Refresher on algorithms

Louis Jachiet

Optimizing programs

	HOW OFTEN YOU DO THE TASK							
	50/DAY	5/DAY	DAILY	WEEKLY	MONTHLY	YEARLY		
1 SEC		2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS		
5 SECON	DS 5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS		
30 5ECO	105 4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES		
HOW 1 MINU MUCH 1 MINU	TTE 8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES		
TIME 5 MINUT	TES 9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES		
OFF 30 MINU	TES	6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS		
1но	UR	IO MONTHS	2 MONTHS	10 DAYS	2 DAYS	5 HOURS		
6 HOU	R 5			2 MONTHS	2 WEEKS	1 DAY		
10	XAY				8 WEEKS	5 DAYS		

If you have a solution that works and is fast enough...

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your program

If you have a solution that works and is fast enough... NO.

Also you should only optimize the time-consuming parts of your program which means you should measure what takes time.

Do some little tweaking

You can go for a $2 \times$ speed-up

Do some little tweaking

You can go for a $2 \times$ speed-up

- Change the language or use a well-optimized library You can have a $100 \times$ speed-up, in a very favorable case

Do some little tweaking

You can go for a $2 \times$ speed-up

- Change the language or use a well-optimized library
 You can have a 100× speed-up, in a very favorable case
- Use multiple computer

 $n \times$ speed-up with n computers

Do some little tweaking

You can go for a $2 \times$ speed-up

- Change the language or use a well-optimized library
 You can have a 100× speed-up, in a very favorable case
- Use multiple computer

 $n \times$ speed-up with n computers

• Change the algorithm

No limit on speed-up!

L1 cache reference	0.5	ns
Branch mispredict	5	ns
L2 cache reference	7	ns
Mutex lock/unlock	25	ns
Main memory reference	100	ns
Compress 1K bytes with Zippy	3 000	ns
Send 2K bytes over 1 Gbps network	20 000	ns
Read 1 MB sequentially from memory	250 000	ns
Round trip within same datacenter	500 000	ns
Disk seek (hard drive)	10 000 000	ns
Read 1 MB sequentially from disk (hard drive)	20 000 000	ns
Send packet $CA \to Netherlands \to CA$	150 000 000	ns

Defining algorithmic complexity

Defining algorithmic complexity

Turing machines

Church Turing thesis

Everything that can be computed, can be computed with a Turing Machine.

Strong Church Turing thesis

Everything that can be computed efficiently, can be efficiently computed with a deterministic Turing Machine.

In practice

Turing machines are **great** at modeling **large** complexity classes P, EXPTIME, L, etc. but **bad** for **fined-grained** complexity.

Example

Testing whether a string contains n times the letter a followed by n times the letter b cannot be recognized by a deterministic Turing Machine in linear time.

In practice

We use a ill-defined, vague but useful notion of RAM-model:

- the memory is divided in register of limited size (64 in actual computers)
- we have a memory indexed by addresses (this allows for arrays and pointers)
- we can do basic arithmetic operation $(+, -, \times, /, \%, \text{ etc.})$
- all basic operation takes O(1)

Defining algorithmic complexity

Notations

The parameter n

Usually the **length** of the problem. On TM this is the number of **bits**, on RAM machines this is usually the number of machine **words**.

- Small o: g(n) = o(f(n)) means g(n)/f(n) tends to 0.
- **Big** \mathcal{O} : $g(n) = \mathcal{O}(f(n))$ means g(n)/f(n) is bounded.
- Big Ω : $g(n) = \Omega(f(n))$ means f(n)/g(n) is bounded, i.e. $f(n) = \mathcal{O}(g(n))$
- Big Θ : $g(n) = \theta(n)$ means $\exists c \text{ s.t. } c^{-1} < f(n)/g(n) < c$.

The parameter *n*

Usually the **length** of the problem. On TM this is the number of **bits**, on RAM machines this is usually the number of machine **words**.

- Small o: g(n) = o(f(n)) means g(n)/f(n) tends to 0.
- **Big** \mathcal{O} : $g(n) = \mathcal{O}(f(n))$ means g(n)/f(n) is bounded.
- Big Ω : $g(n) = \Omega(f(n))$ means f(n)/g(n) is bounded, i.e. $f(n) = \mathcal{O}(g(n))$
- Big Θ : $g(n) = \theta(n)$ means $\exists c \text{ s.t. } c^{-1} < f(n)/g(n) < c$.
- Big Ω̃: g(n) = Ω̃(f(n)) means ∃c s.t. f(n)/g(n) < c for infinitely many n.
- Big $\tilde{\Theta}$: $g(n) = \tilde{\Theta}(f(n))$ means $\exists c \text{ s.t. } c^{-1} < f(n)/g(n) < c$ for infinitely many n.

The $\ensuremath{\mathcal{O}}$ notation "hides" the actual performance in the constant:

- it is very useful to develop algorithms
- it is generally gives the fastest algorithms
- but there are cases where the constant is huge

However, keep in mind that all computers have a finite memory...

Generic algorithmic approach

Divide and conquer

- Divide and conquer
- Sliding windows

- Divide and conquer
- Sliding windows
- Dynamic algorithms

- Divide and conquer
- Sliding windows
- Dynamic algorithms
- Math-trick

- Divide and conquer
- Sliding windows
- Dynamic algorithms
- Math-trick
- Reduction of complexity

- Divide and conquer
- Sliding windows
- Dynamic algorithms
- Math-trick
- Reduction of complexity
- Data structure

Array

- Array
- Linked Lists

- Array
- Linked Lists
- Hash table

- Array
- Linked Lists
- Hash table
- Balanced binary tree

- Array
- Linked Lists
- Hash table
- Balanced binary tree
- Queues

- Sort a list of integers
- Given two strings, are they anagrams?
- Given a list of pair (people,phone) and a list (people,mail), what are the people that have both a phone and a mail?
- We define $F_{n+2} = F_n + F_{n+1}$ with $F_0 = F_1 = 0$, how to compute F_n ?
- Given a list *I*, compute max_{i,j}(sum(*I*[*i* : *j*]))