H → q in L2.

The implications (i) ↔ (ii) ↔ (iii) have been first proved in [37] by means of
stochastic calculus techniques. The fact that (iv) is equivalent to either one of conditions
(i)–(iii) is proved in [36]. Note that Theorem 3.1 and Proposition 3.2 above provide
an alternate proof of the implications (iii) → (iv) → (i). The implication (ii) → (i)
can be seen as a drastic simplification of the “method of moments and cumulants”,
that is a customary tool in order to prove limit theorems for functionals of Gaussian
fields (see, e.g. [5,7,18,27,50]). In [39] one can find a multidimensional version of
Theorem 3.3.

Remark 3.4 Theorem 3.3 and its generalizations have been applied to a variety of
frameworks, such as: p-variations of stochastic integrals with respect to Gaussian
processes [2,12], quadratic functionals of bivariate Gaussian processes [14], self-
intersection local times of fractional Brownian motion [24], approximation schemes
for scalar fractional differential equations [32], high-frequency CLTs for random fields
on homogeneous spaces [29,30,38], needlets analysis on the sphere [1], estimation
of self-similarity orders [55], power variations of iterated Brownian motions [34]. We
expect that the new bounds proved in Theorem 3.1 and Proposition 3.2 will lead to
further refinements of these results. See Sects. 4 and 5 for applications and examples.

As shown in the following statement, the combination of Proposition 3.2 and
Theorem 3.3 implies that, on any fixed Wiener chaos, the Kolmogorov, total variation
and Wasserstein distances metrize the convergence in distribution towards Gaussian
random variables. Other topological characterizations of the set of laws of random
variables belonging to a fixed sum of Wiener chaoses are discussed in [25, Chap. VI].

Corollary 3.5 Let the assumptions and notation of Theorem 3.3 prevail. Then, the
fact that Fn converges in distribution to Z ∼ N (0, 1) is equivalent to either one of
the following conditions:

(a) dKol(Fn, Z) → 0;
(b) dTV(Fn, Z) → 0;
(c) dW(Fn, Z) → 0.

Proof If Fn
Law→ Z then, by Theorem 3.3, we have necessarily that ‖DFn‖2

H → q in
L2. The desired conclusion follows immediately from relations (3.35), (3.37)–(3.39).

��
Note that the previous result is not trivial, since the topologies induced by dKol, dTV

and dW are stronger than convergence in distribution.
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Remark 3.6 (Mehler’s formula and Stein’s method, I). In [9, Lemma 5.3], Chatterjee
has proved the following result (we use a notation which is slightly different from the
original statement). Let Y = g(V ), where V = (V1, . . . , Vn) is a vector of centered
i.i.d. standard Gaussian random variables, and g : R

n → R is a smooth function such
that: (i) g and its derivatives have subexponential growth at infinity, (ii) E(g(V )) = 0,
and (iii) E(g(V )2) = 1. Then, for any Lipschitz function f , one has that

E[Y f (Y )] = E[S(V ) f ′(Y )], (3.43)

where, for every v = (v1, . . . , vn) ∈ R
n ,

S(v) =
1∫

0

1

2
√

t
E

[
n∑

i=1

∂g

∂vi
(v)

∂g

∂vi
(
√

tv + √
1 − tV )

]

dt, (3.44)

so that, for instance, for Z ∼ N (0, 1) and by using (1.9), Lemma 1.2 (iii), (1.7) and
Cauchy–Schwarz inequality,

dTV(Y, Z) ≤ 2E[(S(V )− 1)2]1/2. (3.45)

We shall prove that (3.43) is a very special case of (1.23). Observe first that, without loss
of generality, we can assume that Vi = X (hi ), where X is an isonormal process over
some Hilbert space of the type H = L2(A,A , µ) and {h1, . . . , hn} is an orthonormal
system in H. Since Y = g(V1, . . . , Vn), we have DaY = ∑n

i=1
∂g
∂xi
(V )hi (a). On the

other hand, since Y is centered and square integrable, it admits a
chaotic representation of the form Y = ∑

q≥1 Iq(ψq). This implies in particular that

DaY = ∑∞
q=1 q Iq−1(ψq(a, ·)). Moreover, one has that −L−1Y =∑q≥1

1
q Iq(ψq),

so that −Da L−1Y = ∑
q≥1 Iq−1(ψq(a, ·)). Now, let Tz , z ≥ 0, denote the (infi-

nite dimensional) Ornstein–Uhlenbeck semigroup, whose action on random variables
F ∈ L2(X) is given by Tz(F) = ∑

q≥0 e−qz Jq(F). We can write

1∫

0

1

2
√

t
Tln(1/

√
t)(DaY )dt =

∞∫

0

e−zTz(DaY )dz =
∑

q≥1

1

q
Jq−1(DaY )

=
∑

q≥1

Iq−1(ψq(a, ·)) = −Da L−1Y . (3.46)

Now recall that Mehler’s formula (see, e.g. [35, formula (1.54)]) implies that, for every
function f with subexponential growth,

Tz( f (V )) = E
[

f (e−zv +
√

1 − e−2z V )
] ∣
∣
v=V , z ≥ 0.
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In particular, by applying this last relation to the partial derivatives ∂g
∂vi

, i = 1, . . . , n,
we deduce from (3.46) that

1∫

0

1

2
√

t
Tln(1/

√
t)(DaY )dt =

n∑

i=1

hi (a)

1∫

0

1

2
√

t
E

[
∂g

∂vi
(
√

t v + √
1 − t V )

]

dt
∣
∣
v=V .

Consequently, (3.43) follows, since

〈DY,−DL−1Y 〉H

=
〈

n∑

i=1

∂g

∂vi
(V )hi ,

n∑

i=1

1∫

0

1

2
√

t
E

[
∂g

∂vi
(
√

t v + √
1 − t V )

]

dt
∣
∣
v=V hi

〉

H

= S(V ).

See also Houdré and Pérez–Abreu [22] for related computations in an infinite-
dimensional setting.

The following result concerns finite sums of multiple integrals.

Proposition 3.7 For s ≥ 2, fix s integers 2 ≤ q1 < · · · < qs. Consider a sequence of
the form

Zn =
s∑

i=1

Iqi ( f i
n ), n ≥ 1,

where f i
n ∈ H
qi . Set

I =
{
(i, j, r) ∈ {1, . . . , s}2 × N : 1 ≤ r ≤ qi ∧ q j and (r, qi , q j ) �= (qi , qi , qi )

}
.

Then,

E[(1 − 〈DZn,−DL−1 Zn〉H)2] ≤ 2

(

1 −
s∑

i=1

qi !‖ f i
n‖2

H⊗qi

)2

+ 2s2
∑

(i, j,r)∈I

q2
i (r − 1)!2

(
qi − 1

r − 1

)2(q j − 1

r − 1

)2

(qi + q j − 2r)!

× ‖ f i
n ⊗qi −r f i

n‖H⊗2r ‖ f j
n ⊗q j −r f j

n ‖H⊗2r .

In particular, if (as n → ∞) E[Z2
n] = ∑s

i=1 qi !‖ f i
n‖2

H⊗qi
−→ 1 and if, for any

i = 1, . . . , s and r = 1, . . . , qi − 1, one has that ‖ f i
n ⊗r f i

n‖H⊗2(qi −r) −→ 0, then

Zn
Law−→ Z ∼ N (0, 1) as n → ∞, and the inequalities in Theorem 3.1 allow to

associate bounds with this convergence.
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Remark 3.8 1. In principle, by using Proposition 3.7 it is possible to prove bounds for
limit theorems involving the Gaussian approximation of infinite sums of multiple
integrals, such as for instance the CLT proved in [24, Theorem 4].

2. Note that, to obtain the convergence result stated in Proposition 3.7, one does not
need to suppose that the quantity E[Iq( fi )

2] = qi !‖ f i
n‖2

H⊗qi
is convergent for

every i . One should compare this finding with the CLTs proved in [39], as well as
the Gaussian approximations established in [38].

Proof of Proposition 3.7 Observe first that, without loss of generality, we can assume
that X is an isonormal process over some Hilbert space of the type H = L2(A,A , µ).
For every a ∈ A, it is immediately checked that

Da Zn =
s∑

i=1

qi Iqi −1

(
f i
n (·, a)

)

and

−Da(L
−1 Zn) = Da

(
s∑

i=1

1

qi
Iqi ( f i

n )

)

=
s∑

i=1

Iqi −1

(
f i
n (·, a)

)
.

This yields, using in particular the multiplication formula (2.29):

〈DZn,−DL−1 Zn〉H
=

s∑

i, j=1

qi

∫

A

Iqi −1

(
f i
n (·, a)

)
Iq j −1

(
f j
n (·, a)

)
µ(da)

=
s∑

i, j=1

qi

qi ∧q j −1∑

r=0

r !
(

qi − 1

r

)(
q j − 1

r

)

Iqi +q j −2−2r

×
⎛

⎝
∫

A

f i
n (·, a)⊗r f j

n (·, a)µ(da)

⎞

⎠

=
s∑

i, j=1

qi

qi ∧q j −1∑

r=0

r !
(

qi − 1

r

)(
q j − 1

r

)

Iqi +q j −2−2r

(
f i
n ⊗r+1 f j

n

)

=
s∑

i, j=1

qi

qi ∧q j∑

r=1

(r − 1)!
(

qi − 1

r − 1

)(
q j − 1

r − 1

)

Iqi +q j −2r

(
f i
n ⊗r f j

n

)

=
s∑

i=1

qi !‖ f i
n‖2

H⊗qi +
∑

(i, j,r)∈I

qi (r − 1)!
(

qi − 1

r − 1

)(
q j − 1

r − 1

)

Iqi +q j −2r

(
f i
n ⊗r f j

n

)
.

Thus, by using (among others) inequalities of the type (a1 + · · · + av)2 ≤
v(a2

1 + · · · + a2
v), the isometric properties of multiple integrals as well ‖ f ⊗̃r g‖ ≤

‖ f ⊗r g‖, we obtain
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E
(
[〈DZn,−DL−1 Zn〉H − 1]2

)

≤ 2

(

1 −
s∑

i=1

qi !‖ f i
n‖2

H⊗qi

)2

+2E

⎛

⎝
∑

(i, j,r)∈I

qi (r − 1)!
(

qi − 1

r − 1

)(
q j − 1

r − 1

)

Iqi +q j −2r

(
f i
n ⊗r f j

n

)
⎞

⎠

2

≤ 2

(

1 −
s∑

i=1

qi !‖ f i
n‖2

H⊗qi

)2

+2s2
∑

(i, j,r)∈I

q2
i (r − 1)!2

(
qi − 1

r − 1

)2(q j − 1

r − 1

)2

×(qi + q j − 2r)!‖ f i
n ⊗r f j

n ‖2
H⊗qi +q j −2r

≤ 2

(

1 −
s∑

i=1

qi !‖ f i
n‖2

H⊗qi

)2

+2s2
∑

(i, j,r)∈I

q2
i (r − 1)!2

(
qi − 1

r − 1

)2(q j − 1

r − 1

)2

(qi + q j − 2r)!

×‖ f i
n ⊗qi −r f i

n‖H⊗2r ‖ f j
n ⊗q j −r f j

n ‖H⊗2r ,

the last inequality being a consequence of the (easily verified) relation

‖ f i
n ⊗r f j

n ‖2
H⊗qi +q j −2r = 〈 f i

n ⊗qi −r f i
n , f j

n ⊗q j −r f j
n 〉H⊗2r .

��

3.2 A property of 〈DF,−DL−1 F〉H
Before dealing with Gamma approximations, we shall prove the a.s. positivity of a spe-
cific projection of the random variable 〈DF,−DL−1 F〉H appearing in Theorem 3.1.
This fact will be used in the proof of the main result of the next section.

Proposition 3.9 Let F ∈ D
1,2. Then, P-a.s.,

E[〈DF,−DL−1 F〉H|F] ≥ 0. (3.47)

Proof Let g be a non-negative real function, and set G(x) = ∫ x
0 g(t)dt , with the usual

convention
∫ x

0 = − ∫ 0
x for x < 0. Since G is increasing and vanishing at zero, we

have xG(x) ≥ 0 for all x ∈ R. In particular, E(FG(F)) ≥ 0. Moreover,

E[F G(F)] = E[〈DF,−DL−1 F〉H g(F)] = E[E[〈DF,−DL−1 F〉H|F]g(F)].

123



94 I. Nourdin, G. Peccati

We therefore deduce that

E[E[〈DF,−DL−1 F〉H|F]1A] ≥ 0

for any σ(F)-measurable set A. This implies the desired conclusion. ��
Remark 3.10 According to Goldstein and Reinert [20], for F as in the previous sta-
tement, there exists a random variable F∗ having the F-zero biased distribution, that
is, F∗ is such that, for every absolutely continuous function f ,

E[ f ′(F∗)] = E[F f (F)].

By the computations made in the previous proof, one also has that

E[g(F∗)] = E[〈DF,−DL−1 F〉Hg(F)],

for any real-valued and smooth function g. This implies, in particular, that the conditio-
nal expectation E[〈DF,−DL−1 F〉H|F] is a version of the Radon–Nikodym
derivative of the law of F∗ with respect to the law of F , whenever the two laws
are equivalent.

3.3 Gamma approximations

We now combine Malliavin calculus with the Gamma approximations discussed in
the second part of Sect. 1.2.

Theorem 3.11 Fix ν > 0 and let F(ν) have a centered Gamma distribution with
parameter ν. Let G ∈ D

1,2 be such that E(G) = 0 and the law of G is absolutely
continuous with respect to the Lebesgue measure. Then:

dH2(G, F(ν)) ≤ K2 E[(2ν + 2G − 〈DG,−DL−1G〉H)2]1/2, (3.48)

and, if ν ≥ 1 is an integer,

dH1(G, F(ν)) ≤ K1 E[(2ν + 2G − 〈DG,−DL−1G〉H)2]1/2, (3.49)

where H1 and H2 are defined in (1.14)–(1.15), K1 := max
{√

2π/ν, 1/ν + 2/ν2
}

and K2 := max{1, 1/ν + 2/ν2}.
Proof We will only prove (3.48), the proof of (3.49) being analogous. Fix ν > 0.
Thanks to (1.20) and (1.23) (in the case Y = G) and by applying Cauchy–Schwarz,
we deduce that

dH2(G, F(ν)) ≤ sup
F2

|E[ f ′(G)(2(ν + G)+ − 〈DG,−DL−1G〉H)]|

≤ K2 × E[(2(ν + G)+ − 〈DG,−DL−1G〉H)2]1/2

≤ K2 × E[(2(ν + G)− 〈DG,−DL−1G〉H)2]1/2,
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where the last inequality is a consequence of the fact that E[〈DG,−DL−1G〉H|G] ≥ 0
(thanks to Proposition 3.9). ��
Remark 3.12 (Mehler’s formula and Stein’s method, II). Define Y = g(V ) as in
Remark 3.6. Then, since (3.44) and (3.45) are in order, one deduces from Theorem 3.11
that, for every ν > 0,

dH2(Y, F(ν)) ≤ K2 E[(2ν + 2Y − S(V ))2]1/2.

An analogous estimate holds for dH1 , when applied to the case where ν ≥ 1 is an
integer.

We will now connect the previous results to the main findings of [33]. To do this,
we shall provide explicit estimates of the bounds appearing in Theorem 3.11, in the
case where G belongs to a fixed Wiener chaos of even order q.

Proposition 3.13 Let q ≥ 2 be an even integer, and let G = Iq(g), where g ∈ H
q .
Then,

E[(2ν + 2G−〈DG,−DL−1G〉H)2]= E[(2ν+2G − q−1‖DG‖2
H)

2] (3.50)

≤ (2ν − q! ‖g‖2
H⊗q )

2 + +q2
∑

r∈{1,...,q−1}
r �=q/2

(2q − 2r)!(r − 1)!2
(

q − 1

r − 1

)4

‖

g ⊗r g‖2
H⊗2(q−r) + +4q!

∥
∥
∥c−1

q × g⊗̃q/2g − g
∥
∥
∥

2

H⊗q
,

where

cq := 1

(q/2)!( q−1
q/2−1

)2 = 4

(q/2)!( q
q/2

)2 . (3.51)

Proof By using (3.42) we deduce that

q−1‖DG‖2
H − 2ν − 2G = (q! ‖g‖2

H⊗q − 2ν)

+ q
∑

r∈{1,...,q−1}
r �=q/2

(r − 1)!
(

q − 1

r − 1

)2

I2(q−r)
(
g⊗̃r g

)

+ q(q/2 − 1)!
(

q − 1

q/2 − 1

)

Iq(g⊗̃q/2g − 2g).

The conclusion is obtained by using the isometric properties of multiple
Wiener-Itô integrals, as well as the relation ‖g⊗̃r g‖H⊗2(q−r) ≤ ‖g ⊗r g‖H⊗2(q−r) ,
for every r ∈ {1, . . . , q − 1} such that r �= q/2. ��

By using Proposition 3.13, we immediately recover the implications (iv) → (iii)
→ (i) in the statement of the following result, recently proved in [33, Theorem 1.2].

123



96 I. Nourdin, G. Peccati

Theorem 3.14 [33] Let ν > 0 and let F(ν) have a centered Gamma distribution with
parameter ν. Fix an even integer q ≥ 2, and define cq according to (3.51). Consider
a sequence of the type Gn = Iq(gn), where n ≥ 1 and gn ∈ H
q , and suppose that

lim
n→∞ E

[
G2

n

]
= lim

n→∞ q!‖gn‖2
H⊗q = 2ν.

Then, the following four conditions are equivalent:

(i) as n → ∞, the sequence (Gn)n≥1 converges in distribution to F(ν);
(ii) limn→∞ E[G4

n] − 12E[G3
n] = 12ν2 − 48ν;

(iii) as n → ∞, ‖DGn‖2
H − 2qGn −→ 2qν in L2.

(iv) limn→∞ ‖gn⊗̃q/2gn − cq × gn‖H⊗q = 0, where cq is given by (3.51), and
limn→∞ ‖gn ⊗r gn‖H⊗2(q−r) = 0, for every r = 1, . . . , q −1 such that r �= q/2.

Observe that E(F(ν)2) = 2ν, E(F(ν)3) = 8ν and E(F(ν)4) = 48ν+12ν2, so that the
implication (ii) → (i) in the previous statement can be seen as a further simplification
of the method of moments and cumulants, as applied to non-central limit theorems
(see, e.g. [51], and the references therein, for a survey of classic non-central limit
theorems). Also, the combination of Proposition 3.13 and Theorem 3.14 shows that,
inside a fixed Wiener chaos of even order, one has that: (i) dH2 metrizes the weak
convergence towards centered Gamma distributions, and (ii) dH1 metrizes the weak
convergence towards centered χ2 distributions with arbitrary degrees of freedom.

The following result concerns the Gamma approximation of a sum of two multiple
integrals. Note, at the cost of a quite heavy notation, one could easily establish ana-
logous estimates for sums of three or more integrals. The reader should compare this
result with Proposition 3.7.

Proposition 3.15 Fix two real numbers ν1, ν2 > 0, as well as two even integers
2 ≤ q1 < q2. Set ν = ν1 + ν2 and suppose (for the sake of simplicity) that q2 > 2q1.
Consider a sequence of the form

Zn = Iq1( f 1
n )+ Iq2( f 2

n ), n ≥ 1,

where f i
n ∈ H
qi . Set

J =
{
(i, j, r) ∈ {1, 2}2 × N : 1 ≤ r ≤ qi ∧ q j and, whenever i = j ,

r �= qi and r �= qi
2

}
.

Then

E[(2Zn + 2ν − 〈DZn,−DL−1 Zn〉H)2]

≤ 3

⎛

⎝2ν −
∑

i=1,2

qi !‖ f i
n‖2

H⊗qi

⎞

⎠

2

+ 24
∑

i=1,2

c−2
qi

qi ! ‖ f i
n ⊗̃qi/2 f i

n − cqi × f i
n‖2

H⊗qi
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+ 12
∑

(i, j,r)∈J

q2
i (r − 1)!2

(
qi − 1

r − 1

)2(q j − 1

r − 1

)2

(qi + q j − 2r)! (3.52)

× ‖ f i
n ⊗qi −r f i

n‖H⊗2r ‖ f j
n ⊗q j −r f j

n ‖H⊗2r .

In particular, if

(i) E[Z2
n] = ∑

i=1,2 qi !‖ f i
n‖2

H⊗qi
−→ 2ν as n → ∞,

(ii) for i = 1, 2, ‖ f i
n ⊗̃qi/2 f i

n −cqi × f i
n‖H⊗qi −→ 0 as n → ∞, where cqi is defined

in Theorem 3.14,
(iii) for any i = 1, 2 and r = 1, . . . , qi −1 such that r �= qi

2 , ‖ f i
n ⊗r f i

n‖H⊗2(qi −r) −→ 0
as n → ∞,

then Zn
Law−→ F(ν) as n → ∞, and the combination of Theorem 3.1 and (3.52) allows

to associate explicit bounds with this convergence.

Proof of Proposition 3.15 We have (see the proof of Proposition 3.7)

〈DZn,−DL−1 Zn〉H − 2Zn − 2ν

=
⎛

⎝
∑

i=1,2

qi !‖ f i
n‖2

H⊗qi − 2ν

⎞

⎠+
∑

i=1,2

2 c−1
qi

Iqi ( f i
n ⊗̃qi/2 f i

n − cqi × f i
n )

+
∑

(i, j,r)∈J

qi (r − 1)!
(

qi − 1

r − 1

)(
q j − 1

r − 1

)

Iqi +q j −2r

(
f i
n ⊗r f j

n

)
.

Thus

E
(
[〈DZn,−DL−1 Zn〉H − 2Zn − 2ν]2

)

≤ 3

⎛

⎝2ν −
∑

i=1,2

qi !‖ f i
n‖2

H⊗qi

⎞

⎠

2

+ 24
∑

i=1,2

c−2
qi

qi ! ‖ f i
n ⊗̃qi/2 f i

n − cqi × f i
n‖2

H⊗qi

+ 3 E

⎛

⎝
∑

(i, j,r)∈J

qi (r − 1)!
(

qi − 1

r − 1

)(
q j − 1

r − 1

)

Iqi +q j −2r

(
f i
n ⊗r f j

n

)
⎞

⎠

2

≤ 3

⎛

⎝2ν −
∑

i=1,2

qi !‖ f i
n‖2

H⊗qi

⎞

⎠

2

+ 24
∑

i=1,2

c−2
qi

qi ! ‖ f i
n ⊗̃qi/2 f i

n − cqi × f i
n‖2

H⊗qi

+ 12
∑

(i, j,r)∈J

q2
i (r − 1)!2

(
qi − 1

r − 1

)2

(
q j − 1

r − 1

)2

(qi + q j − 2r)!‖ f i
n ⊗r f j

n ‖2
H⊗qi +q j −2r
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≤ 3

⎛

⎝2ν −
∑

i=1,2

qi !‖ f i
n‖2

H⊗qi

⎞

⎠

2

+ 24
∑

i=1,2

c−2
qi

qi ! ‖ f i
n ⊗̃qi/2 f i

n − cqi × f i
n‖2

H⊗qi

+ 12
∑

(i, j,r)∈J

q2
i (r − 1)!2

(
qi − 1

r − 1

)2(q j − 1

r − 1

)2

(qi + q j − 2r)!

× ‖ f i
n ⊗qi −r f i

n‖H⊗2r ‖ f j
n ⊗q j −r f j

n ‖H⊗2r .

��

4 Berry–Esséen bounds in the Breuer–Major CLT

In this section, we use our main results in order to derive an explicit Berry–Esséen
bound for the celebrated Breuer–Major CLT for Gaussian-subordinated random
sequences. For simplicity, we focus on sequences that can be represented as Hermite-
type functions of the (normalized) increments of a fractional Brownian motion. Our
framework include examples of Gaussian sequences whose autocovariance functions
display long dependence. Plainly, the techniques developed in this paper can also
accommodate the analysis of more general transformations (for instance, obtained
from functions with an arbitrary Hermite rank—see [52]), as well as alternative co-
variance structures.

4.1 General setup

We recall that a fractional Brownian motion (fBm) B = {Bt : t ∈ [0, 1]}, of Hurst
index H ∈ (0, 1), is a centered Gaussian process, started from zero and with covariance
function E(Bs Bt ) = RH (s, t), where

RH (s, t) = 1

2

(
t2H + s2H − |t − s|2H

)
; s, t ∈ [0, 1].

If H = 1/2, then RH (s, t) = min(s, t) and B is a standard Brownian motion. For any
choice of the Hurst parameter H ∈ (0, 1), the Gaussian space generated by B can be
identified with an isonormal Gaussian process of the type X = {X (h) : h ∈ H}, where
the real and separable Hilbert space H is defined as follows: (i) denote by E the set
of all R-valued step functions on [0, 1], (ii) define H as the Hilbert space obtained by
closing E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H = RH (t, s).

In particular, with such a notation one has that Bt = X (1[0,t]). Note that, if H = 1/2,
then H = L2[0, 1]; when H > 1/2, the space H coincides with the space of distributions

f such that s
1
2 −H I

H− 1
2

0+ ( f (u)u H− 1
2 )(s) belongs to L2[0, 1]; when H < 1/2 one
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has that H is I
H− 1

2
0+ (L2[0, 1]). Here, I

H− 1
2

0+ denotes the action of the fractional
Riemann-Liouville operator, defined as

I
H− 1

2
0+ f (x) = 1

�(H − 1
2 )

x∫

0

(x − y)H− 3
2 f (y)dy.

The reader is referred e.g. to [35] for more details on fBm and fractional operators.

4.2 A Berry–Esséen bound

In what follows, we will be interested in the asymptotic behaviour (as n → ∞) of
random vectors that are subordinated to the array

Vn,H =
{

nH (B(k+1)/n − Bk/n) : k = 0, . . . , n − 1
}
, n ≥ 1. (4.53)

Note that, for every n ≥ 1, the law of Vn,H in (4.53) coincides with the law of the
first n instants of a centered stationary Gaussian sequence indexed by {0, 1, 2, . . .} and
with autocovariance function given by

ρH (k) = 1

2

(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
, k ∈ Z

(in particular, ρH (0) = 1 and ρH (k) = ρH (−k)). From this last expression, one
deduces that the components of the vector Vn,H are: (a) i.i.d. for H = 1/2, (b) negatively
correlated for H ∈ (0, 1/2) and (c) positively correlated for H ∈ (1/2, 1). In particular,
if H ∈ (1/2, 1), then

∑
k ρH (k) = +∞: in this case, one customarily says that ρH

exhibits long-range dependence (or, equivalently, long memory—see, e.g. [53] for a
general discussion of this point).

Now denote by Hq , q ≥ 2, the qth Hermite polynomial, defined as

Hq(x) = (−1)q

q! e
x2
2

dq

dxq
e− x2

2 , x ∈ R.

For instance, H2(x) = (x2 − 1)/2, H3(x) = (x3 − 3x)/6, and so on. Finally, set

σ =
√

1

q!
∑

t∈Z

ρH (t)q ,

and define

Zn = 1

σ
√

n

n−1∑

k=0

Hq

(
nH (B(k+1)/n − Bk/n)

)
= nq H− 1

2

q!σ
n−1∑

k=0

Iq(δ
⊗q
k/n), (4.54)
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where Iq denotes the qth multiple integral with respect to the isonormal process
associated with B (see Sect. 2). For simplicity, here (and for the rest of this section)
we write δk/n instead of 1[k/n,(k+1)/n], and also δ⊗q

k/n = δk/n ⊗ · · · ⊗ δk/n (q times).
Note that in (4.54) we have used the standard relation: q!Hq (B(h)) = Iq(h⊗q) for
every h ∈ H such that ‖h‖H = 1 (see, e.g. [35, Chap. 1]).

Now observe that, for every q ≥ 2, one has that
∑

t |ρH (t)|q < ∞ if, and only if,

H ∈
(

0, 2q−1
2q

)
. Moreover, in this case, E(Z2

n) → 1 as n → ∞. As a consequence,

according to Breuer and Major’s well-known result [5, Theorem 1], as n → ∞

Zn → Z ∼ N (0, 1) in distribution.

To the authors’ knowledge, the following statement contains the first Berry–Esséen
bound ever proved for the Breuer–Major CLT:

Theorem 4.1 As n → ∞, Zn converges in law towards Z ∼ N (0, 1). Moreover,
there exists a constant cH , depending uniquely on H, such that, for any n ≥ 1 :

sup
z∈R

|P(Zn ≤ z)− P(Z ≤ z)| ≤ cH ×

⎧
⎪⎪⎨

⎪⎪⎩

n− 1
2 if H ∈ (0, 1

2 ]
nH−1 if H ∈ [ 1

2 ,
2q−3
2q−2 ]

nq H−q+ 1
2 if H ∈ [ 2q−3

2q−2 ,
2q−1

2q )

Remark 4.2 1. Theorem 1.6 (see the Introduction) can be proved by simply setting
q = 2 in Theorem 4.1. Observe that in this case one has 2q−3

2q−2 = 1
2 , so that the

middle line in the previous display becomes immaterial.
2. When H >

2q−1
2q , the sequence Zn does not converge in law towards a Gaussian

random variable. Indeed, in this case a non-central limit theorem takes place. See
Breton and Nourdin [4] for bounds associated with this convergence.

3. As discussed in [5, p. 429], it is in general not possible to derive CLTs such as the
one in Theorem 4.1 from mixing-type conditions. In particular, it seems unfeasible
to deduce Theorem 4.1 from any mixing characterization of the increments of
fractional Brownian motion (as the one proved e.g. by Picard in [40, Theorem
A.1]). See, e.g. Tikhomirov [54] for general derivations of Berry–Esséen bounds
from strong mixing conditions.

4.3 Proof of Theorem 4.1

We have

DZn = nq H− 1
2

(q − 1)!σ
n−1∑

k=0

Iq−1(δ
⊗q−1
k/n )δk/n,
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hence

‖DZn‖2
H = n2q H−1

(q − 1)!2σ 2

n−1∑

k,�=0

Iq−1(δ
⊗q−1
k/n )Iq−1(δ

⊗q−1
�/n )〈δk/n, δ�/n〉H.

By the multiplication formula (2.29):

Iq−1(δ
⊗q−1
k/n )Iq−1(δ

⊗q−1
�/n ) =

q−1∑

r=0

r !
(

q − 1

r

)2

I2q−2−2r

(
δ
⊗q−1−r
k/n ⊗̃δq−1−r

�/n

)
〈δk/n, δ�/n〉r

H.

Consequently,

‖DZn‖2
H = n2q H−1

(q − 1)!2σ 2

q−1∑

r=0

r !
(

q − 1

r

)2 n−1∑

k,�=0

I2q−2−2r

(
δ
⊗q−1−r
k/n ⊗̃δq−1−r

�/n

)
〈δk/n, δ�/n〉r+1

H .

Thus, we can write

1

q
‖DZn‖2

H − 1 =
q−1∑

r=0

Ar (n)− 1

where

Ar (n) = r !(q−1
r

)2

q(q − 1)!2σ 2 n2q H−1
n−1∑

k,�=0

I2q−2−2r

(
δ
⊗q−1−r
k/n ⊗̃δq−1−r

�/n

)
〈δk/n, δ�/n〉r+1

H .

We will need the following easy Lemma (the proof is omitted). Here and for the rest
of the proof of Theorem 4.1, the notation an � bn means that supn≥1 |an|/|bn| < ∞.

Lemma 4.3 1. We have ρH (n) � |n|2H−2.

2. For any α ∈ R, we have

n−1∑

k=1

kα � 1 + nα+1.

3. If α ∈ (−∞,−1), we have

∞∑

k=n

kα � nα+1.
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By using elementary computations (in particular, observe that n2H 〈δk/n, δ�/n〉H =
ρH (k − �)) and then Lemma 4.3, it is easy to check that

Aq−1(n)− 1 = 1

q!σ 2 n2q H−1
n−1∑

k,�=0

〈δk/n, δ�/n〉q
H − 1

= 1

q!σ 2

⎛

⎝1

n

n−1∑

k,�=0

ρH (k − �)q −
∑

t∈Z

ρH (t)
q

⎞

⎠

= 1

q!σ 2

⎛

⎝1

n

∑

|t |<n

(n − |t |)ρH (t)
q −

∑

t∈Z

ρH (t)
q

⎞

⎠

= 1

q!σ 2

⎛

⎝−1

n

∑

|t |<n

|t | ρH (t)
q −

∑

|t |≥n

ρH (t)
q

⎞

⎠

� 1

n

n−1∑

t=1

t2q H−2q+1 +
∞∑

t=n

t2q H−2q � n−1 + n2q H−2q+1.

Now, we assume that r ≤ q − 2 is fixed. We have

E |Ar (n)|2 = c(H, r, q)n4q H−2
n−1∑

i, j,k,�=0

〈δk/n, δ�/n〉r+1
H 〈δi/n, δ j/n〉r+1

H

×〈δ⊗q−1−r
k/n ⊗̃δq−1−r

�/n , δ
⊗q−1−r
i/n ⊗̃δq−1−r

j/n 〉H⊗2q−2−2r

=
∑

α,β≥0
α+β=q−r−1

∑

γ,δ≥0
γ+δ=q−r−1

c(H, r, q, α, β, γ, δ) Br,α,β,γ,δ(n)

where c(·) denotes a generic constant depending only on the objects inside its argument
(and which can be equal to zero), and

Br,α,β,γ,δ(n) = n4q H−2
n−1∑

i, j,k,�=0

〈δk/n, δ�/n〉r+1
H 〈δi/n, δ j/n〉r+1

H 〈δk/n, δi/n〉αH

×〈δk/n, δ j/n〉βH〈δ�/n, δi/n〉γH〈δ�/n, δ j/n〉δH

= n−2
n−1∑

i, j,k,�=0

ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)α

×ρH (k − j)βρH (�− i)γ ρH (�− j)δ.

When α, β, γ, δ are fixed, we can decompose the sum
∑

i, j,k,� appearing in
Br,α,β,γ,δ(n) just above, as follows:
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∑

i= j=k=�
+

⎛

⎜
⎜
⎝

∑

i= j=k
� �=i

+
∑

i= j=�
k �=i

+
∑

i=k=�
j �=i

+
∑

j=k=�
i �= j

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

∑

i= j,k=�
k �=i

+
∑

i=k, j=�
j �=i

+
∑

i=�, j=k
j �=i

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

∑

i= j,k �=i
k �=�,� �=i

+
∑

i=k, j �=i
j �=�,k �=�

+
∑

i=�,k �=i
k �= j, j �=i

+
∑

j=k,k �=i
k �=�,� �=i

+
∑

j=�,k �=i
k �=�,� �=i

+
∑

k=�,k �=i
k �= j, j �=i

⎞

⎟
⎟
⎠+

∑

i, j,k,�
are all different

(all these sums must be understood as being defined over indices {i, j, k, �} ∈ {0, . . . ,
n − 1}4). Now, we will deal with each of these fifteen sums separately.

The first sum is particularly easy to handle: indeed, it is immediately checked that

n−2
∑

i= j=k=�
ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)αρH (k − j)β

×ρH (�− i)γ ρH (�− j)δ � n−1.

For the second sum, one can write

n−2
∑

i= j=k
� �=i

ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)αρH (k − j)β

× ρH (�− i)γ ρH (�− j)δ

� n−2
∑

i �=�
ρH (�− i)q � n−1

n−1∑

�=1

�2q H−2q = n−1 + n2q H−2q by Lemma 4.3.

For the third sum, we can proceed analogously and we again obtain the bound
n−1 + n2q H−2q .

For the fourth sum, we write

n−2
∑

i=k=�
j �=i

ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)αρH (k − j)β

×ρH (�− i)γ ρH (�− j)δ

� n−2
∑

i �= j

ρH ( j − i)r+1+β+δ � n−2
∑

i �= j

| j − i |(r+1+β+δ)(2H−2)

� n−2
∑

i �= j

| j − i |2H−2

� n−1
n−1∑

j=1

j2H−2 � n−1 + n2H−2

(we used the fact that r + 1 + β + δ ≥ 1 since r, β, δ ≥ 0). For the fifth sum, we can
proceed analogously and we again obtain the bound n−1 + n2H−2.

123



104 I. Nourdin, G. Peccati

For the sixth sum, we have

n−2
∑

i= j
k=�
k �=i

ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)αρH (k − j)β

ρH (�− i)γ ρH (�− j)δ

� n−2
∑

k �=i

ρH (k − i)2q−2−2r � n−2
∑

k �=i

|k − i |(2q−2−2r)(2H−2)

× � n−2
∑

k �=i

|k − i |4H−4

� n−1
n−1∑

k=1

k4H−4 � n−1 + n4H−4

(here, we used r ≤ q − 2). For the seventh and the eighth sums, we can proceed
analogously and we also obtain n−1 + n4H−4 for bound.

For the ninth sum, we have

n−2
∑

i= j,k �=i
k �=�,� �=i

ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)αρH (k − j)β

ρH (�− i)γ ρH (�− j)δ

� n−2
∑

k �=i
k �=�,� �=i

ρH (k − �)r+1ρH (k − i)q−r−1ρH (�− i)q−r−1.

Now, let us decompose the sum
∑

k �=i,k �=�,� �=i into

∑

k>�>i

+
∑

k>i>�

+
∑

�>i>k

+
∑

�>k>i

+
∑

i>�>k

+
∑

i>k>�

.

For the first term (for instance), we have

n−2
∑

k>�>i

ρH (k − �)r+1ρH (k − i)q−r−1ρH (�− i)q−r−1

� n−2
∑

k>�>i

(k − �)(r+1)(2H−2)(k − i)(q−r−1)(2H−2)(�− i)(q−r−1)(2H−2)

� n−2
∑

k>�>i

(k − �)q(2H−2)(�− i)(q−r−1)(2H−2) since k − i > k − �

= n−2
∑

k

∑

�<k

(k − �)q(2H−2)
∑

i<�

(�− i)(q−r−1)(2H−2)

� n−2
∑

k

∑

�<k

(k − �)q(2H−2)
∑

i<�

(�− i)2H−2 since q − r − 1 ≥ 1
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� n−1
n−1∑

�=1

�2q H−2q
n−1∑

i=1

i2H−2

� n−1(1 + n2q H−2q+1)(1 + n2H−1) � n−1 + n2H−2 since 2q H − 2q + 1 < 0.

We obtain the same bound for the other terms. By proceeding in the same way than for
the ninth term, we also obtain the bound n−1 + n2H−2 for the tenth, eleventh, twelfth,
thirteenth and fourteenth terms.

For the fifteenth (and last!) sum, we decompose
∑
(i, j,k,� are all different) as follows

∑

k>�>i> j

+
∑

k>�> j>i

+ · · · . (4.55)

For the first term, we have:

n−2
∑

k>�>i> j

ρH (k − �)r+1ρH (i − j)r+1ρH (k − i)α

ρH (k − j)βρH (�− i)γ ρH (�− j)δ

� n−2
∑

k>�>i> j

(k − �)q(2H−2)(i − j)(r+1)(2H−2)(�− i)(q−r−1)(2H−2)

= n−2
∑

k

∑

�<k

(k − �)q(2H−2)
∑

i<�

(�− i)(q−r−1)(2H−2)
∑

j<i

(i − j)(r+1)(2H−2)

� n−1
n−1∑

�=1

�q(2H−2)
n−1∑

i=1

i (q−r−1)(2H−2)
n−1∑

j=1

j (r+1)(2H−2)

� n−1(1 + n2q H−2q+1)(1 + n(q−r−1)(2H−2)+1)(1 + n(r+1)(2H−2)+1)

� n−1(1 + n2H−1 + n2q H−2q+2)

since 2q H − 2q + 1 < 0 and r + 1, q − r − 1 ≥ 1

� n−1 + n2H−2 + n2q H−2q+1.

The same bound also holds for the other terms in (4.55). By combining all these
bounds, we obtain

max
r=1,...,q−1

E |Ar (n)|2 � n−1 + n2H−2 + n2q H−2q+1,

that finally gives:

E

(
1

q
‖DZn‖2

H − 1

)2

� n−1 + n2H−2 + n2q H−2q+1.

The proof of Theorem 4.1 is now completed by means of Proposition 3.2.
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5 Some remarks about χ2 approximations

The following statement illustrates a natural application of the results about χ2

approximations (as discussed in Sect. 3.3) in order to obtain upper bounds in non-
central limit theorems for multiple integrals. Observe that we focus on double integrals
but, at the cost of some heavy notation, everything can be straightforwardly extended
to the case of integrals of any order q ≥ 2. Recall that the class of functions H1 is
defined in formula (1.14).

Proposition 5.1 Let Fn = I2( fn), n ≥ 1, where fn ∈ H
2, be a sequence of double
Wiener-Itô integrals. Suppose that E(F2

n ) −→ 1 and ‖ fn ⊗1 fn‖H⊗2 −→ 0 as
n → ∞. Then, by defining

Hn = I4
(

fn⊗̃ fn
)
, n ≥ 1,

one has that

E

[(

2 + 2Hn − 1

4
‖DHn‖2

H

)2
]

−→ 0, as n → ∞, (5.56)

and

dH1(F
2
n − 1, N 2 − 1) ≤ 8

√
2‖ fn ⊗1 fn‖H⊗2

+
√
√
√
√2πE

[(

2 + 2Hn − 1

4
‖DHn‖2

H

)2
]

, (5.57)

where N ∼ N (0, 1).

Proof First, we have that Fn
Law−→ N by Theorem 3.3. Now, use the multiplication

formula (2.29) to deduce that

F2
n − 1 = 8 I2( fn ⊗1 fn)+ Hn .

Since

E
(

I2( fn ⊗1 fn)
2
)

= 2 ‖ fn ⊗1 fn‖2
H⊗2 −→ 0, as n → ∞,

we infer that Hn
Law−→ N 2 − 1, and therefore that (5.56) must take place, due to

Theorem 3.14. By the definition of the class H1, one also deduces that

dH1(F
2
n − 1, N 2 − 1) ≤ dH1(Hn, N 2 − 1)+ 8 E |I2( fn ⊗1 fn)| .

The final result is obtained by combining (3.49)–(3.50) with the relation

E |I2( fn ⊗1 fn)| ≤
√

E
(
I2( fn ⊗1 fn)2

)
.

123



Stein’s method on Wiener chaos 107

��
We conclude this section with a simple example, showing how one can apply

our techniques to deduce bounds in a non-central limit theorem, involving quadratic
functionals of i.i.d. Gaussian random variables.

Example Let (Gk)k≥0 be a sequence of centered i.i.d. standard Gaussian random
variables. Also, let (ak)k∈Z be a sequence of real numbers such that

a(0) = 1, a(r) = a(−r), r ∈ Z, and
∑

r∈Z

|a(r)− 1| < ∞.

In particular, this implies that a is bounded (say, by ‖a‖∞). Set

Fn = 1

n

n−1∑

k,l=0

a(k − l) (Gk Gl − δkl) , n ≥ 1,

where δkl denotes the Kronecker symbol. We claim that Fn
Law−→

n→∞ N 2 − 1 with

N ∼ N (0, 1), and our aim is to associate a bound with this convergence. Observe
first that, without loss of generality, we can assume that Gk = Bk+1 − Bk where B is a
standard Brownian motion [that B can be therefore regarded as an isonormal process
over H = L2(R+, dx)]. We then have

DFn = 1

n

n−1∑

k,l=0

a(k − l)
(
Gk1[l,l+1] + Gl1[k,k+1]

)

so that

‖DFn‖2
L2 = 1

n2

n−1∑

i, j,k,l=0

a(k − l)a(i − j)
〈
Gk1[l,l+1] + Gl1[k,k+1],

× Gi 1[ j, j+1] + G j 1[i,i+1]
〉
L2

= 1

n2

n−1∑

i, j,k,l=0

a(k − l)a(i − j)

× (
Gk Giδl j + Gk G jδli + Gl Giδk j + Gl G jδik

)

= 4

n

n−1∑

k,l=0

Gk Gl + 1

n2

n−1∑

i, j,k,l=0

(a(k − l)a(i − j)− 1)

× (
Gk Giδl j + Gk G jδli + Gl Giδk j + Gl G jδik

)
.

Hence,

1

2
‖DFn‖2

L2 − 2Fn − 2 = An + Bn
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with

An = 2

n

n−1∑

k,l=0

(1 − a(k − l))Gk Gl

Bn = 1

2n2

n−1∑

i, j,k,l=0

(a(k − l)a(i − j)− 1)

× (
Gk Giδl j + Gk G jδli + Gl Giδk j + Gl G jδik

)
.

We have

E(A2
n) = 4

n2

n−1∑

i, j,k,l=0

(1 − a(k − l)) (1 − a(i − j)) E
(
Gk Gl Gi G j

)

= 8

n2

n−1∑

i,k=0

(1 − a(k − i))2 ≤ 8

n
(1 + ‖a‖∞)

∑

r∈Z

|1 − a(r)| = O(1/n).

On the other hand, we have

Bn = B1
n + B2

n + B3
n + B4

n

with

B1
n = 1

2n2

n−1∑

i, j,k,l=0

(a(k − l)a(i − j)− 1) Gk Giδl j

and similar computations hold for the other terms. Observe that

B1
n = 1

2n2

n−1∑

i, j,k=0

(a(k − j)a(i − j)− 1) Gk Gi

= 1

2n2

n−1∑

i,k=0

αki Gk Gi , with αki =
n−1∑

j=0

(a(k − j)a(i − j)− 1) .

We have

|αki | =
∣
∣
∣
∣
∣
∣

n−1∑

j=0

(a(k − j)− 1)+
n−1∑

j=0

a(k − j) (a(i − j)− 1)

∣
∣
∣
∣
∣
∣

≤ (1 + ‖a‖∞)
∑

r∈Z

|a(r)− 1|.
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Consequently

E
∣
∣
∣B1

n

∣
∣
∣
2 = 1

4n4

n−1∑

i, j,k,l=0

αkiα jl E
(
Gk Gi Gl G j

) = O(1/n2).

Similarly, the same bound holds for E
∣
∣Bi

n

∣
∣2, i = 2, 3, 4. Finally, by combining all

the previous estimates, we obtain

√

E

(
1

2
‖DFn‖2

L2 − 2Fn − 2

)2

= O(1/
√

n),

and therefore, by using Theorem 3.11 and the fact that N 2 − 1
Law= F(1), we deduce

that there exists a positive constant C > 0 (independent of n) such that

dH1(Fn, N 2 − 1) ≤ C/
√

n,

where the class H1 is defined in (1.14). ��

6 An attempt at unification

In this section, we show that the computations contained in Sects. 3.1 and 3.3, res-
pectively, in the Gaussian case and the Gamma case, can be unified, by means of the
general theory of approximations developed by Stein in [49, Lecture VI].

Let Z be a real-valued random variable having an absolutely continuous distribution
with density p(x), x ∈ R. We make the following assumptions:

(A1) Z is integrable and centered, that is,

E |Z | < ∞ and E(Z) =
+∞∫

−∞
yp(y)dy = 0; (6.58)

(A2) there exist (possibly infinite) numbers a, b such that −∞ ≤ a < 0 < b ≤ +∞,
and the support of the density p exactly coincides with the open interval (a, b),
that is,

p(x) > 0 if, and only if, x ∈ (a, b). (6.59)

Remark 6.1 At the cost of some heavier notation, one could easily generalize the
results of this section, in order to accommodate the case of a density p whose support
is a union of open (and possibly infinite) intervals.
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With a Z verifying assumptions (A1)–(A2), we associate the real-valued mapping
τ(·), defined as

x 
→ τ(x) =
∫∞

x yp(y)dy

p(x)
1x∈(a,b) = −

∫ x
−∞ yp(y)dy

p(x)
1x∈(a,b), x ∈ R. (6.60)

Note that τ is well-defined on R, due to assumptions (6.58)–(6.59). Also, relation
(6.58) implies that τ(x) ≥ 0 for every x and τ(x) > 0 if, and only if, x ∈ (a, b). The
following result, which is proved in [49], states that, under some additional assump-
tions, the mapping τ completely characterizes the density p, and therefore the law
of Z .

Lemma 6.2 (Lemma 3, p. 61 in [49]) Let the reals a, b be such that −∞ ≤ a < 0 <
b ≤ +∞, and consider a continuous function τ(·) ≥ 0 on R such that

τ(x) > 0 if, and only if, x ∈ (a, b). (6.61)

Then, if

b∫

0

(y/τ(y))dy = +∞ and

0∫

a

(y/τ(y))dy = −∞, (6.62)

there exists a unique (up to sets of zero Lebesgue measure) probability density pτ (·)
on R such that the support of pτ exactly coincides with the interval (a, b) and

+∞∫

−∞
ypτ (y)dy = 0 and τ(x) =

∫ +∞
x ypτ (y)dy

pτ (x)
1x∈(a,b), x ∈ R. (6.63)

The explicit form of p is given by

pτ (x) = 1

C
× e− ∫ x

0
ydy
τ (y)

τ (x)
1x∈(a,b), x ∈ R, (6.64)

where C = ∫ b
a

e
− ∫ x

0
ydy
τ (y)

τ (x) dx, and we used the notational convention
∫ x

0 = − ∫ 0
x whe-

never x < 0.

We will see later on that property (6.62) is verified by the functions τ associated
with densities in the Pearson’s family of continuous distributions. Now let X have a
density p verifying assumptions (A1)–(A2) above, and let τ be the mapping given by
(6.60) [for the time being, we do not suppose that (6.62) is verified]. We define the
Stein operator Tτ , associated with p and τ , as the differential operator

Tτ f (x) = τ(x) f ′(x)− x f (x), x ∈ R, (6.65)
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acting on differentiable functions f . Now fix a function h which is piecewise conti-
nuous on R and such that E(h(Z)) is well-defined. The Stein equation, associated
with p, τ and h, is the first order differential equation

h(x)− E(h(Z)) = Tτ f (x), x ∈ R, (6.66)

where Tτ f is defined in (6.65). If τ verifies (6.62), then (due to Lemma 6.2)
E(Z) = Eτ (h), where Eτ (h) = ∫

h(y)pτ (y)dy, and pτ is the density given by
(6.64). It follows that, in this case, one can rewrite (6.66) as

h(x)− Eτ (h) = Tτ f (x), x ∈ R, (6.67)

in order to emphasize the role of τ . The next result, whose (rather straightforward)
proof is once again given by Stein [49], states that, under (6.62), the Eq. (6.66) admits
a unique continuous and bounded solution.

Lemma 6.3 (Lemma 4, p. 62 in [49]) Let τ satisfy (6.61) and (6.62), and let pτ be
the density associated with τ via (6.64). Then, since τ has support in (a, b), every
solution f of (6.67) must necessarily be such that

f (x) = h(x)− Eτ (h)

x
, x ∈ R\(a, b). (6.68)

Moreover, whenever h is bounded and piecewise continuous, the Eq. (6.67) admits a
unique solution f which is bounded and continuous on (a, b). This unique solution is
defined by (6.68) on R\(a, b), and by

f (x) =
x∫

a

(h(y)− Eτ (h))
e
∫ x

y
zdz
τ (z)

τ (y)
dy, for every x ∈ (a, b). (6.69)

Given a bounded and piecewise continuous function h on R, we define the function
Uτh as

Uτh(x) =
⎧
⎨

⎩

h(x)−Eτ (h)
x , if x ∈ R\(a, b)

∫ x
a (h(y)− Eτ (h))

e
∫w

y
zdz
τ (z)

τ (y) dy, if x ∈ (a, b),
(6.70)

so that one can rephrase Lemma 6.3 by saying that Uτh is the unique solution of (6.67)
which is bounded and continuous on (a, b) (note that Uτh can be discontinuous only
at a or b, whenever they are finite). We also record the following consequence of the
calculations contained in [49, formulae (34)–(35), pp. 64–65]: if h is bounded and
piecewise continuous, then

sup
x∈(a,b)

[|xUτh(x)| + |τ(x)U ′
τh(x)|] ≤ 6 sup

x∈(a,b)
|h(x)|, (6.71)
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where U ′
τh = (Uτh)′. Note that, due to (6.68), one deduces immediately from (6.71)

that

sup
x∈R

[|xUτh(x)| + |τ(x)U ′
τh(x)|] ≤ K sup

x∈R

|h(x)|, (6.72)

where K = 2 max{3; 1/a; 1/b} (with 1/ ± ∞ = 0). The next statement provides
a typical “Stein-type characterization” of the law of Z . It is a general version of
Lemmas 1.2(i) and 1.3(i).

Proposition 6.4 Let Z be a random variable having a density p verifying assumptions
(A1)–(A2). Let τ be related to p by (6.60).

(i) For every differentiable f such that E |τ(Z) f ′(Z)| < ∞, one has that E |Z f (Z)|
< ∞ and

E[Tτ (Z)] = E[τ(Z) f ′(Z)− Z f (Z)] = 0. (6.73)

(ii) Suppose in addition that τ verifies (6.62). Let Y be a real-valued random
variable with an absolutely continuous distribution. Suppose that, for every
differentiable f such that the mapping x 
→ |τ(x) f ′(x)| + |x f (x)| (x ∈ R) is
bounded, one has that

E[Tτ (Y )] = E[τ(Y ) f ′(Y )− Y f (Y )] = 0. (6.74)

Then, Y
Law= Z.

Proof Part (i) is proved in [49, Lemma 1, p. 69]. Part (ii) is a consequence of the fact
that, if (6.74) is in order, then [due to (6.69)–(6.71)], for every bounded and piecewise
continuous function h on R, 0 = E[τ(Y )U ′

τh(Y )−YUτh(Y )]= E[h(Y )]−Eτ (h)=
E[h(Y )]−E[h(Z)]. ��
The following corollary can be proved along the lines of Theorems 3.1 and 3.11.

Corollary 6.5 Let Z be a random variable having a density p verifying assumptions
(A1)–(A2). Let τ be related to p by (6.60). Let F ∈ D

1,2 be a smooth functional
of some isonormal Gaussian process. Assume moreover that E(F) = 0 and the law
of F is absolutely continuous with respect to the Lebesgue measure. Then, for every
bounded and piecewise continuous function h, we have

E(h(F))− E(h(Z)) = E[τ(F)(Uτh)′(F)− FUτh(F)] (6.75)

= E[(Uτh)′(F)(τ (F)− 〈DF,−DL−1 F〉H)]. (6.76)

Also,

|E(h(F))−E(h(Z))|≤ E[(Uτh)′(F)2]1/2 E[(τ (F)−〈DF,−DL−1 F〉H)2]1/2.

(6.77)
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It is not difficult to see that the conclusions of Theorems 3.1 and 3.11 are
indeed corollaries of formula (6.77), corresponding, respectively, to τ(x) = 1 and
τ(x) = 2(x + ν)+. Plainly, a study of general expressions such as the RHS of (6.77)
would require a fine analysis of the properties of the solutions to the Stein equation
(6.66) (similar to the ones performed in the Gamma case by Luk and Pickett, respecti-
vely, in [26,41]). This topic is clearly outside the scope of the present paper. However,
we conjecture that such a study could be successfully performed in the case where the
density p belongs to the Pearson’s family of curves. Indeed, in this case the function
τ can be neatly characterized in terms of polynomials of degree 2.

To see this, let Z satisfy (A1)–(A2), and let τ satisfy (6.62). We say that Z is a
(centered) member of the Pearson’s family of continuous distributions, whenever the
density p = pτ [see (6.64)] satisfies the differential equation

p′(x)
p(x)

= a0 + a1x

b0 + b1x + b2x2 , x ∈ (a, b), (6.78)

for some real numbers a0, a1, b0, b1, b2. We refer the reader e.g. to [15, Sect. 5.1] for an
introduction to the Pearson’s family. Here, we shall only observe that there are basically
five families of distributions satisfying (6.78): the centered normal distributions, cente-
red Gamma and beta distributions, and distributions that are obtained by centering den-
sities of the type p(x) = Cx−α exp(−β/x) or p(x) = C(1 + x)−α exp(β arctan(x))
(C being a suitable normalizing constant). The next result, proved in [49, Theorem 1,
p. 65], states that a density belongs to the class of the Pearson’s curves if, and only if,
its associated mapping τ is a polynomial of degree ≤ 2. The reader is also referred
to [46, Sects. 2 and 4] for several related results and explicit computations involving
orthogonal polynomials.

Theorem 6.6 (Stein) Let Z satisfy (A1)–(A2), and let τ satisfy (6.62). Then, the density
p = pτ is such that τ(x) = αx2 +βx +γ , x ∈ (a, b) (with α, β, γ constants) if, and
only if, p satisfies (6.78) for every x ∈ (a, b) and for a0 = β, a1 = 2α + 1, b0 = γ ,
b1 = β and b2 = α.

Of course, in order for (6.62) to be satisfied, one must have that the τ(a) = 0
(whenever a is finite) and τ(b) = 0 (whenever b is finite). As already discussed, the
centered Gaussian distribution is a member of the Pearson’s family, corresponding to
the case a = −∞, b = +∞ and τ(x) = 1. Analogously, a centered Gamma random
variable F(ν) as in (1.4) has a density of the Pearson type, with characteristics a = −ν,
b = +∞ and τ(x) = 2(x + ν)+.

7 Two proofs

7.1 Proof of Lemma 1.3

Proof of Point (i) One could use directly Proposition 6.4 in the case τ(x) = 2(x+ν)+.
Alternatively, observe first that, for every ν > 0, the random variable
F∗(ν) := F(ν) + ν has a non-centered Gamma law with parameter ν/2. The fact
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that

E[2F∗(ν) f ′(F∗(ν)− ν)] = E[2(F∗(ν)− ν) f ′(F∗(ν))],

for every f as in the statement, is therefore an immediate consequence of [46,
Proposition 1 and Sect. 4(2)]. Now suppose that W verifies (1.13). By choosing f
with support in (−∞,−ν), one deduces immediately that P(W ≤ −ν) = 0. To
conclude, we apply once again the results contained in [46], to infer that the relations

P(W ≤ −ν) = 0 and E[2(W + ν) f ′(W )− W f (W )] = 0

imply that, necessarily, W + ν
Law= F∗(ν).

Proof of Point (ii) Fix ν > 0, consider a function h as in the statement and
define hν(y) = h(y − ν), y > 0. Plainly, hν is twice differentiable, and |hν(y)| ≤
c exp{−νa} exp{ay}, y > 0 (recall that a > 1/2). In view of these properties, accor-
ding to Luk [26, Theorem 1], the second-order Stein equation

hν(y)− E(hν(F
∗(ν)) = 2yg′′(y)− (y − ν)g′(y), y > 0, (7.79)

(where, as before, we set F∗(ν) = F(ν)+ ν) admits a solution g such that ‖g′‖∞ ≤
2‖h′‖∞ and ‖g′′‖∞ ≤ ‖h′′‖∞. Since f (x) = g′(x + ν), x > −ν, is a solution of
(1.12), the conclusion is immediately obtained.

Proof of Point (iii) According to a result of Pickett [41], as reported in
[43, Lemma 3.1], when ν ≥ 1 is an integer, the ancillary Stein equation (7.79)
admits a solution g such that ‖g′‖∞ ≤ √

2π/ν‖h‖∞ and ‖g′′‖∞ ≤ √
2π/ν‖h′‖∞.

The conclusion is obtained as in the proof of Point (ii).

7.2 Proof of Theorem 1.5

We begin with a technical lemma.

Lemma 7.1 Let F = I2( f ) be a random variable living in the second Wiener chaos
of an isonormal Gaussian process X (over a real Hilbert space H). Then

E
(
‖DF‖4

H

)
= 2

3
E(F4)+ 2E(F2)2. (7.80)

Proof Without loss of generality, we can assume that H = L2(A,A , µ), where
(A,A ) is a measurable space, and µ is a σ -finite and non-atomic measure. On one
hand, thanks to the multiplication formula (2.29), we can write

F2 = I4( f ⊗ f )+ 4 I2( f ⊗1 f )+ E
(

F2
)
.
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In particular, this yields

L(F2) = −4 I4( f ⊗ f )− 8 I2( f ⊗1 f ).

On the other hand, (2.32) implies that Da F = 2 I1 ( f (·, a)) . Consequently, again by
(2.29):

‖DF‖2
H = 4

∫

A

I1 ( f (·, a))2 µ(da)

= 4
∫

A

I2 ( f (·, a)⊗ f (·, a)) µ(da)+ E
(
‖DF‖2

H

)

= 4 I2( f ⊗1 f )+ 2E(F2),

by (2.34) and since
∫

A f (·, a)⊗ f (·, a)µ(da) = f ⊗1 f. (7.81)

Taking into account the orthogonality between multiple stochastic integrals of different
orders, we deduce

E
[
‖DF‖2

H L(F2)
]

= −32 E
[
(I2( f ⊗1 f ))2

]

= −2 E
[
‖DF‖2

H

(
F2 − E(F2)

)]
. (7.82)

Finally, we have

E
[
‖DF‖4

H

]
= E

[
‖DF‖2

H〈DF, DF〉H
]

= E

[

‖DF‖2
H

(

δDF × F − 1

2
δD(F2)

)]

by identity (2.31),

= 2 E
[
‖DF‖2

HF2
]

+ 1

2
E
[
‖DF‖2

H L(F2)
]

using δD = −L,

= E
[
‖DF‖2

HF2
]

+ E(F2)E
[
‖DF‖2

H

]
using (7.82),

= 2

3
E
(

F4
)

+ 2 E
(

F2
)2

by (2.34).

��

Now, let us go back to the proof of the first point in Theorem 1.5. In view of
Theorem 3.1, it is sufficient to prove that

E

(∣
∣
∣
∣1 − 1

2
‖DZn‖2

H

∣
∣
∣
∣

2
)

≤ 1

6

∣
∣
∣
∣E(Z

4
n)− 3

∣
∣
∣
∣+

3 + E(Z2
n)

2

∣
∣
∣
∣ E(Z2

n)− 1

∣
∣
∣
∣ . (7.83)
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We have

E

(∣
∣
∣
∣1 − 1

2
‖DZn‖2

H

∣
∣
∣
∣

2
)

= 1 − E(‖DZn‖2
H)+ 1

4
E(‖DZn‖4

H)

= 1 − 2E(Z2
n)+ 1

6
E(Z4

n)

+ 1

2
E(Z2

n)
2 by (2.34) and (7.80)

= 1

6
(E(Z4

n)− 3)+ (E(Z2
n)− 1)

(
1

2
E(Z2

n)− 3

2

)

.

The estimate (7.83) follows immediately.
Similarly, for the second point of Theorem 1.5, it is sufficient to prove (see

Proposition 3.13) that

E

(∣
∣
∣
∣2Zn − 2ν − 1

2
‖DZn‖2

H

∣
∣
∣
∣

2
)

≤ 1

6

∣
∣
∣E(Z4

n)− 12E(Z3
n)− 12ν2 + 48ν

∣
∣
∣

+
∣
∣8 − 6ν + E(Z2

n)
∣
∣

2

∣
∣
∣E(Z2

n)− 2ν
∣
∣
∣ . (7.84)

By using the relations

E

(∣
∣
∣
∣2Zn − 2ν − 1

2
‖DZn‖2

H

∣
∣
∣
∣

2
)

= 4E(Z2
n)+ 4ν2 + 1

4
E(‖DZn‖4

H)− 2E(Zn‖DZn‖2
H)− 2νE(‖DZn‖2

H)

= 4(1 − ν)E(Z2
n)+ 4ν2 + 1

6
E(Z4

n)+
1

2
E(Z2

n)
2 − 2E(Z3

n) by (2.34) and (7.80)

= (E(Z2
n)− 2ν)

(

4 − 3ν + 1

2
E(Z2

n)

)

+ 1

6

(
E(Z4

n)− 12E(Z3
n)− 12ν2 + 48ν

)
,

the estimate (7.84) follows immediately. ��
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