
INF108: Compilation

Louis Jachiet

Louis JACHIET 1 / 17



Interpretation



Examples

You all know examples of interpreted programs: python, js, ocaml

(sort of), bash

and examples of compiled programs: latex, C, ocaml

Louis JACHIET 2 / 17



Examples

You all know examples of interpreted programs: python, js, ocaml

(sort of), bash

and examples of compiled programs: latex, C, ocaml

Louis JACHIET 2 / 17



A mathematical definition

A compiler is a function

c : L1 → L2 such that:

∀P, input, sem1(P)(input) = sem2(c(P))(input)

An interpreter is a function

i : L1 → execution such that:

∀P, input, sem1(P, input) = i(P, input)

Note: an interpreter runs for every input, a compiler runs once.

Louis JACHIET 3 / 17



A mathematical definition

A compiler is a function

c : L1 → L2 such that:

∀P, input, sem1(P)(input) = sem2(c(P))(input)

An interpreter is a function

i : L1 → execution such that:

∀P, input, sem1(P, input) = i(P, input)

Note: an interpreter runs for every input, a compiler runs once.

Louis JACHIET 3 / 17



A mathematical definition

A compiler is a function

c : L1 → L2 such that:

∀P, input, sem1(P)(input) = sem2(c(P))(input)

An interpreter is a function

i : L1 → execution such that:

∀P, input, sem1(P, input) = i(P, input)

Note: an interpreter runs for every input, a compiler runs once.

Louis JACHIET 3 / 17



Actually...

Python

Output

interpretation

Louis JACHIET 4 / 17



Actually...

Python

Output

interpretation

Trace

collect

Louis JACHIET 4 / 17



Actually...

Python

Output

interpretation

Trace

collect

CPU

compilation execution

Louis JACHIET 4 / 17



Actually...

Java

JVM

CPU

Output

compilation

interpretation

compilation execution

Louis JACHIET 5 / 17



Benefits of interpreted vs compiled languages

Cons

• (somewhat) slower

• memory hungry

• no static verification (especially types)

• close to the machine

Pros

• more advanced features

• full abstraction of the execution

• automatic garbage collection

• reflection

• allows quick & dirty code

Louis JACHIET 6 / 17



Type systems



What are types?

Types are used for a variety of reasons:

• to help understand what is happening

• to ensure the safety of programs

• to help the compiler select the appropriate structures

• to help programmers with some design patterns

Different paradigms have very different interpretation of what

types are...

Louis JACHIET 7 / 17



What are types?

Types are used for a variety of reasons:

• to help understand what is happening

• to ensure the safety of programs

• to help the compiler select the appropriate structures

• to help programmers with some design patterns

Different paradigms have very different interpretation of what

types are...

Louis JACHIET 7 / 17



What are types?

Types are used for a variety of reasons:

• to help understand what is happening

• to ensure the safety of programs

• to help the compiler select the appropriate structures

• to help programmers with some design patterns

Different paradigms have very different interpretation of what

types are...

Louis JACHIET 7 / 17



What are types?

Types are used for a variety of reasons:

• to help understand what is happening

• to ensure the safety of programs

• to help the compiler select the appropriate structures

• to help programmers with some design patterns

Different paradigms have very different interpretation of what

types are...

Louis JACHIET 7 / 17



What are types?

Types are used for a variety of reasons:

• to help understand what is happening

• to ensure the safety of programs

• to help the compiler select the appropriate structures

• to help programmers with some design patterns

Different paradigms have very different interpretation of what

types are...

Louis JACHIET 7 / 17



Strong vs Weak Typing

Strong typing

Verifies a lot of things at compile time and thus “ensures”

nothing wrong will happen at the execution.

Weak typing

Allows the use to bypass type safety, allows implicit conversion,

etc.

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 8 / 17



Strong vs Weak Typing

Strong typing

Verifies a lot of things at compile time and thus “ensures”

nothing wrong will happen at the execution.

Weak typing

Allows the use to bypass type safety, allows implicit conversion,

etc.

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 8 / 17



Strong vs Weak Typing

Strong typing

Verifies a lot of things at compile time and thus “ensures”

nothing wrong will happen at the execution.

Weak typing

Allows the use to bypass type safety, allows implicit conversion,

etc.

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 8 / 17



Dynamic vs Static Typing

Dynamic typing

All the type checking and the type information is managed at the

execution.

Static typing

All the type checking and the type information is managed at the

compilation

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 9 / 17



Dynamic vs Static Typing

Dynamic typing

All the type checking and the type information is managed at the

execution.

Static typing

All the type checking and the type information is managed at the

compilation

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 9 / 17



Dynamic vs Static Typing

Dynamic typing

All the type checking and the type information is managed at the

execution.

Static typing

All the type checking and the type information is managed at the

compilation

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 9 / 17



Manifest vs Inferred vs Latent Typing

Manifest typing

The user declares the types of the variables

Inferred typing

The system deduces the types of variables

Latent typing

Variables do not have types, values have types

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 10 / 17



Manifest vs Inferred vs Latent Typing

Manifest typing

The user declares the types of the variables

Inferred typing

The system deduces the types of variables

Latent typing

Variables do not have types, values have types

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 10 / 17



Manifest vs Inferred vs Latent Typing

Manifest typing

The user declares the types of the variables

Inferred typing

The system deduces the types of variables

Latent typing

Variables do not have types, values have types

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 10 / 17



Manifest vs Inferred vs Latent Typing

Manifest typing

The user declares the types of the variables

Inferred typing

The system deduces the types of variables

Latent typing

Variables do not have types, values have types

Not a clear binary distinction! Most languages fall in between. . .

Louis JACHIET 10 / 17



Nominal vs Structural Typing

Nomimal typing

The user declares names for types two types are different if they

have different names

Structural typing

Two values have the same types if they have the same

“properties”.

Duck typing

An object can be used as long we only need fields or methods

that the object has.

Not a clear binary distinction. . .

Louis JACHIET 11 / 17



Nominal vs Structural Typing

Nomimal typing

The user declares names for types two types are different if they

have different names

Structural typing

Two values have the same types if they have the same

“properties”.

Duck typing

An object can be used as long we only need fields or methods

that the object has.

Not a clear binary distinction. . .

Louis JACHIET 11 / 17



Nominal vs Structural Typing

Nomimal typing

The user declares names for types two types are different if they

have different names

Structural typing

Two values have the same types if they have the same

“properties”.

Duck typing

An object can be used as long we only need fields or methods

that the object has.

Not a clear binary distinction. . .

Louis JACHIET 11 / 17



Nominal vs Structural Typing

Nomimal typing

The user declares names for types two types are different if they

have different names

Structural typing

Two values have the same types if they have the same

“properties”.

Duck typing

An object can be used as long we only need fields or methods

that the object has.

Not a clear binary distinction. . .

Louis JACHIET 11 / 17



How to compute the types?

It depends A LOT on the type systems:

• In Python, everything needs to be checked at the execution

• In C, all variables are explicitly typed, we just need to apply

implicit typing

• In Ocaml, we need infer all the type information in the “most

general” way ⇒ how to do that?

Louis JACHIET 12 / 17



How to compute the types?

It depends A LOT on the type systems:

• In Python, everything needs to be checked at the execution

• In C, all variables are explicitly typed, we just need to apply

implicit typing

• In Ocaml, we need infer all the type information in the “most

general” way ⇒ how to do that?

Louis JACHIET 12 / 17



How to compute the types?

It depends A LOT on the type systems:

• In Python, everything needs to be checked at the execution

• In C, all variables are explicitly typed, we just need to apply

implicit typing

• In Ocaml, we need infer all the type information in the “most

general” way

⇒ how to do that?

Louis JACHIET 12 / 17



How to compute the types?

It depends A LOT on the type systems:

• In Python, everything needs to be checked at the execution

• In C, all variables are explicitly typed, we just need to apply

implicit typing

• In Ocaml, we need infer all the type information in the “most

general” way ⇒ how to do that?

Louis JACHIET 12 / 17



Typing a fragment of OCaml

Our types are inductively defined as:

• some basic types (int, char, string, etc.)

• functions types (τ → τ ′)

• product types (τ1 × τ2)

• variable types (e.g. α)

All type variables are quantified globally!

Louis JACHIET 13 / 17



Typing a fragment of OCaml

An algorithm to infer types:

• start with a type variables for all language variables and

expressions

• then add constraints

• if x = cst then add t(x) = t(cst)

• if (x , y) = z then add (t(x)× t(y)) = t(z))

• if y = fx is used then add

• t(f ) = τ1 → τ2

• t(y) = τ2

• t(x) = τ1

• for let x = e1 in e2 then add t(x) = t(e1)

Louis JACHIET 14 / 17



Limits of this type system

What is the type of this ?

let create_store () =

let data = ref None in

let get () = match !data with Some x -> x in

let set x = data := Some x in

(get,set)

let myStore = create_store ()

Louis JACHIET 15 / 17



Limits of this type system

What is the type of this ?

let create_store () =

let data = ref None in

let get () = match !data with Some x -> x in

let set x = data := Some x in

(get,set)

let myStore = create_store ()

Louis JACHIET 15 / 17



A correct type system?

Louis JACHIET 16 / 17



Can we have a strong and powerful type system?

You will see in P2 :)

Louis JACHIET 17 / 17



Can we have a strong and powerful type system?

You will see in P2 :)

Louis JACHIET 17 / 17


	Interpretation
	Type systems

