Introduction to Spark

Louis Jachiet
Spark Motivation
IBM Announces Major Commitment to Advance Apache® Spark™, Calling It Potentially the Most Significant Open Source Project of the Next Decade

ARMONK, NY - 15 Jun 2015: IBM (NYSE: IBM) today announced a major commitment to Apache Spark™, potentially the most important new open source project in a decade that is being defined by data. At the core of this commitment, IBM plans to embed Spark into its industry-leading Analytics and Commerce platforms, and to offer Spark as a service on IBM Cloud. IBM will also put more than 3,000 IBM researchers and developers to work on Spark-related projects at more than a dozen labs worldwide, donating its breakthrough IBM System® Z, machine learning technology to the Spark open source ecosystem, and educate more than one million data scientists and data engineers on Spark.
What is Apache Spark

Apache Spark is a fast and general engine for large-scale data processing.

- **Speed**: Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.
- **Ease of Use**: Write applications quickly in Java, Scala, Python, R.
- **Generality**: Combine SQL, streaming, and complex analytics.
- **Runs Everywhere**: Spark runs on Hadoop, Mesos, standalone, or in the cloud.

https://spark.apache.org/
An RDD is a fault-tolerant collection of “objects” that can be operated on in parallel.

RDDs are created:
- parallelizing an existing collection in your driver program, or
- referencing a dataset in an external storage system or
- building on other RDDs

RDDs can be seen as the “old” interface but also the backbone of Spark
Data Frames (DFs)

- A Data Frame is a fault-tolerant “table”
- DFs support:
 - schemas and automatic schema inference
 - complex queries easily written
 - lots of advanced algorithms
 - automatic optimization
- DFs is the “new” interface of Spark
Spark Ecosystem

Spark SQL
Spark Streaming
MLlib (machine learning)
GraphX (graph)

Apache Spark
Spark Resilient Distributed Datasets
Key ideas for Spark

1. Keep a trace of how data was constructed
Key ideas for Spark

1. Keep a trace of how data was constructed
2. Computation failure is rare
Key ideas for Spark

1. Keep a trace of how data was constructed
2. Computation failure is rare
3. Provide high(er)-level constructs and interactivity
Simple operations on RDD

\[D_1 \]

\[D_1 . filter(f) \]
Simple operations on RDD

\[D_1 \]

\[D_1.map(f) \]
Simple operations on RDD

\[D_1 \rightarrow D_1.mapValues(f) \]
Simple operations on RDD

\[D_1 \rightarrow D_1.flatMap(f) \]
Simple operations on RDD

\[D_1 \quad D_1\text{.groupByKey()} \]

<table>
<thead>
<tr>
<th>0</th>
<th>A</th>
<th>0</th>
<th>{\alpha, \gamma}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>{\beta}</td>
</tr>
<tr>
<td>0</td>
<td>C</td>
<td>3</td>
<td>{\eta}</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Louis JACHIET
Simple operations on RDD

\[D_1 \]

\[D_2 \]
Simple operations on RDD

\[D_1 \cup D_2 \]
Simple operations on RDD

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[D_1 \]

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>β</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>C</td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>γ</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>A</td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>C</td>
<td>γ</td>
<td></td>
</tr>
</tbody>
</table>

\[D_1.jjoin(D_2) \]
Simple operations on RDD

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td></td>
<td>0</td>
<td>α</td>
<td>0</td>
<td>α</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td>1</td>
<td>β</td>
<td>1</td>
<td>β</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>3</td>
<td>η</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>C</td>
<td>0</td>
<td>γ</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[D_1, D_2, D_1.coGroup2(D_2)\]
Practical Spark
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter</td>
<td>limits the number of records</td>
</tr>
<tr>
<td>map</td>
<td>transform records</td>
</tr>
<tr>
<td>flatMap</td>
<td>maps each record to 0, 1 or more elements</td>
</tr>
<tr>
<td>distinct</td>
<td>eliminates duplicates</td>
</tr>
</tbody>
</table>

Manipulating RDDs
Spark RDD API (extract)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupByKey</td>
<td>corresponds to a shuffle</td>
</tr>
<tr>
<td>reduceByKey(f)</td>
<td>reduce for each key</td>
</tr>
<tr>
<td>foldByKey(f)</td>
<td>fold for each key</td>
</tr>
<tr>
<td>keyBy(f)</td>
<td>create pair-RDD from RDD</td>
</tr>
<tr>
<td>mapValues</td>
<td>transforms only the value</td>
</tr>
</tbody>
</table>

Manipulating pair-RDDs
<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cartesian</td>
<td>build the cartesian product</td>
</tr>
<tr>
<td>join</td>
<td>behaves like SQL join (supposes two pair-RDDs)</td>
</tr>
<tr>
<td>union</td>
<td>takes the union of two RDDs</td>
</tr>
<tr>
<td>intersection</td>
<td>takes the intersection of two RDDs</td>
</tr>
<tr>
<td>subtract</td>
<td>takes the difference of two RDDs</td>
</tr>
<tr>
<td>coGroup</td>
<td>generalized groupByKey (supposes two pair-RDDs)</td>
</tr>
</tbody>
</table>

Combining several RDDs
Spark RDD API (extract)

- **textFile**(path)**: creates an RDD with an item per line
- **saveAsTextFile**(path)**: saves an RDD with an item per line
- **sortWith**(f)**: sort according to comparison \(f \)

Tools for RDDs

- **take**(n)**: retrieves the \(n \) first elements
- **collect()**: retrieves whole RDD
- **count()**: counts the number of items
- **reduce**
- **fold**
- **aggregate**
- **foreach**

Actions on RDDs
Spark API: RDD Operations

```python
lines = sc.textFile("data.txt")
lineLengths = lines.map(lambda s: len(s))
totalLength = lineLengths.reduce(lambda a, b: a + b)
```

Spark’s Python API
Spark API: Working with Key-Value Pairs

```
lines = sc.textFile("data.txt")
pairs = lines.map(lambda s: (s, 1))
counts = pairs.reduceByKey(lambda a, b: a + b)
```

Spark’s Python API
Exercise revisited (easy)

Input
You are given a list of pairs \((k_i, v_i)\) where \(k_i\) is a string and \(v_i\) an integer.

Problem
Compute the average value for each key.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 42</td>
<td>A (\frac{42 + 12}{2} = 27)</td>
</tr>
<tr>
<td>B 17</td>
<td>B (\frac{17 + 99}{2} = 58)</td>
</tr>
<tr>
<td>A 12</td>
<td></td>
</tr>
<tr>
<td>B 99</td>
<td></td>
</tr>
</tbody>
</table>
Exercise revisited (medium)

Input
You are given two lists of items.

Problem
Compute the list of items appearing in the first one but not in the second.

Example

<table>
<thead>
<tr>
<th>INPUT 1</th>
<th>INPUT2</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Exercise revisited (hard)

Input
You are given the Twitter following list: each record is a pair (A_i, B_i) indicating that account A_i follows B_i.

Problem
Compute the accounts that have more followers than followees.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
</tr>
</tbody>
</table>
Exercise revisited (hardest)

Input
You are given the Twitter following list: each record is a pair \((A_i, L_i)\) indicating that account \(A_i\) follows the accounts in the list \(L_i\).

Problem
Compute for each account \(A\) the list of accounts that are followed by an account followed by \(A\).

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B,D</td>
</tr>
<tr>
<td>B</td>
<td>C,D</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>A</td>
<td>C,D</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>
What does this program do?

A = sc.textFile("hdfs:///user/ljachiet/a.txt")
 .flatMap(lambda x: [(v,1) for v in x.split()])
 .reduceByKey(lambda x,y: x+y)
 .filter(lambda x: len(x[0])>2)

B = sc.textFile("hdfs:///user/ljachiet/b.txt")
 .flatMap(lambda x: [(v,1) for v in x.split()])
 .reduceByKey(lambda x,y: x+y)
 .filter(lambda x: len(x[0])>2)

A.join(B).collect()
Spark internals
Hadoop internals for Map-Reduce

Mapper task
Record Reader → Map → Key-value sort

Reducer task
Fetch → Sort → Reduce

HDFS
Let us consider:

\[
A = \text{textFile("hdfs://A.txt")}.\map{\text{lambda } x: [(v,1) \text{ for } v \text{ in } x.\text{split()}]}{\\text{.filter(\text{lambda } x: \text{len(x[0])}>2)}}\]
\[
B = \text{textFile("hdfs://B.txt")}.\flatMap{\text{lambda } x: x.\text{split()}}{\\text{.keyBy(\text{lambda } x: x.\text{split(":")}[0])}}
\]

A.join(B)
Spark internals

- HDFS
- Map
- Executor 1
- Executor 2
- Executor 3
- Filter
- Executor 1
- Executor 2
- Executor 3
- Executor 6
- Executor 7
- Executor 8
- Executor 9
- KeyBy
- Executor 4
- Executor 5
- flatMap
- Executor 4
- Executor 5
- join
- Executor 6
- Executor 7
- Executor 8
- Executor 9

Louis JACHIET
Spark internals

- HDFS
- Map
- Executor 1
- Executor 2
- Executor 3
- Executor 4
- Executor 5
- Executor 6
- Executor 7
- Executor 8
- Executor 9
- Filter
- KeyBy
- Join
- FlatMap
- Louis JACHIET
Iterations
Spark is especially competitive for jobs requiring long chain of individual jobs.
Spark is especially competitive for jobs requiring long chain of individual jobs.

Such jobs are often required by data mining algorithm (e.g. the gradient descent for logistic regression).
Logistic regression

Compute logistic regression gradient for a matrix of data points

def gradient(matrix, w):
 Y = matrix[:, 0] # point labels (first column of input file)
 X = matrix[:, 1:] # point coordinates
 # For each point (x, y), compute gradient function, then sum these up
 return ((1.0 / (1.0 + np.exp(-Y * X.dot(w))) - 1.0) * Y * X.T).sum(1)

def add(x, y):
 x += y
 return x

for i in range(iterations):
 print("On iteration %i" % (i + 1))
 w -= points.map(lambda m: gradient(m, w)).reduce(add)

From Spark: examples/src/main/python/logistic_regression.py
Caching and persistence
RDD materialization are only triggered by an *action*.
RDD materialization are only triggered by an action.

Spark caches by default the materialization, but the user can specify the caching.
<table>
<thead>
<tr>
<th>Type</th>
<th>Space</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY*</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>high</td>
<td>med</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>low</td>
<td>high</td>
</tr>
</tbody>
</table>
Logistic regression

```python
# Compute logistic regression gradient for a matrix of data points

def gradient(matrix, w):
    Y = matrix[:, 0]           # point labels (first column of input file)
    X = matrix[:, 1:]           # point coordinates
    # For each point (x, y), compute gradient function, then sum these up
    return ((1.0 / (1.0 + np.exp(-Y * X.dot(w))) - 1.0) * Y * X.T).sum(1)

def add(x, y):
    x += y
    return x

for i in range(iterations):
    print("On iteration %i" % (i + 1))
    w -= points.map(lambda m: gradient(m, w)).reduce(add)

From Spark: examples/src/main/python/logistic_regression.py
```
Shared Variables
Spark API: Shared Variables

```python
>>> broadcastVar = sc.broadcast([1, 2, 3])

>>> broadcastVar.value
[1, 2, 3]
```

Spark’s Python API
Spark’s Scala API

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)
Spark API: Shared Variables

```
Broadcast<int[]> broadcastVar =
    sc.broadcast(new int[] {1, 2, 3});

broadcastVar.value();
// returns [1, 2, 3]
```

Spark’s Java API
Spark ecosystem
Apache Spark Streaming

Spark Streaming is an extension of Spark that allows processing data stream using micro-batches of data.
Discretized Streams (DStreams)

- Discretized Stream or DStream represents a continuous stream of data,
 - either the input data stream received from source, or
 - the processed data stream generated by transforming the input stream.

- Internally, a DStream is represented by a continuous series of RDDs
Discretized Streams (DStreams)

- Any operation applied on a DStream translates to operations on the underlying RDDs.
Discretized Streams (DStreams)

- Spark Streaming provides windowed computations, which allow transformations over a sliding window of data.
Spark Streaming

```scala
val conf = new SparkConf().setMaster("local[2]").setAppName("WCount")
val ssc = new StreamingContext(conf, Seconds(1))

// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream("localhost", 9999)

// Split each line into words
val words = lines.flatMap(_.split(" "))

// Count each word in each batch
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)

// Print the first ten elements of each RDD generated in this DStream to the console
wordCounts.print()

ssc.start()  // Start the computation
ssc.awaitTermination()  // Wait for the computation to terminate
```
Spark SQL and DataFrames

- Spark SQL is a Spark module for structured data processing.
- It provides a programming abstraction called DataFrames and can also act as distributed SQL query engine.
- A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database.
Spark Machine Learning Libraries

- **MLLib** contains the original API built on top of RDDs.
- **spark.ml** provides higher-level API built on top of DataFrames for constructing ML pipelines.

```
Pipeline (Estimator)

Tokenizer ➔ HashingTF ➔ Logistic Regression

Pipeline.fit()

Raw text ➔ Words ➔ Feature vectors ➔ Logistic Regression Model
```
Spark Machine Learning Libraries

- MLLib contains the original API built on top of RDDs.
- spark.ml provides higher-level API built on top of DataFrames for constructing ML pipelines.
Spark GraphX

- GraphX optimizes the representation of vertex and edge types when they are primitive data types.
- The property graph is a directed multigraph with user-defined objects attached to each vertex and edge.

![Property Graph Diagram]

Property Graph Table

<table>
<thead>
<tr>
<th>Id</th>
<th>Property (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(rxin, student)</td>
</tr>
<tr>
<td>7</td>
<td>(jgonzal, postdoc)</td>
</tr>
<tr>
<td>5</td>
<td>(franklin, professor)</td>
</tr>
<tr>
<td>2</td>
<td>(istoica, professor)</td>
</tr>
</tbody>
</table>

Vertex Table

<table>
<thead>
<tr>
<th>Id</th>
<th>Property (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(rxin, student)</td>
</tr>
<tr>
<td>7</td>
<td>(jgonzal, postdoc)</td>
</tr>
<tr>
<td>5</td>
<td>(franklin, professor)</td>
</tr>
<tr>
<td>2</td>
<td>(istoica, professor)</td>
</tr>
</tbody>
</table>

Edge Table

<table>
<thead>
<tr>
<th>SrcId</th>
<th>DstId</th>
<th>Property (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>Collaborator</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Advisor</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Colleague</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>PI</td>
</tr>
</tbody>
</table>
Spark GraphX

// Assume the SparkContext has already been constructed
val sc: SparkContext

// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
 sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
 (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: RDD[Edge[String]] =
 sc.parallelize(Array(Edge(3L, 7L, "collab"),
 Edge(5L, 3L, "advisor"),
 Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)
Spark Dataframes
SQL model

SQL tables

Tuple

Attribute

Relation
Dataframes are basically RDD with an explicit schema but:

1. untyped data
2. can be optimized
Exploring Dataframes
Exploring DataFrame

```python
myDF.show()  # Show 20 first entry of DataFrame
```

```
+---+-----+
|key|value|
+---+-----+
| a | 42  |
| b | 17  |
| a | 27  |
| a | 27  |
| b | 99  |
| a | 27  |
+---+-----+
```
myDF.show(n) # Show n first entry of DataFrame
Exploring Dataframe

```python
myDF.printSchema()  # Show schema

root
  |-- key: string (nullable = true)
  |-- value: long (nullable = true)
```
Exploring Dataframe

```python
def myDF.describe().show()  # Show stats
```

```
<table>
<thead>
<tr>
<th>summary</th>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>mean</td>
<td>null</td>
<td>42.4</td>
</tr>
<tr>
<td>stddev</td>
<td>null</td>
<td>32.875522809531105</td>
</tr>
<tr>
<td>min</td>
<td>a</td>
<td>17</td>
</tr>
<tr>
<td>max</td>
<td>b</td>
<td>99</td>
</tr>
</tbody>
</table>
```
Creating Dataframes
val movies = ... // of type RDD[(int, string, string)]
...
val dfMovies = movies.toDF("movieId", "title", "genre")
class Movie(movieId: Int, title: String, genre: String)
...
val movies = ... // of type RDD[Movie]
...
val dfMovies = movies.toDF
val myRDD = something //
...
val mySchema = StructType(List(
 StructField("number", IntegerType, true),
 StructField("word", StringType, true)))
...
val myDF = spark.createDataFrame(myRDD,mySchema)
Spark can read from:

1. CSV
2. JSON
3. Parquet
4. etc.

```scala
def createDataFrameFromCSV(): DataFrame = {
  val myDF = spark.read.format("csv").
                option("header","true").
                load("/datasets/movie_small/ratings.csv")
}
```
Creating Dataframes From Files

Spark can read from:

1. CSV
2. JSON
3. Parquet
4. etc.

```scala
import org.apache.spark.sql.types.{StructType, StructField, FloatType,
   IntegerType, LongType};

val mySchema = StructType(List(StructField("userId", IntegerType, true),
   StructField("movieId", IntegerType, true),
   StructField("rating", FloatType, true),
   StructField("timestamp", LongType, true)))

val myDF = spark.read.format("csv").option("header","true").
   schema(mySchema).
   load("/datasets/movie_small/ratings.csv")
```
Manipulating columns
Keep column key
myDF.select("key")

Keep the two columns key and value
myDF.select(["key","value"])
myDF.select("key","value")
Keep column key
myDF.select("key")

myDF.select(myDF["key"])
import pyspark.sql.functions as func

Double value
myDF.select(func.expr("value*2"))
SELECT with explicit expression

```python
import pyspark.sql.functions as func

# Double value
dataDF.select(func.col("value")*func.lit(2)).show()
```
SELECT with explicit expression

```python
import pyspark.sql.functions as func

dataDF.select(func.col("value").cast("double")).show()
```
import pyspark.sql.functions as func

Double value
dataDF.select(
 func.col("value") * func.lit(2),
 func.col("value") + func.lit(2),
).show()
import pyspark.sql.functions as func

Double value
dataDF.select(
 (func.col("value")*func.lit(2)).alias("DoubleValue"),
 (func.col("value")+func.lit(3)).alias("PlusThreeValue"),
).show()
import pyspark.sql.functions as func

Double value
dataDF.select(
 func.expr("value*2").alias("DoubleValue"),
 (func.col("value") + func.lit(3)).
 alias("PlusThreeValue"),
).show()
SELECT with new columns

```python
import pyspark.sql.functions as func

# Double value
dataDF.withColumn("myColname", func.expr("value*2"))
    .show()
```

Louis JACHIET
import pyspark.sql.functions as func

Double value

dataDF.withColumnRenamed(
 "value","newValueCol"
).show()
import pyspark.sql.functions as func

dataDF.drop("value").show()
Filtering
import pyspark.sql.functions as func

Implicit filtering
dataDF.filter("value>20").show()
import pyspark.sql.functions as func

Explicit filtering
dataDF.filter(func.col("value")>func.lit(20)).show()
import pyspark.sql.functions as func

Explicit filtering
dataDF.where(func.col("value")>func.lit(20)).show()
import pyspark.sql.functions as func

Explicit filtering
dataDF.where(func.expr("value>20")).show()
Aggregation
Defining an aggregation

An aggregation operation is defined with:

- A set of grouping columns
- A set of aggregates
import pyspark.sql.functions as func

Defining the grouping columns
groupedDF = dataDF.groupBy(['key'])

Defining aggregates
example 1
groupedDF.agg(func.sum("value"))
example 2
groupedDF.agg(func.count("value"))
example 3
groupedDF.agg(func.sum(func.lit("1")))
import pyspark.sql.functions as func

Defining the grouping columns

groupedDF = dataDF.groupBy(['key'])

groupedDF.sum('value')
```python
import pyspark.sql.functions as func

# Defining the grouping columns
groupedDF = dataDF.groupBy(['key'])

groupedDF.agg({'value':'sum','*':'count'}).show()
```
Joining dataframes
DF1.join(DF2, CONDITION, TYPE OF JOIN)
DF1.join(DF2, DF1["col1"] == DF2["col2"], 'left_outer')
Order / limit / offset
dataDF.orderBy(func.asc("key"))
Handling nulls
Dropping rows with null

```python
dataDF.na.drop().show()
dataDF.na.drop(subset=['value']).show()
```
Replacing nulls

dataDF.na.fill(value="").show()
dataDF.na.fill(value="noKey", subset=["key"]).show()
Summary
<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>select</code></td>
<td>Projection on some columns</td>
</tr>
<tr>
<td><code>agg</code></td>
<td>Aggregation</td>
</tr>
<tr>
<td><code>groupBy</code></td>
<td>Use in conjunction with <code>agg</code></td>
</tr>
<tr>
<td><code>join</code></td>
<td>Inner join</td>
</tr>
<tr>
<td><code>filter</code></td>
<td>Filter some columns</td>
</tr>
<tr>
<td><code>limit</code></td>
<td>Equivalent to <code>take(n)</code></td>
</tr>
<tr>
<td><code>orderBy</code></td>
<td>Sort by a given column</td>
</tr>
<tr>
<td><code>where</code></td>
<td>Condition on <code>join</code></td>
</tr>
<tr>
<td><code>union</code></td>
<td>Union</td>
</tr>
<tr>
<td><code>show</code></td>
<td>Print 20 first entries</td>
</tr>
<tr>
<td><code>printSchema</code></td>
<td>Print schema</td>
</tr>
<tr>
<td><code>as</code></td>
<td>Name table</td>
</tr>
<tr>
<td><code>drop</code></td>
<td>Remove records with NULL</td>
</tr>
<tr>
<td><code>fill</code></td>
<td>Replace NULL with value</td>
</tr>
</tbody>
</table>

... and many more!
val schema2 = StructType(List(
 StructField("movieId", IntegerType),
 StructField("title", StringType)))
val movieDF = spark.read.format("csv").
 option("header","true").
 schema(schema2).
 load("/datasets/movie_small/movies.csv")
myDF2.join(movieDF,
 myDF2("movieId")===movieDF("movieId")).
show()
Exercise revisited (easy)

Input
You are given a list of pairs \((k_i, v_i)\) where \(k_i\) is a string and \(v_i\) an integer.

Problem
Compute the average value for each key.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\frac{42 + 12}{2} = 27)</td>
</tr>
<tr>
<td>B</td>
<td>(\frac{17 + 99}{2} = 58)</td>
</tr>
</tbody>
</table>
A | 42 |
B | 17 |
A | 12 |
B | 99 |
Exercise revisited (medium)

Input
You are given two lists of items.

Problem
Compute the list of items appearing in the first one but not in the second.

Example

<table>
<thead>
<tr>
<th>INPUT 1</th>
<th>INPUT2</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Exercise revisited (hard)

Input
You are given the Twitter following list: each record is a pair \((A_i, B_i)\) indicating that account \(A_i\) follows \(B_i\).

Problem
Compute the accounts that have more followers than followees.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>
Exercise revisited (hardest)

Input
You are given the Twitter following list: each record is a pair (A_i, L_i) indicating that account A_i follows the accounts in the list L_i.

Problem
Compute for each account A the list of accounts that are followed by an account followed by A.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C,D</td>
</tr>
<tr>
<td>B</td>
<td>C,D</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
</tr>
</tbody>
</table>
Spark SQL
Use any SQL command

```python
myDF.createOrReplaceTempView("tablename")

sqlDF = spark.sql("SELECT * FROM tablename")
sqlDF.show()
```
Exercise revisited (easy)

Input
You are given a list of pairs \((k_i, v_i)\) where \(k_i\) is a string and \(v_i\) an integer.

Problem
Compute the average value for each key.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\frac{42 + 12}{2} = 27)</td>
</tr>
<tr>
<td>B</td>
<td>(\frac{17 + 99}{2} = 58)</td>
</tr>
</tbody>
</table>
Input
You are given two lists of items.

Problem
Compute the list of items appearing in the first one but not in the second.

Example

<table>
<thead>
<tr>
<th>INPUT 1</th>
<th>INPUT 2</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>B</td>
</tr>
</tbody>
</table>
Exercise revisited (hard)

Input
You are given the Twitter following list: each record is a pair (A_i, B_i) indicating that account A_i follows B_i.

Problem
Compute the accounts that have more followers than followees.

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
</tr>
</tbody>
</table>
Exercise revisited (hardest)

Input
You are given the Twitter following list: each record is a pair \((A_i, L_i)\) indicating that account \(A_i\) follows the accounts in the list \(L_i\).

Problem
Compute for each account \(A\) the list of accounts that are followed by an account followed by \(A\).

Example

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C,D</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
</tr>
</tbody>
</table>
Playing With The Movie Lens Dataset