Provenance

MPRI 2.26.2: Web Data Management

Antoine Amarilli

Provenance Definition

Provenance management

- Data management is all about query evaluation
- What if we want something more than the query result?
- Where does the result come from?
- Why was this result obtained?
- How was the result produced?
- What is the probability of the result?
- How many times was the result obtained?
- How would the result change if part of the input data was missing?
- What is the minimal security clearance I need to see the result?
- What is the most economical way of obtaining the result?
- How can a result be explained to the user?
- Provenance management: along with query evaluation, record additional bookkeeping information to answer the questions above

Provenance data model

- Relational data model: data decomposed into relations, with labeled attributes...

Provenance data model

- Relational data model: data decomposed into relations, with labeled attributes...

name	position	city	classification
John	Director	New York	unclassified
Paul	Janitor	New York	restricted
Dave	Analyst	Paris	confidential
Ellen	Field agent	Berlin	secret
Magdalen	Double agent	Paris	top secret
Nancy	HR director	Paris	restricted
Susan	Analyst	Berlin	secret

Provenance data model

- Relational data model: data decomposed into relations, with labeled attributes...
- ... with an extra provenance annotation for each tuple (think of it first as a tuple id)

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

Outline

Provenance Definition
Preliminaries
Boolean Provenance

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

Boolean valuations

- Database D with n tuples
- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the Boolean variables annotating the tuples
- Valuation over \mathcal{X} : function $\nu: \mathcal{X} \rightarrow\{\perp, \top\}$
- Possible world $\nu(D)$: the subset of D where we keep precisely the tuples whose annotation evaluates to T

Example of possible worlds

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

$$
\begin{array}{cccccccc}
\\
\nu: & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
& \top & \top & \top & \top & \top & \top & \top
\end{array}
$$

Example of possible worlds

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Dave	Analyst	Paris	confidential	x_{3}
Magdalen	Double agent	Paris	top secret	x_{5}
Susan	Analyst	Berlin	secret	x_{7}

$$
\begin{array}{cccccccc}
& & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
x_{7} \\
& \top & \perp & \top & \perp & \top & \perp & \top
\end{array}
$$

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D...

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D... whose tuples are annotated with $\mathcal{X}=x_{1}, \ldots, x_{n}$

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D... whose tuples are annotated with $\mathcal{X}=x_{1}, \ldots, x_{n}$
- The result is a relation instance R...

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D... whose tuples are annotated with $\mathcal{X}=x_{1}, \ldots, x_{n}$
- The result is a relation instance R... where each tuple is annotated with a Boolean function on \mathcal{X}

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D... whose tuples are annotated with $\mathcal{X}=x_{1}, \ldots, x_{n}$
- The result is a relation instance R... where each tuple is annotated with a Boolean function on \mathcal{X}
- Semantics: For every tuple t of the result, for every valuation ν of \mathcal{X}, the annotation of t evaluates to true on ν iff $t \in Q(\nu(D))$

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D... whose tuples are annotated with $\mathcal{X}=x_{1}, \ldots, x_{n}$
- The result is a relation instance R... where each tuple is annotated with a Boolean function on \mathcal{X}
- Semantics: For every tuple t of the result, for every valuation ν of \mathcal{X}, the annotation of t evaluates to true on ν iff $t \in Q(\nu(D))$
Example (What cities are in the table?)

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
New York	$x_{1} \vee x_{2}$
Paris	$x_{3} \vee x_{5} \vee x_{6}$
Berlin	$x_{4} \vee x_{7}$

Boolean provenance of query results

- Goal: Evaluate a positive relational algebra query (UCQ) Q on a database D... whose tuples are annotated with $\mathcal{X}=x_{1}, \ldots, x_{n}$
- The result is a relation instance R... where each tuple is annotated with a Boolean function on \mathcal{X}
- Semantics: For every tuple t of the result, for every valuation ν of \mathcal{X}, the annotation of t evaluates to true on ν iff $t \in Q(\nu(D))$
Example (What cities are in the table?)

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
New York	$x_{1} \vee x_{2}$
Paris	$x_{3} \vee x_{5} \vee x_{6}$
Berlin	$x_{4} \vee x_{7}$

Claim: we can compute this while evaluating the query!

Selection, renaming

Provenance annotations of selected tuples are unchanged
Example $\left(\rho_{\text {name } \rightarrow \mathbf{n}}\left(\sigma_{\text {city }}=\right.\right.$ "New York" $\left.\left.(R)\right)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

n	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}

Projection

Take the OR of provenance annotations of identical, merged tuples
Example $\left(\pi_{\text {city }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
New York	$x_{1} \vee x_{2}$
Paris	$x_{3} \vee x_{5} \vee x_{6}$
Berlin	$x_{4} \vee x_{7}$

Union

Take the OR of provenance annotations of identical, merged tuples
Example
$\pi_{\text {city }}\left(\sigma_{\text {ends-with (position,"agent") }}(R)\right) \cup \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{3} \vee x_{5}$
Berlin	$x_{4} \vee x_{7}$

Cross product

Take the AND of provenance annotations of combined tuples

Example

$$
\pi_{\text {city }}\left(\sigma_{\text {ends-with(position,"agent") }}(R)\right) \bowtie \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)
$$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{3} \wedge x_{5}$
Berlin	$x_{4} \wedge x_{7}$

How is provenance actually represented?

Provenance annotations are Boolean functions

- The simplest representation is Boolean formulas
- Formalism used in most of the provenance literature

Example

Is there a city with two different agents?

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{6}\right) \vee\left(x_{3} \wedge x_{5}\right) \vee\left(x_{4} \wedge x_{7}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

Theorem (PTIME overhead)

For any fixed positive relational algebra expression, given an input database, we can compute in PTIME the provenance annotation of every tuple in the result

Other representation: Provenance circuits
 [Deutch et al., 2014]

- Use Boolean circuits to represent provenance
- Every time an operation reuses a previously computed result, link to the previously created circuit gate
- Never larger than provenance formulas
- Sometimes more concise

Example provenance circuit

What can we do with Boolean provenance?

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{6}\right) \vee\left(x_{3} \wedge x_{5}\right) \vee\left(x_{4} \wedge x_{7}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

- The provenance describes, for each result tuple, the subsets of the input database for which it appears in the query result

What can we do with Boolean provenance?

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{6}\right) \vee\left(x_{3} \wedge x_{5}\right) \vee\left(x_{4} \wedge x_{7}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

- The provenance describes, for each result tuple, the subsets of the input database for which it appears in the query result
- SAT: test if the tuple can be an answer when we delete some input tuples (trivial for monotone queries)

What can we do with Boolean provenance?

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{6}\right) \vee\left(x_{3} \wedge x_{5}\right) \vee\left(x_{4} \wedge x_{7}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

- The provenance describes, for each result tuple, the subsets of the input database for which it appears in the query result
- SAT: test if the tuple can be an answer when we delete some input tuples (trivial for monotone queries)
- \#SAT: number of sub-databases where the tuple is a result
\rightarrow Useful for probabilistic query evaluation

What can we do with Boolean provenance?

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{6}\right) \vee\left(x_{3} \wedge x_{5}\right) \vee\left(x_{4} \wedge x_{7}\right) \vee\left(x_{5} \wedge x_{6}\right)
$$

- The provenance describes, for each result tuple, the subsets of the input database for which it appears in the query result
- SAT: test if the tuple can be an answer when we delete some input tuples (trivial for monotone queries)
- \#SAT: number of sub-databases where the tuple is a result
\rightarrow Useful for probabilistic query evaluation
- Enumerating models: enumerating sub-databases where the tuple is a result
\rightarrow Useful to enumerate query results (see later)

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

Reminder: TIDs

- Tuple-independent database D : each tuple t in D is annotated with independent probability $\operatorname{Pr}(t)$ of existing

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

\rightarrow Probability of a possible world $D^{\prime} \subseteq D$:

$$
\operatorname{Pr}\left(D^{\prime}\right)=\prod_{t \in D^{\prime}} \operatorname{Pr}(t) \times \prod_{t \in D^{\prime} \backslash D}\left(1-\operatorname{Pr}\left(t^{\prime}\right)\right)
$$

PQE via provenance

name	position	city	classification	prov	prob
John	Director	New York	unclassified	x_{1}	0.5
Paul	Janitor	New York	restricted	x_{2}	0.7
Dave	Analyst	Paris	confidential	x_{3}	0.3
Ellen	Field agent	Berlin	secret	x_{4}	0.2
Magdalen	Double agent	Paris	top secret	x_{5}	1.0
Nancy	HR director	Paris	restricted	x_{6}	0.8
Susan	Analyst	Berlin	secret	x_{7}	0.2

city	prov	prob
New York	$x_{1} \vee x_{2}$	$1-(1-0.5) \times(1-0.7)=0.85$
Paris	$x_{3} \vee x_{5} \vee x_{6}$	
Berlin	$x_{4} \vee x_{7}$	$1-(1-0.2) \times(1-0.2)=0.36$

Extensional PQE vs intensional PQE

- Recall that PQE for UCQs is:
- PTIME in some cases
- \#P-hard in general
- There is a dichotomy separating tractable and intractable cases

Extensional PQE vs intensional PQE

- Recall that PQE for UCQs is:
- PTIME in some cases
- \#P-hard in general
- There is a dichotomy separating tractable and intractable cases
- Extensional PQE: computing the probability by evaluating the query "following the relational algebra operators"
- This covers the tractable cases of PQE for select-project-join queries (CQs) without self-joins with an easy algorithm
- This covers all tractable cases (for UCQs) with a far more complicated algorithm

Extensional PQE vs intensional PQE

- Recall that PQE for UCQs is:
- PTIME in some cases
- \#P-hard in general
- There is a dichotomy separating tractable and intractable cases
- Extensional PQE: computing the probability by evaluating the query "following the relational algebra operators"
- This covers the tractable cases of PQE for select-project-join queries (CQs) without self-joins with an easy algorithm
- This covers all tractable cases (for UCQs) with a far more complicated algorithm
- Intensional PQE: compute the provenance of the query as a Boolean circuit (or formula) and compute the probability of the provenance

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

Enumerating query results

Idea: Often, we do not need to compute all results of a query we just need to be able to enumerate results quickly

Enumerating query results

Idea: Often, we do not need to compute all results of a query we just need to be able to enumerate results quickly

Q how to find patterns

Enumerating query results

Idea: Often, we do not need to compute all results of a query we just need to be able to enumerate results quickly

Q how to find patterns

Search

Results 1-20 of 10,514

Enumerating query results

Idea: Often, we do not need to compute all results of a query we just need to be able to enumerate results quickly

Q how to find patterns

Search

Results 1-20 of 10,514

Enumerating query results

Idea: Often, we do not need to compute all results of a query we just need to be able to enumerate results quickly

Q how to find patterns

```
Results 1-20 of 10,514
```

View (previous 20 | next 20) (20|50|100|250|500)

Enumerating query results

Idea: Often, we do not need to compute all results of a query we just need to be able to enumerate results quickly

Q how to find patterns

\rightarrow Formalization: enumeration algorithms
\rightarrow Currently a pretty important topic in database theory

Input

Enumeration algorithm (linear preprocessing, constant delay)

Enumeration algorithm (linear preprocessing, constant delay)

Enumeration algorithm (linear preprocessing, constant delay)

Input

Enumeration algorithm (linear preprocessing, constant delay)

Results

Enumeration algorithm (linear preprocessing, constant delay)

Connection to provenance

Provenance can also represent query answers!

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y)$ on database D

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database $D \quad D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D for each element v (linear)

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database $D \quad D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D for each element v (linear)

$$
\begin{array}{r}
X(a), X\left(a^{\prime}\right), X(b), X(c) \\
Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)
\end{array}
$$

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database $D \quad D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D for each element v (linear)
$X(a), X\left(a^{\prime}\right), X(b), X(c)$
$Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database $D \quad D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D $X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear) $Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query

$$
X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))
$$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D $X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear) $Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query

$$
X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))
$$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$

- Compute the provenance C^{\prime} of Q^{\prime} on D plus assignment facts

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D $X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear) $Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query

$$
X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))
$$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$

- Compute the provenance C^{\prime} of $Q^{\prime} \quad\left(X(a) \wedge R(a, b) \vee X\left(a^{\prime}\right) \wedge R\left(a^{\prime}, b\right)\right)$ on D plus assignment facts $\wedge Y(b) \wedge S(b, c)$

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D $X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear) $Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query

$$
X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))
$$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$

- Compute the provenance C^{\prime} of $Q^{\prime} \quad\left(X(a) \wedge R(a, b) \vee X\left(a^{\prime}\right) \wedge R\left(a^{\prime}, b\right)\right)$ on D plus assignment facts $\wedge Y(b) \wedge S(b, c)$
- Define C by replacing all variables by 1 except assignment facts

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to D $X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear)
$Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query

$$
X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))
$$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$

- Compute the provenance C^{\prime} of $Q^{\prime} \quad\left(X(a) \wedge R(a, b) \vee X\left(a^{\prime}\right) \wedge R\left(a^{\prime}, b\right)\right)$ on D plus assignment facts $\wedge Y(b) \wedge S(b, c)$
- Define C by replacing all variables by 1
$\left(X(a) \vee X\left(a^{\prime}\right)\right) \wedge Y(b)$ except assignment facts

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to $D \quad X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear) $\quad Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query $\quad X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$
- Compute the provenance C^{\prime} of $Q^{\prime} \quad\left(X(a) \wedge R(a, b) \vee X\left(a^{\prime}\right) \wedge R\left(a^{\prime}, b\right)\right)$ on D plus assignment facts $\wedge Y(b) \wedge S(b, c)$
- Define C by replacing all variables by 1
$\left(X(a) \vee X\left(a^{\prime}\right)\right) \wedge Y(b)$ except assignment facts
\rightarrow The circuit C represents the query answers

Connection to provenance

Provenance can also represent query answers!

- Study answers of non-Boolean query $Q(x, y): \exists z R(x, y) \wedge S(y, z)$ $Q(x, y)$ on database D $D: R(a, b), R\left(a^{\prime}, b\right), S(b, c)$
- Add assignment facts $X(v), Y(v)$ to $D \quad X(a), X\left(a^{\prime}\right), X(b), X(c)$ for each element v (linear) $\quad Y(a), Y\left(a^{\prime}\right), Y(b), Y(c)$
- Consider the Boolean query $\quad X(x) \wedge Y(y) \wedge(\exists z R(x, y) \wedge S(y, z))$ $Q^{\prime}: X(x) \wedge Y(y) \wedge Q(x, y)$
- Compute the provenance C^{\prime} of $Q^{\prime} \quad\left(X(a) \wedge R(a, b) \vee X\left(a^{\prime}\right) \wedge R\left(a^{\prime}, b\right)\right)$ on D plus assignment facts $\wedge Y(b) \wedge S(b, c)$
- Define C by replacing all variables by 1
$\left(X(a) \vee X\left(a^{\prime}\right)\right) \wedge Y(b)$ except assignment facts
\rightarrow The circuit C represents the query answers

Enumeration via provenance

- We have a provenance circuit representing the query answers

Enumeration via provenance

- We have a provenance circuit representing the query answers

- So to enumerate query answers we can:
- Compute this provenance circuit
- Enumerate its satisfying assignments

Enumeration via provenance

- We have a provenance circuit representing the query answers

- So to enumerate query answers we can:
- Compute this provenance circuit
- Enumerate its satisfying assignments
\rightarrow We want linear preprocessing and constant delay
so we designed an enumeration algorithm for circuits:
Theorem ([Amarilli et al., 2017])
Given a d-SDNNF circuit, we can preprocess it in linear time and then enumerate its satisfying assignments with constant delay (if the assignments have constant size)

Enumeration via provenance: motivation

Currently:

Enumeration via provenance: motivation

Currently:

Enumeration via provenance: motivation

Currently:

Enumeration via provenance: motivation

Our idea:

Currently:

Enumeration via provenance: motivation

Our idea:

Currently:

Enumeration via provenance: motivation

Our idea:

Currently:

Enumeration via provenance: motivation

Our idea:

Currently:

Set circuits

- Directed acyclic graph of gates

Set circuits

- Directed acyclic graph of gates
- Output gate:

Set circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

Set circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
(x)
- Constant gates:
$(\perp$

Set circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Constant gates:

- Internal gates:

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
$\{\{x, y\}\} \bullet$ T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :

$$
S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}
$$

Semantics of set circuits

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :

$$
S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}
$$

- \cup-gate with children g_{1}, g_{2} :
$S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)$
Task: Enumerate the assignments of the set $S(g)$ captured by a gate g \rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Circuit restrictions

d-DNNF set circuit:

- (U) are all deterministic:

The inputs are disjoint
(= no assignment is captured by two inputs)

Circuit restrictions

d-DNNF set circuit:

- (U) are all deterministic:

The inputs are disjoint (= no assignment is captured by two inputs)

- × are all decomposable:

The inputs are independent (= no variable x has a path to two different inputs)

Main results

Theorem
 Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Main results

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$
Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$
with preprocessing linear in $|C|$ and constant delay

Proof overview

Preprocessing phase:

set circuit

Proof overview

Preprocessing phase:

circuit

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Enumeration phase:

Indexed
normalized
circuit

Proof overview

Preprocessing phase:

Enumeration phase:

circuit

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x :

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ Lexicographic product: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates
and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ Lexicographic product: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates
and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Decomposability: no duplicates

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$
- then get rid of the gate

Normalization: handling empty assignments

Normalization: handling empty assignments

Normalization: handling empty assignments

Normalization: handling empty assignments

Normalization: handling empty assignments

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates

Normalization: handling empty assignments

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1
\rightarrow Now, when traversing a \times-gate we make progress: non-trivial split of each set

Indexing: handling U-hierarchies

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non-U gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non-U gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Indexing: handling \cup-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)

Indexing: handling \cup-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

Commutative semiring $(K, 0, \mathbb{1}, \oplus, \otimes)$

- Set K with distinguished elements $\mathbb{0}, \mathbb{1}$
- \oplus associative, commutative operator, with identity \mathbb{D}_{K} :
- $a \oplus(b \oplus c)=(a \oplus b) \oplus c$
- $a \oplus b=b \oplus a$
- $a \oplus \mathbb{O}=\mathbb{O} \oplus a=a$
- \otimes associative, commutative operator, with identity $\mathbb{1}_{K}$:
- $a \otimes(b \otimes c)=(a \otimes b) \otimes c$
- $a \otimes b=b \otimes a$
- $a \otimes \mathbb{1}=\mathbb{1} \otimes a=a$
- \otimes distributes over \oplus :

$$
a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)
$$

- \mathbb{O} is annihilating for \otimes :

$$
a \otimes \mathbb{O}=\mathbb{O} \otimes a=\mathbb{O}
$$

Commutative semiring examples

Which commutative semirings do you know about?

Example semirings

- $(\mathbb{N}, 0,1,+, \times)$: counting semiring
- (\{ $\perp, \top\}, \perp, \top, \vee, \wedge)$: Boolean semiring
- (\{unclassified, restricted, confidential, secret, top secret\}, top secret, unclassified, min, max): security semiring
- $(\mathbb{N} \cup\{\infty\}, \infty, 0, \min ,+)$: tropical semiring
- (\{Boolean functions over $\mathcal{X}\}, \perp, \top, \vee, \wedge$): semiring of Boolean functions over \mathcal{X}
- $(\mathbb{N}[\mathcal{X}], 0,1,+, \times)$: semiring of integer-valued polynomials with variables in \mathcal{X} (also called How-semiring or universal semiring)

Semiring provenance [Green et al., 2007]

- We fix a semiring $(K, 0, \mathbb{1}, \oplus, \otimes)$
- We assume provenance annotations are in K
- We consider a query Q from the positive relational algebra (selection, projection, renaming, product, union)
- We define a semantics for the provenance of a tuple $t \in Q(D)$ inductively on the structure of Q just like before

Selection, renaming

Provenance annotations of selected tuples are unchanged
Example $\left(\rho_{\text {name } \rightarrow \mathbf{n}}\left(\sigma_{\text {city }}=\right.\right.$ "New York" $\left.\left.(R)\right)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

n	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}

Projection

Provenance annotations of identical, merged, tuples are \oplus-ed
Example $\left(\pi_{\text {city }}(R)\right)$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
New York	$x_{1} \oplus x_{2}$
Paris	$x_{3} \oplus x_{5} \oplus x_{6}$
Berlin	$x_{4} \oplus x_{7}$

Union

Provenance annotations of identical, merged, tuples are \oplus-ed

Example

$$
\pi_{\text {city }}\left(\sigma_{\text {ends-with(position,"agent") }}(R)\right) \cup \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)
$$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{3} \oplus x_{5}$
Berlin	$x_{4} \oplus x_{7}$

Cross product

Provenance annotations of combined tuples are \otimes-ed

Example
 $$
\pi_{\text {city }}\left(\sigma_{\text {ends-with(position,"agent") }}(R)\right) \bowtie \pi_{\text {city }}\left(\sigma_{\text {position="Analyst" }}(R)\right)
$$

name	position	city	classification	prov
John	Director	New York	unclassified	x_{1}
Paul	Janitor	New York	restricted	x_{2}
Dave	Analyst	Paris	confidential	x_{3}
Ellen	Field agent	Berlin	secret	x_{4}
Magdalen	Double agent	Paris	top secret	x_{5}
Nancy	HR director	Paris	restricted	x_{6}
Susan	Analyst	Berlin	secret	x_{7}

city	prov
Paris	$x_{3} \otimes x_{5}$
Berlin	$x_{4} \otimes x_{7}$

Poll: counting semiring

Say we annotate each tuple of the input database by 1 and evaluate a query with provenance in $(\mathbb{N}, 0,1,+, \times)$. What will the provenance of every result mean?

- A: The number of possible worlds giving the result
- B: The minimum number of tuples required to obtain the result
- C: The number of times the result is obtained
- D: The number of subqueries giving the result

Poll: counting semiring

Say we annotate each tuple of the input database by 1 and evaluate a query with provenance in $(\mathbb{N}, 0,1,+, \times)$. What will the provenance of every result mean?

- A: The number of possible worlds giving the result
- B: The minimum number of tuples required to obtain the result
- C: The number of times the result is obtained
- D: The number of subqueries giving the result

Poll: universal provenance

There is a semiring for which the provenance that we obtain is the most informative, i.e., we can recover provenance for any other semiring from it. Which one is it?

- A: The tropical semiring
- B: The semiring $\mathbb{N}[X]$
- C: The semiring of Boolean functions
- D: The security semiring

Poll: universal provenance

There is a semiring for which the provenance that we obtain is the most informative, i.e., we can recover provenance for any other semiring from it. Which one is it?

- A: The tropical semiring
- B: The semiring $\mathbb{N}[X]$
- C: The semiring of Boolean functions
- D: The security semiring

What can we do with semiring provenance?

counting semiring: count the number of times a tuple can be derived, multiset semantics
Boolean semiring: determines if a tuple exists when a subdatabase is selected
security semiring: determines the minimum clearance level required to get a tuple as a result
tropical semiring: minimum-weight way of deriving a tuple (think shortest path in a graph)
Boolean functions: Boolean provenance, as previously defined integer polynomials: $\mathbb{N}[X]$, universal provenance, see further

Example of security provenance

$\pi_{\text {city }}\left(\sigma_{\text {name<name2 }}\left(\pi_{\text {name, city }}(R) \bowtie \rho_{\text {name } \rightarrow \text { name2 }}\left(\pi_{\text {name,city }}(R)\right)\right)\right)$

name	position	city	prov
John	Director	New York	unclassified
Paul	Janitor	New York	restricted
Dave	Analyst	Paris	confidential
Ellen	Field agent	Berlin	secret
Magdalen	Double agent	Paris	top secret
Nancy	HR director	Paris	restricted
Susan	Analyst	Berlin	secret

city	prov
New York	restricted
Paris	confidential
Berlin	secret

Properties [Green et al., 2007]

- Semiring provenance still has PTIME data overhead

Properties [Green et al., 2007]

- Semiring provenance still has PTIME data overhead
- Semiring homomorphisms commute with provenance computation: if $K \xrightarrow{\text { hom }} K^{\prime}$, then one can compute the provenance in K, apply the homomorphism, and obtain the same result as when computing provenance in K^{\prime}

Properties [Green et al., 2007]

- Semiring provenance still has PTIME data overhead
- Semiring homomorphisms commute with provenance computation: if $K \xrightarrow{\text { hom }} K^{\prime}$, then one can compute the provenance in K, apply the homomorphism, and obtain the same result as when computing provenance in K^{\prime}
- The integer polynomial semiring $\mathbb{N}[X]$ is universal: there is a unique homomorphism to any other commutative semiring that respects a given valuation of the variables

Properties [Green et al., 2007]

- Semiring provenance still has PTIME data overhead
- Semiring homomorphisms commute with provenance computation: if $K \xrightarrow{\text { hom }} K^{\prime}$, then one can compute the provenance in K, apply the homomorphism, and obtain the same result as when computing provenance in K^{\prime}
- The integer polynomial semiring $\mathbb{N}[X]$ is universal: there is a unique homomorphism to any other commutative semiring that respects a given valuation of the variables
- This means all computations can be performed in the universal semiring, and homomorphisms applied next

Properties [Green et al., 2007]

- Semiring provenance still has PTIME data overhead
- Semiring homomorphisms commute with provenance computation: if $K \xrightarrow{\text { hom }} K^{\prime}$, then one can compute the provenance in K, apply the homomorphism, and obtain the same result as when computing provenance in K^{\prime}
- The integer polynomial semiring $\mathbb{N}[X]$ is universal: there is a unique homomorphism to any other commutative semiring that respects a given valuation of the variables
- This means all computations can be performed in the universal semiring, and homomorphisms applied next
- Two equivalent queries can have two different provenance annotations on the same database, in some semirings

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

Desiderata for a provenance-aware DBMS

- Extends a widely used database management system
- Easy to deploy
- Easy to use, transparent for the user
- Provenance automatically maintained as the user interacts with the database management system
- Provenance computation benefits from query optimization within the DBMS
- Allow probability computation based on provenance
- Any form of provenance can be computed: Boolean provenance, semiring provenance in any semiring (possibly, with monus), aggregate provenance, on demand

ProvSQL: Provenance within PostgreSQL (1/2) [Senellart et al., 2018]

- Lightweight extension/plugin for PostgreSQL ≥ 9.5
- Provenance annotations stored as UUIDs, in an extra attribute of each provenance-aware relation
- A provenance circuit relating UUIDs of elementary provenance annotations and arithmetic gates stored as tables
- All computations done in the universal semiring (more precisely, with monus, in the free semiring with monus)

ProvSQL: Provenance within PostgreSQL (2/2) [Senellart et al., 2018]

- Query rewriting to automatically compute output provenance attributes in terms of the query and input provenance attributes:
- Duplicate elimination (DISTINCT, set union) results in aggregation of provenance values with \oplus
- Cross products, joins results in combination of provenance values with \otimes
- Difference results in combination of provenance values with \ominus
- Probability computation from the provenance circuits, via various methods (naive, sampling, compilation to d-DNNFs)

Challenges

- Low-level access to PostgreSQL data structures in extensions
- No simple query rewriting mechanism
- SQL is much less clean than the relational algebra
- Multiset semantics by default in SQL
- SQL is a very rich language, with many different ways of expressing the same thing
- Inherent limitations: e.g., no aggregation within recursive queries
- Implementing provenance computation should not slow down the computation
- User-defined functions, updates, etc.: unclear how provenance should work

ProvSQL: Current status

- Supported SQL language features:
- Regular SELECT-FROM-WHERE queries (aka conjunctive queries with multiset semantics)
- JOIN queries (regular joins and outer joins; semijoins and antijoins are not currently supported)
- SELECT queries with nested SELECT subqueries in the FROM clause
- GROUP BY queries (without aggregation)
- SELECT DISTINCT queries (i.e., set semantics)
- UNION's or UNION ALL's of SELECT queries
- EXCEPT queries
- Longer term project: aggregate computation
- Homepage: https://github.com/PierreSenellart/provsql

Provenance applications in practice

- How can we do probabilistic query evaluation via provenance?
- ProvSQL is interfaced with c2d, d 4 , and dsharp

Provenance applications in practice

- How can we do probabilistic query evaluation via provenance?
- ProvSQL is interfaced with c2d, d 4 , and dsharp
- How can we do enumeration via provenance?
- Prototype: https://github.com/PoDMR/enum-spanner-rs

Provenance applications in practice

- How can we do probabilistic query evaluation via provenance?
- ProvSQL is interfaced with c2d, d4, and dsharp
- How can we do enumeration via provenance?
- Prototype: https://github.com/PoDMR/enum-spanner-rs
- Remark: missing studies of provenance notions used in the real world, e.g., "data lineage" used by Pachyderm

Provenance in theory

- Confession: as a theoretical topic, provenance feels definitional
\rightarrow Recipe: take a complicated query language, define some complicated notion of provenance, appeal to scary algebraic structures, add one more paper to the pile...
- Which directions are less definitional?

Provenance in theory

- Confession: as a theoretical topic, provenance feels definitional
\rightarrow Recipe: take a complicated query language, define some complicated notion of provenance, appeal to scary algebraic structures, add one more paper to the pile...
- Which directions are less definitional?
- Using provenance for computational tasks

Provenance in theory

- Confession: as a theoretical topic, provenance feels definitional
\rightarrow Recipe: take a complicated query language, define some complicated notion of provenance, appeal to scary algebraic structures, add one more paper to the pile...
- Which directions are less definitional?
- Using provenance for computational tasks
- We have seen two examples : probabilities and enumeration
- In both cases, provenance competes against other approaches
- Sometimes, provenance provides new insights

Provenance in theory

- Confession: as a theoretical topic, provenance feels definitional
\rightarrow Recipe: take a complicated query language, define some complicated notion of provenance, appeal to scary algebraic structures, add one more paper to the pile...
- Which directions are less definitional?
- Using provenance for computational tasks
- We have seen two examples : probabilities and enumeration
- In both cases, provenance competes against other approaches
- Sometimes, provenance provides new insights
- Showing bounds on provenance representations

Provenance in theory

- Confession: as a theoretical topic, provenance feels definitional
\rightarrow Recipe: take a complicated query language, define some complicated notion of provenance, appeal to scary algebraic structures, add one more paper to the pile...
- Which directions are less definitional?
- Using provenance for computational tasks
- We have seen two examples : probabilities and enumeration
- In both cases, provenance competes against other approaches
- Sometimes, provenance provides new insights
- Showing bounds on provenance representations
- Connects to knowledge compilation work on circuit classes
- Can be easier than computational complexity lower bounds

Provenance in theory

- Confession: as a theoretical topic, provenance feels definitional
\rightarrow Recipe: take a complicated query language, define some complicated notion of provenance, appeal to scary algebraic structures, add one more paper to the pile...
- Which directions are less definitional?
- Using provenance for computational tasks
- We have seen two examples : probabilities and enumeration
- In both cases, provenance competes against other approaches
- Sometimes, provenance provides new insights
- Showing bounds on provenance representations
- Connects to knowledge compilation work on circuit classes
- Can be easier than computational complexity lower bounds

Thanks for your attention!

Bibliography i

Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A Circuit-Based Approach to Efficient Enumeration. In ICALP, 2017.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for Datalog provenance. In ICDT, 2014.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In PODS, 2007.

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. ProvSQL: provenance and probability management in postgresql. 2018. Demonstration.

Credits

Original class material by Pierre Senellart

