
Chapter 4

Fractional Brownian motion

We now introduce the fractional Brownian motion. For notations, we refer
to the end of this chapter where all the necessary notions of fractional deter-
ministic calculus.

4.1 Wiener space for the fractional Brownian motion

Definition 4.1. For any H in (0, 1), the fractional Brownian motion of index
(Hurst parameter) H, {BH(t); t 2 [0, 1]} is the centered Gaussian process
whose covariance kernel is given by

RH(s, t) = E [BH(s)BH(t)] =
VH

2

�
s
2H + t

2H
� |t � s|

2H
�

where

VH =
� (2 � 2H) cos(⇡H)

⇡H(1 � 2H)
.

Theorem 4.1. Let H 2 (0, 1), the sample-paths of W
H are Hölder contin-

uous of any order less than H (and no more) and belong to W↵,p for any
p � 1 and any ↵ 2 (0, H).

Proof. Since, for any ↵ � 0, we have

E [|BH(t) � BH(s)|↵] = C↵|t � s|
H↵

,

we have

E

"ZZ

[0,1]2

|BH(t) � BH(s)|p

|t � s|1+↵p
dt ds

#
= C↵

ZZ

[0,1]2

|t � s|
�1+p(H�↵) dt ds.
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60 4 Fractional Brownian motion

This integral is finite as soon as ↵ < H hence BH belongs to W↵,p for any
↵ < H, any p � 1. Choose p arbitrary large and conclude that the sample-
paths are Hölder continuous of any order less than H.

As a consequence of the results in [Arc95], we have

µH

 
lim sup
u!0+

BH(u)

uH
p

log log u�1
=
p

VH

!
= 1.

Hence it is impossible for BH to have sample-paths Hölder continuous of an
order greater than H.

The di↵erence of regularity is evident on simulations of sample-paths, see
Figure 4.1.
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Fig. 4.1 Sample-path example for H = 0.2, H = 0.5 and H = 0.8.

As a consequence, BH cannot be a semi-martingale as its quadratic vari-
ation is either null or infinite.

Theorem 4.2. We have the following almost-sure limits:

lim
n!1

nX

j=1

����BH

⇣
j

n

⌘
� BH

⇣
j � 1

n

⌘����
2

=

(
0 if H > 1/2

1 if H < 1/2.

Proof. Because of the specific form of the covariance kernel, it is easy to see
that the process (a�H

BH(at), t � 0) has the same covariance kernel as BH

does, so that they do have the same distribution. This entails that

nX

j=1

����BH

⇣
j

n

⌘
� BH

⇣
j � 1

n

⌘����
H
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has the same distribution as

1

n

nX

j=1

���BH

⇣
j

⌘
� BH

⇣
j � 1

⌘���
H

.

The ergodic theorem entails that this converges in L
1 and almost-surely to

E
⇥
|BH(1)|H

⇤
. Hence the result.

The next step is to describe the Cameron-Martin space attached to the fBm
of index H. The general theory of Gaussian processes says that we must
consider the self-reproducing Hilbert space defined by the covariance kernel,
see the appendix of Chapter 1.

Definition 4.2. Let

H
0 = span{RH(t, .), t 2 [0, 1]},

equipped with the scalar product

hRH(t, .), RH(s, .)iHH
= RH(t, s). (4.1)

The Cameron-Martin space of the fBm of Hurst index H, denoted by HH , is
the completion of H

0 for the scalar product defined in (4.1).

This is not a very practical definition but we can have a much better descrip-
tion of HH thanks to the next theorems.

Theorem 4.3 (cf [SKM93, page 187]). For H 2 (0, 1), consider the func-
tion

KH : [0, 1]2 �! R

(t, s) 7�!
(t � s)H�1/2

� (H + 1/2)
F
�
H � 1/2, 1/2 � H, H + 1/2, 1 � t/s

�
(4.2)

and the integral transform of kernel KH , i.e.

KH : L
2([0, 1] ! R; �) �! IH+1/2,2

f 7�!

✓
t 7!

Z
t

0

KH(t, s)f(s) ds

◆
.

The map KH is an isomorphism from L
2([0, 1] ! R; �) onto IH+1/2,2 and

KHf = I
2H

0+
x
1/2�H

I
1/2�H

0+
x
H�1/2

f for H  1/2,

KHf = I
1

0+
x
H�1/2

I
H�1/2

0+
x
1/2�H

f for H � 1/2.

Note that if H � 1/2, r ! KH(t, r) is continuous on (0, t] so that we can
include t in the indicator function.



62 4 Fractional Brownian motion

Theorem 4.4. For any H 2 (0, 1), RH(s, t) can be written as

RH(s, t) =

Z
1

0

KH(s, r)KH(t, r) dr. (4.3)

If we identify integral operators and their kernel, this amounts to say that

RH = KH � K
⇤

H
.

Proof. For H > 1/2, it is easy to see that

RH(s, t) =
VH

4H(2H � 1)

Z
t

0

Z
s

0

|r � u|
2H�2 du dr

Moreover (see [BVP88]),

VH

4H(2H � 1)
|r � u|

2H�2

= (ru)H�1/2

Z
r^u

0

v
1/2�H(r � v)H�3/2(u � v)H�3/2 dv.

Hence for H > 1/2, (4.3) holds with

KH(t, r) =
r
1/2�H

� (H � 1/2)

Z
t

r

u
H�1/2(u � r)H�3/2

du 1[0,t](r).

A change of variable in this equation transforms the integral term in

(t � r)H�1/2
r
H�1/2

Z
1

0

u
H�3/2 (1 � (1 � t/r)u)H�1/2

du.

By the definition (4.19) of hypergeometric functions, we see that (4.2) holds
true for H > 1/2. Using property (4.21), we have

KH(t, r) =
2�2H

p
⇡

� (H) sin(⇡H)
r
H�1/2

+
1

2� (H + 1/2)
(t � r)H�1/2

F (1/2 � H, 1, 2 � 2H,
r

t
).

If H < 1/2 then the hypergeometric function of the latter equation is contin-
uous with respect to r on [0, t] because 2 � 2H � 1 � 1/2 + H = 1/2 � H is
positive. Hence, for H < 1/2, KH(t, r)(t � r)1/2�H

r
1/2�H is continuous with

respect to r on [0, t]. For H > 1/2, the hypergeometric function is no more
continuous in t but we have [NU88] :
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F (1/2 � H, 1, 2 � 2H,
r

t
) = C1F (1/2 � H, 1, H + 1/2, 1 � r/t)

+ C2(1 � r/t)1/2�H(r/t)2H�1
.

Hence, for H � 1/2, KH(t, r)rH�1/2 is continuous with respect to r on [0, t].
Fix � 2 [0, 1/2) and t 2 (0, 1], we have :

|KH(t, r)|  Cr
�|H�1/2|(t � r)�(1/2�H)+1[0,t](r)

where C is uniform with respect to H 2 [1/2 � �, 1/2 + �]. Thus, the two
functions defined on {H 2 C, |H � 1/2| < 1/2} by

H 2 (0, 1) 7�! RH(s, t) and H 2 (0, 1) 7�!

Z
1

0

KH(s, r)KH(t, r) dr

are well defined, analytic with respect to H and coincide on [1/2, 1), thus
they are equal for any H 2 (0, 1) and any s and t in [0, 1].

In the previous proof we proved a result which is so useful in its own that it
deserves to be a theorem :

Theorem 4.5. For any H 2 (0, 1), for any t, the function

[0, t] �! R

r 7�! KH(t, r)r|H�1/2|(t � r)(1/2�H)+

is continuous on [0, t].
Moreover, there exists a constant cH such for any 0  r  t  1

|KH(t, r)|  cH r
�|H�1/2|(t � r)�(1/2�H)+ . (4.4)

These continuity results are illustrated by the following pictures.
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Remark 4.1. We already know that the fBm is all the more regular than its
Hurst index is close to 1. However, we see that the kernel KH is more and
more singular when H goes to 1. This means that it is probably a bad idea
to devise properties of BH using the properties of KH . On the other hand,
as an operator KH is more and more regular as H increases. This indicates
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that the e�cient approach is to work with KH as an operator. We tried to
illustrate this line of reasoning in the next results.

The structure of the Cameron-Martin space can now be fully described.

Theorem 4.6. The Cameron-Martin of the fractional Brownian motion is
HH = {KH ḣ; ḣ 2 L

2([0, 1] ! R; �)}, i.e., any h 2 HH can be represented
as

h(t) = KH ḣ(t) =

Z
1

0

KH(t, s)ḣ(s) ds,

where ḣ belongs to L
2([0, 1] ! R; �). For any HH–valued random variable u,

we hereafter denote by u̇ the L
2([0, 1] ! R; �))-valued random variable such

that

u(w, t) =

Z
t

0

KH(t, s)u̇(w, s) ds.

The scalar product on HH is given by

(h, g)HH
= (KH ḣ, KH ġ)HH

= (ḣ, ġ)L2([0,1]!R;�).

We can now construct the fractional Wiener measure as we did for the ordi-
nary Brownian motion.

Theorem 4.7. Let (ḣm, m � 0) be a complete orthonormal basis of L
2([0, 1] !

R; �) and hm = KH ḣm. Consider the sequence

S
H

n
(t) =

nX

m=0

Xmhm(t)

where (Xm, m � 0) is a sequence of independent standard Gaussian random
variables. Then, (SH

n
, n � 0) converges, with probability 1, in W↵,p for any

↵ < H.

Proof. The proof proceeds exactly as the proof of Theorem 1.5. The trick is
to note that

(hm(t) � hm(s))2 = hKH(t, .) � KH(s, .), ḣmi
2

HH
,

so that

1X

m=0

(hm(t) � hm(s))2 = kKH(t, .) � KH(s, .)k2
L2([0,1]!R;�)

= RH(t, t) � RH(s, s) � 2RH(t, s) = VH |t � s|
2H

.

Moreover,
Z

[0,1]2

|t � s|
pH�1�↵p ds dt < 1 if and only if ↵ < H.
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This means, by dominated convergence, that

sup
n�M

E
h
kS

H

n
� S

H

M
k
p

W↵,p

i

=

ZZ

[0,1]2

� 1X

m=M+1

(hm(t) � hm(s))2
�p/2

|t � s|
�1�↵p ds dt

M!1
����! 0,

provided that ↵ < H. The proof is finished as in Theorem 1.5.

Remark 4.2. Theorem 4.3 implies that as a vector space, HH is equal to

I
H+1/2

0+
(L2([0, 1])) but the norm on each of these spaces are di↵erent since

kKH ḣkHH
= kḣkL2([0,1]!R;�)

and kKH ḣk
I
H+1/2

0+
(L2([0,1])

= k(I�H�1/2

0+
� KH)ḣkL2([0,1]!R;�).

In what follows, W may be taken either as C0([0, 1],R) or as any of the spaces
W�,p with

p � 1, 0 < � < H.

For any H 2 (0, 1), µH is the unique probability measure on W such that
the canonical process (BH(s); s 2 [0, 1]) is a centered Gaussian process with
covariance kernel RH :

EH [BH(s)BH(t)] = RH(s, t).

The canonical filtration is given by F
H

t
= �{Ws, s  t}_NH and NH is the

set of the µH–negligible events. The analog of the diagram 1.1 reads as

W
⇤

HH
⇤ = (IH+1/2,2)

⇤

L
2

HH = IH+1/2,2 W

e⇤

'
KH e

Fig. 4.2 Embeddings and identification for fractional Brownian motion.

We can as before, search for the image of "t by e⇤. We have, for h 2 HH ,
on the one hand,

h(t) = h"t, e(h)iW⇤,W = he⇤(✏t), hiHH
.

On the other hand,

h(t) = KH ḣ(t) = hKH(t, .), ḣiL2([0,1]!R;�) = hRH(t, .), hiH .
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Hence,
e⇤("t) = RH(t, .) and K

�1

H
(e⇤("t)) = KH(t, .).

Recall that for the ordinary Brownian motion, we have

e⇤("t) = t ^ . = R1/2(t, .) and K
�1

H
(e⇤("t)) = 1[0,t](.) = K1/2(t, .).

Theorem 4.8. For any z in W
⇤,

Z

W

e
ihz,!i

W⇤,W dµH(!) = exp
⇣
�

1

2
ke⇤(z)k2

HH

⌘
. (4.5)

Proof. By dominated convergence, we have

Z

W

e
ihz,!i

W⇤,W dµH(!) = lim
n!1

E

"
exp

 
i

nX

m=0

Xm

D
z, e(KH ḣm)

E

W⇤,W

!#

= lim
n!1

exp

 
�

1

2

nX

m=0

D
e⇤(z), KH ḣm

E2
H

!

= exp

 
�

1

2

1X

m=0

D
e⇤(z), KH ḣm

E2
H

!

= exp
⇣
�

1

2
ke⇤(z)k2

HH

⌘
,

according to the Parseval identity.

The Wiener integral is constructed as before as the extension of the map

�BH
: W

⇤
⇢ I1,2 �! L

2(µH)

z 7�! hz, BHi
W⇤,W

.

By construction of the Wiener measure, the random variable hz, BHi
W⇤,W

is

Gaussian with mean 0 and variance kRH(z)k2
HH

. For z = "t, we have

BH(t) = h"t, BHi
W⇤,W

= �BH

�
RH(t, .)

�
.

For the Brownian motion, it is often easier to work with elements of L
2

instead of their image by K1/2, which belongs to I1,2. If we try to mimick
this approach for the fractional Brownian motion, we should write:

BH(t) = �BH

�
RH(t, .)

�
= �BH

�
KH(KH(t, .))

�
=

Z
1

0

KH(t, s) �BH(s),

which has to be compared to

B(t) = W
1/2(t) =

Z
1

0

1[0,t](s) dW
1/2(s),
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where the integral is taken in the Itô sense. Remark that these two equations
are coherent since K1/2(t, .) = 1[0,t].

Lemma 4.1. The process B = (�BH
(KH(1[0,t])), t 2 [0, 1]) is a standard

Brownian motion. For u 2 L
2([0, 1] ! R; �),

Z
1

0

u(s) dB(s) = �BH
(KHu). (4.6)

In particular,

BH(t) =

Z
t

0

KH(t, s) dB(s). (4.7)

Proof. It is a Gaussian process by the definition of the Wiener integral. We
just have to verify that it has the correct covariance kernel. For, it su�ces to
see that kKH(1[0,t])k

2

HH
= t. But,

kKH(1[0,t])k
2

HH
= k1[0,t]k

2

L2([0,1]!R;�)
= t.

This means that (4.6) holds for u = 1[0,t], hence for all piecewise constant
functions u and by density, for all u 2 L

2.

Remark 4.3. Eqn. (4.7) is known as the Karuhnen-Loeve representation. We
could have started by considering a process defined by the right-hand-side of
(4.7) and called it fractional Brownian motion. Actually, (4.7) is a stronger
result: It says that starting from an fBm, one can construct a Brownian
motion on the same probability space such that the representation (4.7) holds.

The gradient is defined as for the usual Brownian motion. The only mod-
ification is the Cameron-Martin space.

Definition 4.3. A function F is said to be cylindrical if there exists an in-
teger n, f 2 Schwartz(Rn), the Schwartz space on Rn, (h1, · · · , hn) 2 HH

n

such that
F (!) = f(�BH

h1, · · · , �BH
hn).

The set of such functionals is denoted by SHH
.

Definition 4.4. Let F 2 S, h 2 HH , with F (!) = f(�BH
h1, · · · , �BH

hn).
Set

rF =
nX

j=1

@jF (�BH
h1, · · · , �BH

hn) hj ,

so that

hrF, hi
HH

=
nX

j=1

@jF (�BH
h1, · · · , �BH

hn) hhj , hi
HH

.
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Example 4.1. This means that

rf(BH(t)) = f
0(BH(t))RH(t, .)

and if we denote ṙ = K
�1

H
r (which corresponds for H = 1/2 to take the

time derivative of the gradient), we get

ṙsf(BH(t)) = f
0(BH(t))KH(t, s).

The following theorem is an easy consequence of the properties of the maps
KH .

Theorem 4.9. The operator KH = KH � K
�1

1/2
is continuous and invertible

from I↵,p into W↵+H�1/2,p, for any ↵ > 0.

Formally, we have BH = KH(Ḃ) = KH � K
�1

1/2
(B) so we can expect that

Theorem 4.10. For any H, we have

B = K
�1

H
(BH), µH � a.s. (4.8)

Since,with µH-probability 1,

BH =
1X

m=0

XmKH(ḣm),

we find that, with µH-probability 1,

B =
1X

m=0

XmI
1(ḣm),

where (ḣm, m � 0) is a complete orthonormal basis of L
2([0, 1] ! R; �).

Proof. To prove such an identity, it is necessary and su�cient to check that

E


 

Z
1

0

B(t)g(t) dt

�
= E


 

Z
1

0

K
�1

H
(BH)g(t) dt

�
(4.9)

for any g 2 L
2([0, 1] ! R; �) and any  2 SH . Indeed, L

2([0, 1] ! R; �)⌦SH

is a dense subset of L
2([0, 1] ! R; �) ⌦ L

2(W ! R; µH) = L
2([0, 1] ⇥ W !

R; �⌦ µH) and (4.9) entails that B = K
�1

H
(BH) �⌦ µH -almost-surely. This

means that for there exists A ⇢ [0, 1] ⇥ W such that

Z

[0,1]⇥W

1A(s,!) ds dµH(!) = 0,

and
B(!, s) = K

�1

H
(BH)(!, s) for (s,!) /2 A.
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Hence, for any s 2 [0, 1], the section of A at s fixed, i.e. As = {!, (s,!) 2 A},
is a µH -negligeable set.

The sample-paths of B are known to be continuous and that of BH belongs
to WH,p for any p � 1. Hence, according to Theorem 4.9, K

�1

H
(BH) almost-

surely belongs to W1/2,p for any p � 1. Choose p > 2 so that W1/2,p ⇢

Hol(1/2 � 1/p) to conclude that K
�1

H
(BH) has µH -a.s. continuous sample-

paths. Consider

AQ =
[

t2[0,1]\Q

At.

It is a µH -negligeable set and for ! 2 A
c

Q, for t 2 [0, 1] \ Q, B(!, s) =

K
�1

H
(BH)(!, s). Thus, by continuity, this identity still holds for any t 2 [0, 1]

and any ! 2 A
c

Q. This means that Eqn. (4.8) holds.
We now prove (4.9),

E


 

Z
1

0

K
�1

H
(BH)g(t) dt

�
=

Z
1

0

E [ BH(t)] (K�1

H
)⇤(g)(t) dt

=

Z
1

0

E [ �BH
(RH(t, .))] (K�1

H
)⇤(g)(t) dt

= E

Z
1

0

(K�1

H
)⇤(g)(t)

Z
1

0

ṙs KH(t, s) ds dt

�

= E

Z
1

0

ṙs 

Z
1

0

KH(t, s)(K�1

H
)⇤(g)(t) dt ds

�

= E

Z
1

0

ṙs K
⇤

H
(K�1

H
)⇤(g))(s) ds

�

By the very definition of KH ,

K
⇤

H
� (K�1

H
)⇤ = K

⇤

H
� (K�1

H
)⇤ � K

⇤

1/2
= K

⇤

1/2
.

Thus, we have

E


 

Z
1

0

K
�1

H
(BH)g(t) dt

�
= E

Z
1

0

ṙs K
⇤

1/2
g(s) ds

�

= E

Z
1

0

ṙs 

Z
1

s

g(t) dt ds

�

= E

Z
1

0

Z
1

0

ṙs g(t)1[s,1](t) dt ds

�

= E

Z
1

0

Z
1

0

ṙs g(t)1[0,t](s) dt ds

�

= E

Z
1

0

g(t)

Z
1

0

ṙs 1[0,t](s) ds dt

�
.
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On the other hand, B(t) = �BH

�
KH(1[0,t])

�
hence,

E


 

Z
1

0

B(t)g(t) dt

�
= E


 

Z
1

0

�BH

�
KH(1[0,t])

�
g(t) dt

�

= E

Z
1

0

g(t)

Z
1

0

ṙs 1[0,t](s) ds dt

�
.

Then, (4.9) follows.

Since the operator involved in the previous relation are all lower triangular,
we can go further and show that B and BH generate the same filtration.

Definition 4.5. Recall that (⇡̇t, t 2 [0, 1]) are the projections defined by

⇡̇t : L
2([0, 1] ! R; �) �! L

2([0, 1] ! R; �)

f 7�! f1[0,t).

Let V be a closable map from Dom V ⇢ L
2([0, 1] ! R; �) into L

2([0, 1] !

R; �).
Then, V is ⇡̇-causal if Dom V is ⇡̇-stable, i.e. ⇡̇t Dom V ⇢ Dom V for any

t 2 [0, 1] and if for any t 2 [0, 1],

⇡̇tV ⇡̇t = ⇡̇tV.

Consider also ⇡H

t
defined by

⇡
H

t
: HH �! HH

h 7�! KH

�
⇡tK

�1

H
(h)
�

= KH

�
ḣ1[0,t]

�
.

Remark 4.4. An integral operator, i.e.

V f(t) =

Z
1

0

V (t, s)f(s) ds

is ⇡̇-causal if and only if V (t, s) = 0 for s > t. For V1, V2 two causal operators,
their composition V1V2 is still causal:

⇡tV1V2⇡t = (⇡tV1⇡t)V2⇡t = ⇡tV1(⇡tV2⇡t)

= ⇡tV1(⇡tV2) = (⇡tV1⇡t)V2 = ⇡tV1V2.

Corollary 4.1. The filtrations generated by BH and B do coincide.

Proof. From the representation

BH(t) =

Z
t

0

KH(t, s) dB(s),
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we deduce that

� {BH(s), s  t} ⇢ � {B(s), s  t} .

We have K
�1

H
= K1/2K

�1

H
. From Theorem 4.3, K

�1

H
appears as the composi-

tion of fractional derivatives and multiplication operators:

f 7! x
↵
f.

Time derivatives of any order (as in Definition ??) are local operators and as
such are causal. It is straightforward that multiplication operators are also
causal. Thus, K

�1

H
appears as the composition of causal operators hence it is

causal. This means that

B(t) =

Z
t

0

V (t, s)BH(s) ds

for some lower trianguler kernel V . Hence,

� {BH(s), s  t} � � {B(s), s  t} ,

and the equality of filtrations is proved.

We can now reap the fruits of our not so usual presentation of the Malli-
avin calculus for the Brownian motion, in which we cautiously sidestepped
chaos decomposition. Eqn. (4.5) is the exact analog of Eqn. (1.7) hence the
Cameron-Martin Theorem can be proved identically:

Theorem 4.11. For any h 2 HH , for any bounded F : W ! R,

E [F (BH + e(h)] = E


F (BH) exp

✓
�BH

(h) �
1

2
khk

2

HH

◆�
. (4.10)

This entails the integration by parts formula, pending of (2.2): For any F

and G in SH , for any h 2 HH ,

E
⇥
G hrF, hi

HH

⇤
= �E

⇥
F hrG, hi

HH

⇤
+ E [FG �BH

h] . (4.11)

Definition 4.4 is formally the very same as Definition 2.1 so that the definition
of the Sobolev spaces are identical.

Definition 4.6. The space DH

p,1
is the closure of SH for the norm

kFkp,1,H = E [|F |
p]1/p + E

⇥
krFk

p

HH

⇤1/p
.

The iterated gradient are defined likewise and so do the Sobolev of higher
order, Dp,k,H . We sill clearly have
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r(FG) = FrG + GrF

r�(F ) = �
0(F )rF

for F 2 Dp,1,H , G 2 Dq,1,H and � Lipschitz continuous. As long as we
do not use the temporal scale, there is no di↵erence between the identities
established for the usual Brownian motion and that relative to the fractional
Brownian motion.

Theorem 4.12. For any F in L
2(W ! R; µH),

� (⇡H

t
)F = E

⇥
F | F

H

t

⇤
,

in particular,

E
⇥
Wt | F

H

r

⇤
=

Z
t

0

KH(t, s)1[0,r](s) �B(s), and

E
⇥
exp(�BH

u � 1/2kuk
2

HH
) | F

H

t

⇤
= exp(�BH

⇡
H

t
u � 1/2k⇡

H

t
uk

2

HH
),

for any u 2 HH .

Proof. Let {hn, n � 1} be a denumerable family of elements of HH and let
Vn = �{�BH

hk, 1  k  n}. Denote by pn the orthogonal projection on
span{h1, . . . , hn}. For any f bounded, for any u 2 HH , by the Cameron–
Martin theorem we have

E [⇤u

1
f(�BH

h1, . . . , �BH
hn)]

= E [f(�BH
h1(w + u), . . . , �BH

hn(w + u))]

= E [f(�BH
h1 + (h1, u)HH

, . . . , �BH
hn + (hn, u)HH

)]

= E [f(�BH
h1(w + pnu), . . . , �BH

hn(w + pnu))]

= E [⇤pnu

1
f(�BH

h1, . . . , �BH
hn)] ,

hence
E [⇤u

1
| Vn] = ⇤

pnu

1
. (4.12)

Choose hn of the form ⇡
H

t
(en) where {en, n � 1} is an orthonormal basis of

HH , i.e., {hn, n � 1} is an orthonormal basis of ⇡H

t
(HH). By the previous

theorem,
W

n
Vn = F

H

t
and it is clear that pn tends pointwise to ⇡H

t
, hence

from (4.12) and martingale convergence theorem, we can conclude that

E
⇥
⇤
u

1
| F

H

t

⇤
= ⇤

⇡
H

t
u

1
= ⇤

u

t
.

Moreover, for u 2 HH ,

� (⇡H

t
)(⇤u

1
) = ⇤

⇡
H

t
u

1
,

hence by density of linear combinations of Wick exponentials, for any F 2

L
2(µH),
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� (⇡H

t
)F = E

⇥
F | F

H

t

⇤
,

and the proof is completed.

Definition 4.7. For the sake of notations, we set, for u̇ such that KH u̇ be-
longs to Domp �BH

for some p > 1,

Z
1

0

u̇(s)�B(s) = �BH
(KH u̇) and

Z
t

0

u̇(s)�B(s) = �BH
(⇡H

t
KH u̇). (4.13)

Note that, for any  2 Dp/(p�1),1

E


 

Z
1

0

u̇(s)�B(s)

�
= E

Z
1

0

ṙs u̇(s) ds

�
.

The next result is the Clark formula. It reads formally as (3.11) but we should
take care that the ṙ does not represent the same object. Here it is defined
as ṙ = K

�1

H
r.

Corollary 4.2. For any F 2 L
2(W ! R; µH),

F = E [F ] +

Z
1

0

E
h
ṙsF | Fs

i
�B(s).

Proof. With the notations at hand, Theorem 4.12 implies that

E
⇥
⇤
h

1
| Ft

⇤
= exp

✓
�BH

(⇡H

t
h) �

1

2
k⇡

H

t
hk

2

HH

◆

= exp

✓Z
t

0

ḣ(s) �B(s) �
1

2

Z
t

0

ḣ
2(s) ds

◆
.

This means that we have the usual relation

⇤
h

t
= 1 +

Z
t

0

⇤sḣ(s) �B(s) = E
⇥
⇤
h

1

⇤
+

Z
1

0

E
h
ṙs⇤

h

1
| Fs

i
�B(s).

By density of the Doléans exponentials, we obtain the result.

Should we want to obfuscate everything, we could write

F = E [F ] + �BH

�
KH

�
E
⇥
(K�1

H
r).F | F.

⇤��
.

4.2 Itô formula

Definition 4.8. Consider the operator K defined by K = I
�1

0+
� KH .

For H > 1/2, it is a continuous map from L
p into IH�1/2,p, for any p � 1.

Let K
⇤

t
be its adjoint in L

p([0, t]), i.e. for any f 2 L
p([0, t]), any g su�cently
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regular, Z
t

0

Kf(s) g(s) ds =

Z
t

0

f(s) K
⇤

t
g(s) ds.

The map K
⇤

t
is continuous from

�
I
H�1/2

0⇤
(Lp([0, t]))

�⇤
into L

p([0, t]).

Theorem 4.13. Assume H > 1/2. For f 2 C
2

b
,

f(BH(t)) = f(0)+

Z
t

0

K
⇤

t

�
f
0
�BH

�
(s) �B(s)+H VH

Z
1

0

f
00
�
BH(s)

�
s
2H�1 ds.

Proof. Introduce the function g as

g(x) = f(
a + b

2
+ x) � f(

a + b

2
� x).

This function is even, satisfies

g
(2j+1)(0) = 2f

(2j+1)((a + b)/2) and g(
b � a

2
) = f(b) � f(a).

Apply the Taylor formula to g between the points 0 and (b � a)/2 to get

f(b) � f(a) =
nX

j=0

2�2j

(2j + 1)!
(b � a)2j+1

f
(2j+1)(

a + b

2
)

+
(b � a)2(n+1)

2

Z
1

0

�
2n+1

g
(2(n+1))(�a + (1 � �)b)d�.

For any  2 E of the form  = exp(�BH
h �

1

2
khk

2

HH
) with h 2 C

1

b
⇢ HH .

Note that  satisfies r =  h 2 L
2(W ; C1

b
). Since C

1

b
is dense into HH , these

functionals are dense in L
2(W). We thus have

E
⇥�

f
�
BH(t + ")

�
� f

�
BH(t)

��
 
⇤

= E

�
BH(t + ") � BH(t)

�
f
0

✓
BH(t) + BH(t + ")

2

◆
 

�

+
1

2
E

�
BH(t + ") � BH(t)

�2
Z

1

0

r g
(2)(rBH(t) + (1 � r)BH(t + "))dr  

�

= A0 +
1

2
A1. (4.14)

For A0, we have
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A0 = E

�
BH(t + ") � BH(t)

�
f
0

✓
BH(t) + BH(t + ")

2

◆
 

�

= E

Z
1

0

�
KH(t + ", s) � KH(t, s)

�
�B(s) f

0

✓
BH(t) + BH(t + ")

2

◆
 

�

= E

Z
1

0

�
KH(t + ", s) � KH(t, s)

�
ṙs

✓
f
0

✓
BH(t) + BH(t + ")

2

◆
 

◆
ds

�
.

Since ṙ is a true derivation operator

ṙs

✓
f
0

✓
BH(t) + BH(t + ")

2

◆
 

◆
= f

0

✓
BH(t) + BH(t + ")

2

◆
ṙs 

+ f
00

✓
BH(t) + BH(t + ")

2

◆�
KH(t + ", s) + KH(t, s)

�
.

Thus,

A0 = E


f
0

✓
BH(t) + BH(t + ")

2

◆Z
1

0

�
KH(t + ", s) � KH(t, s)

�
ṙs ds

�

+ E


 f

00

✓
BH(t) + BH(t + ")

2

◆

⇥

Z
1

0

�
KH(t + ", s) � KH(t, s)

��
KH(t + ", s) + KH(t, s)

�
ds

�

= B1 + B2.

By the very definition of ṙ,

1

"

Z
1

0

�
KH(t + ", s) � KH(t, s)

�
ṙs ds =

1

"

�
r (t + ") � r (t)

�

"!0
���!

d

dt
r (t) = I

�1

0+
� KH(ṙ )(t) = K(ṙ )(t).

Moreover, since r belongs to L
2(W ; IH+1/2,2),

E
h
|r (t + ") � r (t)|2

i
 c kKṙ kL2(W ;IH�1/2,2)

|"|.

Hence,

"
�1

B1

"!0
���! E

h
f
0(BH(t)) Kṙ (t)

i
.

Simple calculations give that

B2 = E


 f

00

✓
BH(t) + BH(t + ")

2

◆ ⇣
RH(t + ", t + ") � RH(t, t)

⌘�
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and that

"
�1

⇣
RH(t + ", t + ") � RH(t, t)

⌘
= VH

(t + ")2H � t
2H

"

"!0
����! 2H VH t

2H�1
.

The dominated convergence theorem then yields

"
�1

B2

"�!0
����! H VHE

⇥
 f

00(BH(t)) t
2H�1

⇤
.

If H > 1/2, "�1
A1 does vanish. Actually, recall that BH(t + ") � BH(t) is a

centered Gaussian random variable of variance proportional to "2H , hence

"
�1

|A1|  cE
⇥
|BH(t + ") � BH(t)|2

⇤
kf

(2)
kL1  c "

2H�1
kf

(2)
kL1

"!0
���! 0,

since 2H � 1 > 0.
We have proved so far that

d

dt
E
⇥
 f

0
�
BH(t)

�⇤
= E

⇥
f
�
BH(t)

�
r (t)

⇤
+ H VHE

⇥
 f

00
�
BH(t)

�
t
2H�1

⇤
.

(4.15)
It is straightforward that the right-hand-side of (4.15) is continuous as a
function of t on any interval [0, T ]. Hence we can integrate the previous
relation and we get

E
⇥
 f
�
BH(t)

�⇤
� E

⇥
 f
�
BH(0)

�⇤
= E

Z
t

0

f
0
�
BH(s)

�
Kṙ (s) ds

�

+ H VH E


 

Z
t

0

f
00
�
BH(s)

�
s
2H�1 ds

�
.

Remark now that

E

Z
t

0

f
0
�
BH(s)

�
Kṙ (s) ds

�
= E

Z
1

0

f
0
�
BH(s)

�
1[0,t](s) Kṙ (s) ds

�

= E

Z
1

0

K
⇤

1

�
f
0
� BH 1[0,t]

�
ṙs ds

�
= E


 

Z
1

0

K
⇤

1

�
f
0
� BH 1[0,t]

�
(s) �B(s)

�
.

Note that

K
⇤

1
(f 01[0,t])(s) =

d

ds

Z
1

s

K(r, s)f 0(r)1[0,t](r) dr = 0 if s > t.

This means that
⇡
H

t

�
K

⇤

t
(f 01[0,t])

�
= K

⇤

t
(f 01[0,t])

and by the definition (4.13),


