Refresher on algorithms

Louis Jachiet

Optimizing programs

Should you optimize a program?

Should you optimize a program?

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOURE SPENDING MORE TIME THAN YOU SAVE?
(ACROSS FIVE YEARS)

$\left[\begin{array}{r} 1 \text { SECOND } \\ 5 \text { SECCONDS } \\ 30 \text { SECONDS } \end{array}\right.$	50/day	5/DAY	DAILY	WEEK	MASK	
	1 DAY	2 Hours	$\begin{gathered} 30 \\ \text { MINUES } \end{gathered}$	$\begin{aligned} & 4 \\ & \text { MINUTES } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { MINTE } \end{aligned}$	$\stackrel{5}{\text { SECOWDS }}$
	5 DAPS	12 Hovrs	2 Hours	21	$5_{\text {MINUTES }}^{5}$	SECOWD
	4 WEERS	3 Dars	12 Hovrs	2 Hours	$\begin{aligned} & 30 \\ & \text { MINUTES } \end{aligned}$	$\frac{2}{2}$
$\begin{array}{ll} \text { HOW } & 1 \text { MINUTE } \\ \text { MUCH } \\ \text { TMME } & \\ \text { YOU } & \text { MINTES } \\ \text { SHAE } \\ \text { OFF } & 3 O \text { MINUTES } \end{array}$	$8 \text { WEEKS }$	6 DArs	1 DAY	4 hours	1 HovR	5
	9 MONTH	$\begin{aligned} & 4 \text { WEERS } \\ & 4 \end{aligned}$	6 DAPS	21 hours	5 Hours	$\begin{gathered} 25 \\ \text { MINUTES } \end{gathered}$
		6 MONTHS	$5 \text { WEERS }$	5 DAMS	1 DAY	2 HOURS
$\left[\begin{array}{c} 1 \text { HOUR } \\ 6 \text { HOURS } \\ 1 \text { Dar } \end{array}\right.$		10 MONTHS	2 MONTH	10 Dars	2 DAYS	5 Hours
				2 MONHS		1 DAY
					$8 \text { WEEKS }$	5 DATS

Should you optimize a program?

If you have a solution that works and is fast enough. . .

Should you optimize a program?

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your program

Should you optimize a program?

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your program which means you should measure what takes time.

Why optimize?

If you have a program that is too slow you have three ways of optimizing it:

- Do some little tweaking

You can go for a $2 \times$ speed-up

Why optimize?

If you have a program that is too slow you have three ways of optimizing it:

- Do some little tweaking

You can go for a $2 \times$ speed-up

- Change the language or use a well-optimized library

You can have a $100 \times$ speed-up, in a very favorable case

Why optimize?

If you have a program that is too slow you have three ways of optimizing it:

- Do some little tweaking

You can go for a $2 \times$ speed-up

- Change the language or use a well-optimized library

You can have a $100 \times$ speed-up, in a very favorable case

- Use multiple computer

$$
n \times \text { speed-up with } n \text { computers }
$$

Why optimize?

If you have a program that is too slow you have three ways of optimizing it:

- Do some little tweaking

You can go for a $2 \times$ speed-up

- Change the language or use a well-optimized library

You can have a $100 \times$ speed-up, in a very favorable case

- Use multiple computer

$$
n \times \text { speed-up with } n \text { computers }
$$

- Change the algorithm

No limit on speed-up!

Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3000 ns
Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory20000 ns250000 ns
Round trip within same datacenter500000 ns
Disk seek (hard drive)Read 1 MB sequentially from disk (hard drive)20000000 ns
Send packet CA \rightarrow Netherlands \rightarrow CA

Defining algorithmic complexity

Defining algorithmic complexity

Turing machines

Turing machines

Church Turing thesis

Everything that can be computed, can be computed with a Turing Machine.

Strong Church Turing thesis

Everything that can be computed efficiently, can be efficiently computed with a deterministic Turing Machine.

Turing machines

In practice
Turing machines are great at modeling large complexity classes P , EXPTIME, L, etc. but bad for fined-grained complexity.

Example

Testing whether a string contains n times the letter a followed by n times the letter b cannot be recognized by a deterministic Turing Machine in linear time.

How to define computational complexity?

In practice

We use a ill-defined, vague but useful notion of RAM-model:

- the memory is divided in register of limited size (64 in actual computers)
- we have a memory indexed by addresses (this allows for arrays and pointers)
- we can do basic arithmetic operation (,,$+- \times, /, \%$, etc.)
- all basic operation takes $O(1)$

Defining algorithmic complexity

Notations

Bachmann-Landau notation

The parameter n
Usually the length of the problem. On TM this is the number of bits, on RAM machines this is usually the number of machine words.

- Small o: $g(n)=o(f(n))$ means $g(n) / f(n)$ tends to 0 .
- Big $\mathcal{O}: g(n)=\mathcal{O}(f(n))$ means $g(n) / f(n)$ is bounded.
- Big $\Omega: g(n)=\Omega(f(n))$ means $f(n) / g(n)$ is bounded, i.e. $f(n)=\mathcal{O}(g(n))$
- Big $\Theta: g(n)=\theta(n)$ means $\exists c$ s.t. $c^{-1}<f(n) / g(n)<c$.

Bachmann-Landau notation

The parameter n

Usually the length of the problem. On TM this is the number of bits, on RAM machines this is usually the number of machine words.

- Small o: $g(n)=o(f(n))$ means $g(n) / f(n)$ tends to 0 .
- Big $\mathcal{O}: g(n)=\mathcal{O}(f(n))$ means $g(n) / f(n)$ is bounded.
- Big $\Omega: g(n)=\Omega(f(n))$ means $f(n) / g(n)$ is bounded, i.e. $f(n)=\mathcal{O}(g(n))$
- Big $\Theta: g(n)=\theta(n)$ means $\exists c$ s.t. $c^{-1}<f(n) / g(n)<c$.
- $\operatorname{Big} \tilde{\Omega}: g(n)=\tilde{\Omega}(f(n))$ means $\exists c$ s.t. $f(n) / g(n)<c$ for infinitely many n.
- Big $\tilde{\Theta}: g(n)=\tilde{\Theta}(f(n))$ means $\exists c$ s.t. $c^{-1}<f(n) / g(n)<c$ for infinitely many n.

Importance of the constant

The \mathcal{O} notation "hides" the actual performance in the constant:

- it is very useful to develop algorithms
- it is generally gives the fastest algorithms
- but there are cases where the constant is huge

However, keep in mind that all computers have a finite memory...

Generic algorithmic approach

Know the basics of algorithms

- Divide and conquer

Know the basics of algorithms

- Divide and conquer
- Sliding windows

Know the basics of algorithms

- Divide and conquer
- Sliding windows
- Dynamic algorithms

Know the basics of algorithms

- Divide and conquer
- Sliding windows
- Dynamic algorithms
- Math-trick

Know the basics of algorithms

- Divide and conquer
- Sliding windows
- Dynamic algorithms
- Math-trick
- Reduction of complexity

Know the basics of algorithms

- Divide and conquer
- Sliding windows
- Dynamic algorithms
- Math-trick
- Reduction of complexity
- Data structure

Use the right datastructure

- Array

Use the right datastructure

- Array
- Linked Lists

Use the right datastructure

- Array
- Linked Lists
- Hash table

Use the right datastructure

- Array
- Linked Lists
- Hash table
- Balanced binary tree

Use the right datastructure

- Array
- Linked Lists
- Hash table
- Balanced binary tree
- Queues

Exercises

- Sort a list of integers
- Given two strings, are they anagrams?
- Given a list of pair (people,phone) and a list (people,mail), what are the people that have both a phone and a mail?
- We define $F_{n+2}=F_{n}+F_{n+1}$ with $F_{0}=F_{1}=0$, how to compute F_{n} ?
- Given a list I, compute $\max _{i, j}(\operatorname{sum}(I[i: j]))$

