
Blockchain Lab

Julien Romero, Nedeljko Radulovic, Nicoleta Preda

January 2020

1 Introduction

In this lab, you will create a small example of a blockchain to play with. First,
the goal is to implement the operations that will allow you to construct the
blockchain. Secondly, you should implement a proof-of-work algorithm. Finally,
the third requirement is to verify if a blockchain is correct or not.

You are expected to provide the code you wrote during the lab and a report
with your answers to the questions, in a pdf. Give reasons for your answers.
The submission takes place on the Moodle of the lecture.

This work is individual. Any plagiarism will be penalized with a grade of
0 (whether you copy or you are being copied).

2 Blockchain

As the name suggests, a blockchain is a linked list of blocks. A block contains a
set of transactions and metadata information. The metadata is generally called
header. Figure 1 represents the abstraction of a block. That block stands for
the initial block (its index is 0 and the previous hash has a default value 0).
The timestamp is the time at the creation of the block and the nonce is the
value computed by the proof-of-work algorithm (see later). Two transactions
are represented: Admin (this is a default user who has virtually infinite credit)
sends 10 crypto-currency to Alice and to Bob.

We notice that blocks need to be serialized as they need to be stored on a
disk (to avoid loosing the data) and because they need to be sent through the
network to other peers. In this implementation, we use JSON as a file format
for representing the encoding.

1 {”header ” : {” index ” : 0 ,
”nonce” : 32013 ,

3 ” prev ious hash ” : 0 ,
” timestamp” : 1547396822.9447556

5 } ,
” t r an s a c t i on s ” :

7 [{ ”amount” : 10 , ” index ” : 0 , ” r e c e i v e r ” : ” a l i c e ” , ” sender ” : ”admin” } ,
{”amount” : 10 , ” index ” : 1 , ” r e c e i v e r ” : ”bob” , ” sender ” : ”admin” }]

9 }

1

2.1 Header Operations

Figure 1: A block

The header contains information about the current block. Namely, we have
the following fields:

• index : indicates the position of the block in the chain.

• previous hash : the hash of the previous block in the chain.

• time stamp : the time when the block is created.

• nonce : the proof used for the proof-of-work algorithm

Exercise 1. Where is the address to the previous block stored?

Exercise 2. In the file block header.py, implement the functions init by
storing internally the attributes, the function to dict which puts the inter-
nal fields into a dictionary (the name of the fields are index, previous hash,
timestamp and nonce) and the function to json (you should use the function
json.dumps with the parameter sort keys=True). The JSON representation will
be used later by the hashing function in the proof-of-work algorithm. Why is it
important to sort the keys?

2

1 c l a s s BlockHeader (ob j e c t) :

3 de f i n i t (s e l f , index , prev ious hash , timestamp , nonce) :
Store i n t e r n a l l y

5 pass

7 de f t o d i c t (s e l f) :
Transform ob j e c t i n to a d i c t i ona ry .

9 # Use as f i e l d names the name o f the v a r i a b l e s
pass

11

de f t o j s on (s e l f) :
13 # Output : JSON s t r i n g

Use the func t i on j son . dumps with the opt ion so r t k ey=True
15 # to make the r ep r e s en t a t i on unique .

pass
17

de f s e t nonce (s e l f , new nonce) :
19 # Set the nonce value

pass
21

de f get hash (s e l f) :
23 # Use hash l i b to hash the block us ing sha256

Use hexd ige s t to get a s t r i n g r e s u l t
25 pass

Example JSON serialization of a block header is:

1 { ” index ” : 0 ,
”nonce” : 32013 ,

3 ” prev ious \ hash ” : 0 ,
” timestamp” : 1547396822.9447556

5 }

Exercise 3. Which of the header’s fields is unnecessary and redundant?

Exercise 4. In the file block reader, implement the method read header which
returns a header from a dictionary.

Exercise 5. Compare our header with the header of the Bitcoin. Which fields
are missing? Describe briefly what they are used for.

2.2 Transaction Operations

A transaction is composed of three main components: the sender, the receiver
and the amount of money exchanged. In general, the sender and the receiver
are identified by a public key. In this lab, for readability, we are simply going
to use names.

Exercise 6. In the class Transaction, implement the functions init by
storing internally the attributes and the function to dict which puts the internal

3

fields into a dictionary (the name of the fields are sender for the emitter of the
transaction, receiver for the recipient of the transaction, amount for the amount
of money exchanged and index which indicates the number of the transaction).

1 c l a s s Transact ion (ob j e c t) :

3 de f i n i t (s e l f , index , sender , r e c e i v e r , amount) :
Store i n t e r n a l l y

5 pass

7 de f t o d i c t (s e l f) :
Transform ob j e c t i n to a d i c t i ona ry f o r fu tu r e

t rans fo rmat ion in JSON
9 # The names o f the f i e l d s are the name o f the v a r i a b l e s

pass

Exercise 7. Which field is missing to make the transaction secured? Discuss a
possible attack.

Exercise 8. How is a person generally identified on a blockchain? How does a
person prove ownership?

Exercise 9. In the file block reader, implement the method read transaction
which creates a Transaction from a dictionary. This will be useful later when
we will read blocks from files.

2.3 Block Operations

We now put everything together (header + transaction operations).

Exercise 10. In the file merkle tree complete the function create merkle tree
to implement the Merkle algorithm to store the transactions in the Merkle tree
structure (for simplicity, store separately internal nodes and leaves in the tree
structure, since the leaves contain the transactions).

Exercise 11. What is the advantage of using the Merkle tree?

Exercise 12. In the class Block (file block.py), implement the functions init
by storing internally the attributes, the function to dict which puts the header
and the transactions into a dictionary (the names of the fields are header and
transactions can be read from the field tree) and the function to json (use the
function json.dumps with the parameter sort keys=True). The JSON represen-
tation is useful to print the block.

Exercise 13. In the file block reader, implement the method read block which
from a dictionary creates a block. Then implement the method read block json
which receives a json block as an input (use the method json.loads).

4

Exercise 14. For each block in the directory blocks to prove compute its Merkle
root.

3 Block Mining

We focus now on adding a new block to an existing blockchain. The crucial
operation of the computation of the nonce value by a Proof of Work algorithm.

For evaluation reasons we ask you to compute the nonce value for a set of
blocks.

3.1 Proof-of-Work

We consider the following problem: Find a proof number such that the hash of
the header of the considered block begins with a certain number of 0 (4 in our
case, in hexadecimal).

Exercise 15. Why

H(x) =
1

2π
e−

x2

2 (1)

is a bad choice for pricing function? Which of the properties of the pricing
function, this function does not have.

Exercise 16. In the class BlockHeader, write the function set nonce. Why is
nonce the only parameter we want to be able to modify?

Exercise 17. In the class BlockHeader, write the function get hash. This
function is going to hash the JSON representation of the header using sha256
and returns a string containing the hexedecimal representation of the hash. To
do so, you need to use the hashlib library, the encode function on the JSON
string representation and the function hexdigest to transform the result into a
string.

Exercise 18. What is the advantage of hashing only the header and not the
entire block? Think about how the proof-of-work algorithm works.

Exercise 19. The structure of our header has a huge security problem. Can
you guess it? Describe a possible attack.

Exercise 20. In the class Block, implement the method is proof ready which
checks whether a block is proven. Then, implement the function make proof
ready which proves the block. To explore the possible proofs, simply increment

the nonce by 1 at each step, starting from 0.

5

Exercise 21. For all blocks in the directory blocks to prove, prove it and give
the nonce and the value of the hash function.

Exercise 22. Take one block from the directory blocks to prove and observe
what happens when you increase the number of requested starting zeros in the
proof. From which number of leading zeros does the computation of the proof
takes more than one minute? How many leading zeros are required in the Bitcoin
system?

3.2 Verification

Now that we have ways to check if a block is correct in itself, we need to check if
it is correct in the blockchain. To do so, it needs to contain correct transactions.

Exercise 23. In the file block reader, implement the method read chain which
reads a chain from a JSON string representation (use the function json. loads).
A chain is simply a list of blocks. This method does not perform any verification
and returns a list of blocks.

Exercise 24. When we talk about cryptocurrency, we often have wallets. A
wallet is a digital representation of your money on the blockchain and in general
consists of your public and private key (from which you can deduce how much
money you have from the blockchain and pay money to other people). In the
class Blockchain, implement the method update wallet which takes as an input
a block and modify the values of self.wallet which contains how much money
each user has (the special user admin is considered to have an infinite amount
of money).

Exercise 25. In the class Blockchain, implement the method add block. For
now, it simply appends the block on the chain if it is proven. The method
should return True if the block was added, and False otherwise. When a block
is added, the wallets need to be updated.

Exercise 26. For each blockchain in the directory blockchain wallets, compute
the value of the wallet of each user. To do so, create a Blockchain object and
call the add block method for each block.

Exercise 27. In the class Blockchain, implement the method check legal
transactions which, given the current state of the chain and the wallet, check

if the list of transactions in a block is correct, i.e. nobody spends more money
than she actually owns. Be careful to not modify the value of the original
wallets. Add this new checking to the method add block so you do not add
incorrect blocks.

Exercise 28. For each blockchain in the directory blockchain incorrect, check

6

if it is correct. If a blockchain is incorrect, give the index of the first incorrect
block and if necessary the index of the first incorrect transaction.

7

