
Provenance
MPRI 2.26.2: Web Data Management

Antoine Amarilli

Provenance Definition

Provenance management

• Data management is all about query evaluation
• What if we want something more than the query result?

• Where does the result come from?
• Why was this result obtained?
• How was the result produced?
• What is the probability of the result?
• How many times was the result obtained?
• How would the result change if part of the input data was missing?
• What is the minimal security clearance I need to see the result?
• What is the most economical way of obtaining the result?
• How can a result be explained to the user?

• Provenance management: along with query evaluation, record
additional bookkeeping information to answer the questions
above

1/56

Provenance data model

• Relational data model: data decomposed into relations, with
labeled attributes. . .

• . . . with an extra provenance annotation for each tuple (think of
it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

2/56

Provenance data model

• Relational data model: data decomposed into relations, with
labeled attributes. . .

• . . . with an extra provenance annotation for each tuple (think of
it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

2/56

Provenance data model

• Relational data model: data decomposed into relations, with
labeled attributes. . .

• . . . with an extra provenance annotation for each tuple (think of
it first as a tuple id)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

2/56

Outline

Provenance Definition

Preliminaries

Boolean Provenance

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

3/56

Boolean valuations

• Database D with n tuples
• X = {x1, x2, . . . , xn} the Boolean variables annotating the tuples
• Valuation over X : function ν : X → {⊥,⊤}
• Possible world ν(D): the subset of D where we keep precisely

the tuples whose annotation evaluates to ⊤

4/56

Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

ν : x1 x2 x3 x4 x5 x6 x7

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

5/56

Example of possible worlds

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

ν : x1 x2 x3 x4 x5 x6 x7

⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

5/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D...

whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query!

6/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D... whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query!

6/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D... whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R...

where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query!

6/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D... whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query!

6/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D... whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query!

6/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D... whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query!

6/56

Boolean provenance of query results

• Goal: Evaluate a positive relational algebra query (UCQ) Q
on a database D... whose tuples are annotated with
X = x1, . . . , xn

• The result is a relation instance R... where each tuple is
annotated with a Boolean function on X

• Semantics: For every tuple t of the result, for every valuation ν

of X , the annotation of t evaluates to true on ν iff t ∈ Q(ν(D))

Example (What cities are in the table?)

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7

Claim: we can compute this while evaluating the query! 6/56

Selection, renaming

Provenance annotations of selected tuples are unchanged

Example (ρname→n(σcity=“New York”(R)))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

n position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

7/56

Projection

Take the OR of provenance annotations of identical, merged tuples

Example (πcity(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ∨ x2

Paris x3 ∨ x5 ∨ x6

Berlin x4 ∨ x7
8/56

Union

Take the OR of provenance annotations of identical, merged tuples

Example
πcity(σends-with(position,“agent”)(R)) ∪ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ∨ x5

Berlin x4 ∨ x7

9/56

Cross product

Take the AND of provenance annotations of combined tuples

Example
πcity(σends-with(position,“agent”)(R)) ⋊⋉ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ∧ x5

Berlin x4 ∧ x7

10/56

How is provenance actually represented?

Provenance annotations are Boolean functions

• The simplest representation is Boolean formulas
• Formalism used in most of the provenance literature

Example

Is there a city with two different agents?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

Theorem (PTIME overhead)

For any fixed positive relational algebra expression, given an input
database, we can compute in PTIME the provenance annotation of
every tuple in the result

11/56

Other representation: Provenance circuits
[Deutch et al., 2014]

• Use Boolean circuits to represent provenance
• Every time an operation reuses a previously computed result, link

to the previously created circuit gate
• Never larger than provenance formulas
• Sometimes more concise

12/56

Example provenance circuit

13/56

What can we do with Boolean provenance?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

• The provenance describes, for each result tuple, the subsets of
the input database for which it appears in the query result

• SAT: test if the tuple can be an answer when we delete some
input tuples (trivial for monotone queries)

• #SAT: number of sub-databases where the tuple is a result
→ Useful for probabilistic query evaluation

• Enumerating models: enumerating sub-databases where the
tuple is a result
→ Useful to enumerate query results (see later)

14/56

What can we do with Boolean provenance?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

• The provenance describes, for each result tuple, the subsets of
the input database for which it appears in the query result

• SAT: test if the tuple can be an answer when we delete some
input tuples (trivial for monotone queries)

• #SAT: number of sub-databases where the tuple is a result
→ Useful for probabilistic query evaluation

• Enumerating models: enumerating sub-databases where the
tuple is a result
→ Useful to enumerate query results (see later)

14/56

What can we do with Boolean provenance?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

• The provenance describes, for each result tuple, the subsets of
the input database for which it appears in the query result

• SAT: test if the tuple can be an answer when we delete some
input tuples (trivial for monotone queries)

• #SAT: number of sub-databases where the tuple is a result
→ Useful for probabilistic query evaluation

• Enumerating models: enumerating sub-databases where the
tuple is a result
→ Useful to enumerate query results (see later)

14/56

What can we do with Boolean provenance?

(x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x3 ∧ x5) ∨ (x4 ∧ x7) ∨ (x5 ∧ x6)

• The provenance describes, for each result tuple, the subsets of
the input database for which it appears in the query result

• SAT: test if the tuple can be an answer when we delete some
input tuples (trivial for monotone queries)

• #SAT: number of sub-databases where the tuple is a result
→ Useful for probabilistic query evaluation

• Enumerating models: enumerating sub-databases where the
tuple is a result
→ Useful to enumerate query results (see later)

14/56

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

15/56

Reminder: TIDs

• Tuple-independent database D: each tuple t in D is annotated
with independent probability Pr(t) of existing

name position city classification prob

John Director New York unclassified 0.5
Paul Janitor New York restricted 0.7
Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
Nancy HR director Paris restricted 0.8
Susan Analyst Berlin secret 0.2

→ Probability of a possible world D′ ⊆ D:

Pr(D′) =
∏

t∈D′ Pr(t)×
∏

t∈D′\D(1− Pr(t′))

16/56

PQE via provenance

name position city classification prov prob

John Director New York unclassified x1 0.5
Paul Janitor New York restricted x2 0.7
Dave Analyst Paris confidential x3 0.3
Ellen Field agent Berlin secret x4 0.2
Magdalen Double agent Paris top secret x5 1.0
Nancy HR director Paris restricted x6 0.8
Susan Analyst Berlin secret x7 0.2

city prov prob

New York x1 ∨ x2 1− (1− 0.5)× (1− 0.7) = 0.85

Paris x3 ∨ x5 ∨ x6 1.00

Berlin x4 ∨ x7 1− (1− 0.2)× (1− 0.2) = 0.36

17/56

Extensional PQE vs intensional PQE

• Recall that PQE for UCQs is:
• PTIME in some cases
• #P-hard in general
• There is a dichotomy separating tractable and intractable cases

• Extensional PQE: computing the probability by evaluating the
query “following the relational algebra operators”

• This covers the tractable cases of PQE for select-project-join
queries (CQs) without self-joins with an easy algorithm

• This covers all tractable cases (for UCQs) with a far more
complicated algorithm

• Intensional PQE: compute the provenance of the query as a
Boolean circuit (or formula) and compute the probability of the
provenance

18/56

Extensional PQE vs intensional PQE

• Recall that PQE for UCQs is:
• PTIME in some cases
• #P-hard in general
• There is a dichotomy separating tractable and intractable cases

• Extensional PQE: computing the probability by evaluating the
query “following the relational algebra operators”

• This covers the tractable cases of PQE for select-project-join
queries (CQs) without self-joins with an easy algorithm

• This covers all tractable cases (for UCQs) with a far more
complicated algorithm

• Intensional PQE: compute the provenance of the query as a
Boolean circuit (or formula) and compute the probability of the
provenance

18/56

Extensional PQE vs intensional PQE

• Recall that PQE for UCQs is:
• PTIME in some cases
• #P-hard in general
• There is a dichotomy separating tractable and intractable cases

• Extensional PQE: computing the probability by evaluating the
query “following the relational algebra operators”

• This covers the tractable cases of PQE for select-project-join
queries (CQs) without self-joins with an easy algorithm

• This covers all tractable cases (for UCQs) with a far more
complicated algorithm

• Intensional PQE: compute the provenance of the query as a
Boolean circuit (or formula) and compute the probability of the
provenance

18/56

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

19/56

Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory

20/56

Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory

20/56

Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory

20/56

Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory

20/56

Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory

20/56

Enumerating query results

Idea: Often, we do not need to compute all results of a query
we just need to be able to enumerate results quickly

→ Formalization: enumeration algorithms
→ Currently a pretty important topic in database theory

20/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input)

Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

21/56

Enumeration algorithm (linear preprocessing, constant delay)

Input

Step 1:
Indexing

in O(input) Indexed
input

Step 2:
Enumeration

in O(1)

x y z

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

21/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)

X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts

(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts

(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers

(a, b) and (a′, b)

22/56

Connection to provenance

Provenance can also represent query answers!

• Study answers of non-Boolean query
Q(x, y) on database D

Q(x, y) : ∃z R(x, y) ∧ S(y, z)

D : R(a, b), R(a′, b), S(b, c)

• Add assignment facts X(v), Y (v) to D

for each element v (linear)
X(a), X(a′), X(b), X(c)

Y (a), Y (a′), Y (b), Y (c)

• Consider the Boolean query
Q′ : X(x) ∧ Y (y) ∧Q(x, y)

X(x)∧ Y (y)∧ (∃z R(x, y)∧S(y, z))

• Compute the provenance C ′ of Q′

on D plus assignment facts
(X(a)∧R(a, b)∨X(a′)∧R(a′, b))

∧Y (b) ∧ S(b, c)

• Define C by replacing all variables by 1

except assignment facts
(X(a)∨X(a′))∧Y (b)

→ The circuit C represents the query answers (a, b) and (a′, b)
22/56

Enumeration via provenance

• We have a provenance circuit representing the query answers
∧

∨

X(a) X(a′)

Y (b)

• So to enumerate query answers we can:
• Compute this provenance circuit
• Enumerate its satisfying assignments

→ We want linear preprocessing and constant delay
so we designed an enumeration algorithm for circuits:

Theorem ([Amarilli et al., 2017])

Given a d-SDNNF circuit, we can preprocess it in linear time
and then enumerate its satisfying assignments with constant delay
(if the assignments have constant size)

23/56

Enumeration via provenance

• We have a provenance circuit representing the query answers
∧

∨

X(a) X(a′)

Y (b)

• So to enumerate query answers we can:
• Compute this provenance circuit
• Enumerate its satisfying assignments

→ We want linear preprocessing and constant delay
so we designed an enumeration algorithm for circuits:

Theorem ([Amarilli et al., 2017])

Given a d-SDNNF circuit, we can preprocess it in linear time
and then enumerate its satisfying assignments with constant delay
(if the assignments have constant size)

23/56

Enumeration via provenance

• We have a provenance circuit representing the query answers
∧

∨

X(a) X(a′)

Y (b)

• So to enumerate query answers we can:
• Compute this provenance circuit
• Enumerate its satisfying assignments

→ We want linear preprocessing and constant delay
so we designed an enumeration algorithm for circuits:

Theorem ([Amarilli et al., 2017])

Given a d-SDNNF circuit, we can preprocess it in linear time
and then enumerate its satisfying assignments with constant delay
(if the assignments have constant size)

23/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

24/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

24/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

24/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

24/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

24/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

24/56

Enumeration via provenance: motivation

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results
24/56

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

25/56

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

25/56

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

25/56

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

25/56

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

25/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}
• ⊤-gates: S(g) = {{}}
• ⊥-gates: S(g) = ∅
• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}

{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}
• ⊥-gates: S(g) = ∅
• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}
• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅
• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}
• ⊤-gates: S(g) = {{}}
• ⊥-gates: S(g) = ∅

• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}
• ⊤-gates: S(g) = {{}}
• ⊥-gates: S(g) = ∅
• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}
• ⊤-gates: S(g) = {{}}
• ⊥-gates: S(g) = ∅
• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures a set S(g) of sets (called
assignments)

• Variable gate with label x: S(g) := {{x}}
• ⊤-gates: S(g) = {{}}
• ⊥-gates: S(g) = ∅
• ×-gate with children g1, g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1, g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g

→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

26/56

Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two
inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

27/56

Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two
inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

27/56

Main results

Theorem

Given a d-DNNF set circuit C , we can enumerate its captured
assignments with preprocessing linear in |C| and delay linear in
each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem

Given a d-DNNF set circuit C , we can enumerate its captured
assignments of size ≤ k

with preprocessing linear in |C| and constant delay

28/56

Main results

Theorem

Given a d-DNNF set circuit C , we can enumerate its captured
assignments with preprocessing linear in |C| and delay linear in
each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem

Given a d-DNNF set circuit C , we can enumerate its captured
assignments of size ≤ k

with preprocessing linear in |C| and constant delay

28/56

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

29/56

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

29/56

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

29/56

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

29/56

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

29/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates

30/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x :

enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates

30/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates

30/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates

30/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates

30/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates

30/56

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)

and concatenate t with each result

Decomposability: no duplicates
30/56

Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: in preprocessing

• compute bottom-up if S(g) = ∅
• then get rid of the gate

31/56

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: in preprocessing

• compute bottom-up if S(g) = ∅
• then get rid of the gate

31/56

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: in preprocessing

• compute bottom-up if S(g) = ∅
• then get rid of the gate

31/56

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: in preprocessing

• compute bottom-up if S(g) = ∅
• then get rid of the gate

31/56

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

31/56

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: in preprocessing

• compute bottom-up if S(g) = ∅

• then get rid of the gate

31/56

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: in preprocessing

• compute bottom-up if S(g) = ∅
• then get rid of the gate

31/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:

• split g between S(g) ∩ {{}} and S(g) \ {{}}
(homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time in

chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}}

(homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial
split of each set

32/56

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

33/56

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

33/56

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

33/56

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

33/56

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

33/56

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

33/56

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

34/56

Commutative semiring (K, 0, 1,⊕,⊗)

• Set K with distinguished elements 0, 1

• ⊕ associative, commutative operator, with identity 0K :
• a⊕ (b⊕ c) = (a⊕ b)⊕ c

• a⊕ b = b⊕ a

• a⊕ 0 = 0 ⊕ a = a

• ⊗ associative, commutative operator, with identity 1K :
• a⊗ (b⊗ c) = (a⊗ b)⊗ c

• a⊗ b = b⊗ a

• a⊗ 1 = 1 ⊗ a = a

• ⊗ distributes over ⊕:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

• 0 is annihilating for ⊗:

a⊗ 0 = 0 ⊗ a = 0
35/56

Commutative semiring examples

Which commutative semirings do you know about?

36/56

Example semirings

• (N, 0, 1,+,×): counting semiring
• ({⊥,⊤},⊥,⊤,∨,∧): Boolean semiring
• ({unclassified, restricted, confidential, secret, top secret},

top secret,unclassified,min,max): security semiring
• (N ∪ {∞},∞, 0,min,+): tropical semiring
• ({Boolean functions over X},⊥,⊤,∨,∧): semiring of Boolean

functions over X
• (N[X], 0, 1,+,×): semiring of integer-valued polynomials with

variables in X (also called How-semiring or universal semiring)

37/56

Semiring provenance [Green et al., 2007]

• We fix a semiring (K,0, 1,⊕,⊗)

• We assume provenance annotations are in K

• We consider a query Q from the positive relational algebra
(selection, projection, renaming, product, union)

• We define a semantics for the provenance of a tuple t ∈ Q(D)

inductively on the structure of Q just like before

38/56

Selection, renaming

Provenance annotations of selected tuples are unchanged

Example (ρname→n(σcity=“New York”(R)))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

n position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

39/56

Projection

Provenance annotations of identical, merged, tuples are ⊕-ed

Example (πcity(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

New York x1 ⊕ x2

Paris x3 ⊕ x5 ⊕ x6

Berlin x4 ⊕ x7
40/56

Union

Provenance annotations of identical, merged, tuples are ⊕-ed

Example
πcity(σends-with(position,“agent”)(R)) ∪ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ⊕ x5

Berlin x4 ⊕ x7

41/56

Cross product

Provenance annotations of combined tuples are ⊗-ed

Example
πcity(σends-with(position,“agent”)(R)) ⋊⋉ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified x1

Paul Janitor New York restricted x2

Dave Analyst Paris confidential x3

Ellen Field agent Berlin secret x4

Magdalen Double agent Paris top secret x5

Nancy HR director Paris restricted x6

Susan Analyst Berlin secret x7

city prov

Paris x3 ⊗ x5

Berlin x4 ⊗ x7

42/56

Poll: counting semiring

Say we annotate each tuple of the input database by 1

and evaluate a query with provenance in (N, 0, 1,+,×).
What will the provenance of every result mean?

• A: The number of possible worlds giving the result
• B: The minimum number of tuples required to

obtain the result
• C: The number of times the result is obtained
• D: The number of subqueries giving the result

43/56

Poll: counting semiring

Say we annotate each tuple of the input database by 1

and evaluate a query with provenance in (N, 0, 1,+,×).
What will the provenance of every result mean?

• A: The number of possible worlds giving the result
• B: The minimum number of tuples required to

obtain the result
• C: The number of times the result is obtained
• D: The number of subqueries giving the result

43/56

Poll: universal provenance

There is a semiring for which the provenance that we
obtain is the most informative, i.e., we can recover
provenance for any other semiring from it. Which one is
it?

• A: The tropical semiring
• B: The semiring N[X]

• C: The semiring of Boolean functions
• D: The security semiring

44/56

Poll: universal provenance

There is a semiring for which the provenance that we
obtain is the most informative, i.e., we can recover
provenance for any other semiring from it. Which one is
it?

• A: The tropical semiring
• B: The semiring N[X]

• C: The semiring of Boolean functions
• D: The security semiring

44/56

What can we do with semiring provenance?

counting semiring: count the number of times a tuple can be
derived, multiset semantics

Boolean semiring: determines if a tuple exists when a subdatabase
is selected

security semiring: determines the minimum clearance level
required to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple (think
shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined
integer polynomials: N[X], universal provenance, see further

45/56

Example of security provenance

πcity(σname<name2(πname,city(R) ⋊⋉ ρname→name2(πname,city(R))))

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

New York restricted
Paris confidential
Berlin secret

46/56

Properties [Green et al., 2007]

• Semiring provenance still has PTIME data overhead

• Semiring homomorphisms commute with provenance
computation: if K hom−−→ K ′, then one can compute the
provenance in K , apply the homomorphism, and obtain the
same result as when computing provenance in K ′

• The integer polynomial semiring N[X] is universal: there is a
unique homomorphism to any other commutative semiring that
respects a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

47/56

Properties [Green et al., 2007]

• Semiring provenance still has PTIME data overhead
• Semiring homomorphisms commute with provenance

computation: if K hom−−→ K ′, then one can compute the
provenance in K , apply the homomorphism, and obtain the
same result as when computing provenance in K ′

• The integer polynomial semiring N[X] is universal: there is a
unique homomorphism to any other commutative semiring that
respects a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

47/56

Properties [Green et al., 2007]

• Semiring provenance still has PTIME data overhead
• Semiring homomorphisms commute with provenance

computation: if K hom−−→ K ′, then one can compute the
provenance in K , apply the homomorphism, and obtain the
same result as when computing provenance in K ′

• The integer polynomial semiring N[X] is universal: there is a
unique homomorphism to any other commutative semiring that
respects a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

47/56

Properties [Green et al., 2007]

• Semiring provenance still has PTIME data overhead
• Semiring homomorphisms commute with provenance

computation: if K hom−−→ K ′, then one can compute the
provenance in K , apply the homomorphism, and obtain the
same result as when computing provenance in K ′

• The integer polynomial semiring N[X] is universal: there is a
unique homomorphism to any other commutative semiring that
respects a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

47/56

Properties [Green et al., 2007]

• Semiring provenance still has PTIME data overhead
• Semiring homomorphisms commute with provenance

computation: if K hom−−→ K ′, then one can compute the
provenance in K , apply the homomorphism, and obtain the
same result as when computing provenance in K ′

• The integer polynomial semiring N[X] is universal: there is a
unique homomorphism to any other commutative semiring that
respects a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

47/56

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

48/56

Outline

Provenance Definition

Provenance for Probability Computation

Applications to Enumeration

Semiring Provenance

Implementing Provenance Support

49/56

Desiderata for a provenance-aware DBMS

• Extends a widely used database management system
• Easy to deploy
• Easy to use, transparent for the user
• Provenance automatically maintained as the user interacts with

the database management system
• Provenance computation benefits from query optimization

within the DBMS
• Allow probability computation based on provenance
• Any form of provenance can be computed: Boolean provenance,

semiring provenance in any semiring (possibly, with monus),
aggregate provenance, on demand

50/56

ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

• Lightweight extension/plugin for PostgreSQL ≥ 9.5

• Provenance annotations stored as UUIDs, in an extra attribute of
each provenance-aware relation

• A provenance circuit relating UUIDs of elementary provenance
annotations and arithmetic gates stored as tables

• All computations done in the universal semiring (more precisely,
with monus, in the free semiring with monus)

51/56

ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

• Query rewriting to automatically compute output provenance
attributes in terms of the query and input provenance attributes:

• Duplicate elimination (DISTINCT, set union) results in aggregation
of provenance values with ⊕

• Cross products, joins results in combination of provenance values
with ⊗

• Difference results in combination of provenance values with ⊖

• Probability computation from the provenance circuits, via
various methods (naive, sampling, compilation to d-DNNFs)

52/56

Challenges

• Low-level access to PostgreSQL data structures in extensions
• No simple query rewriting mechanism
• SQL is much less clean than the relational algebra
• Multiset semantics by default in SQL
• SQL is a very rich language, with many different ways of

expressing the same thing
• Inherent limitations: e.g., no aggregation within recursive queries
• Implementing provenance computation should not slow down

the computation
• User-defined functions, updates, etc.: unclear how provenance

should work

53/56

ProvSQL: Current status

• Supported SQL language features:
• Regular SELECT-FROM-WHERE queries (aka conjunctive queries

with multiset semantics)
• JOIN queries (regular joins and outer joins; semijoins and antijoins

are not currently supported)
• SELECT queries with nested SELECT subqueries in the FROM clause
• GROUP BY queries (without aggregation)
• SELECT DISTINCT queries (i.e., set semantics)
• UNION’s or UNION ALL’s of SELECT queries
• EXCEPT queries

• Longer term project: aggregate computation
• Homepage: https://github.com/PierreSenellart/provsql

54/56

https://github.com/PierreSenellart/provsql

Provenance applications in practice

• How can we do probabilistic query evaluation via provenance?
• ProvSQL is interfaced with c2d, d4, and dsharp

• How can we do enumeration via provenance?
• Prototype: https://github.com/PoDMR/enum-spanner-rs

• Remark: missing studies of provenance notions used in the real
world, e.g., “data lineage” used by Pachyderm

55/56

https://github.com/PoDMR/enum-spanner-rs

Provenance applications in practice

• How can we do probabilistic query evaluation via provenance?
• ProvSQL is interfaced with c2d, d4, and dsharp

• How can we do enumeration via provenance?
• Prototype: https://github.com/PoDMR/enum-spanner-rs

• Remark: missing studies of provenance notions used in the real
world, e.g., “data lineage” used by Pachyderm

55/56

https://github.com/PoDMR/enum-spanner-rs

Provenance applications in practice

• How can we do probabilistic query evaluation via provenance?
• ProvSQL is interfaced with c2d, d4, and dsharp

• How can we do enumeration via provenance?
• Prototype: https://github.com/PoDMR/enum-spanner-rs

• Remark: missing studies of provenance notions used in the real
world, e.g., “data lineage” used by Pachyderm

55/56

https://github.com/PoDMR/enum-spanner-rs

Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?

• Using provenance for computational tasks
• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations
• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!

56/56

Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?
• Using provenance for computational tasks

• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations
• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!

56/56

Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?
• Using provenance for computational tasks

• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations
• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!

56/56

Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?
• Using provenance for computational tasks

• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations

• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!

56/56

Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?
• Using provenance for computational tasks

• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations
• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!

56/56

Provenance in theory

• Confession: as a theoretical topic, provenance feels definitional
→ Recipe: take a complicated query language, define some

complicated notion of provenance, appeal to scary algebraic
structures, add one more paper to the pile...

• Which directions are less definitional?
• Using provenance for computational tasks

• We have seen two examples : probabilities and enumeration
• In both cases, provenance competes against other approaches
• Sometimes, provenance provides new insights

• Showing bounds on provenance representations
• Connects to knowledge compilation work on circuit classes
• Can be easier than computational complexity lower bounds

Thanks for your attention!

56/56

Bibliography i

Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A
Circuit-Based Approach to Efficient Enumeration. In ICALP, 2017.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for
Datalog provenance. In ICDT, 2014.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance
semirings. In PODS, 2007.

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat.
ProvSQL: provenance and probability management in postgresql.
2018. Demonstration.

https://arxiv.org/abs/1702.05589
https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/

Credits

Original class material by Pierre Senellart

	Provenance Definition
	Preliminaries
	Boolean Provenance

	Provenance for Probability Computation
	Applications to Enumeration
	Semiring Provenance
	Implementing Provenance Support
	

	Appendix

