
SD202: Databases
Schema design with Entity-Relationship Diagrams

Antoine Amarilli

Télécom Paris

1/44



Introduction

• We have seen the general picture of relational databases
• We have seen the SQL language

• Installing a relational database
• Creating tables
• Filling the tables with data
• Querying the tables (in the lab last week)

• Today’s goal: Find out which tables we should create
• Depending on the application

2/44



Overview

To decide which tables you should create for an application, you should:

• Be very clear about what the goal of the application is!
• Do not overlook this step!
• Often, schema design asks many tricky questions: which data to manipulate,

which assumptions are made, what should be possible or not...
• On large projects, the database schema is often the central reference on which

data the application manages
• Formalize the logical schema, describing abstractly which data is managed
• Possibly, think about the operations that will be supported on this data (e.g.,

business processes)
• Implement the logical schema as a physical schema, i.e., concrete table

definitions in a database
• Check the resulting schema for problems (normalization)

3/44



Entity-Relationship model

id

Student

follows

Class

• Entity-Relationship diagrams are a general model to present
the logical schema of your application

• This is not pure science! necessarily a bit handwavy, and
many variants/notations

• Relates to object-oriented programming
• Specifically, to the Unified Modeling Language (UML)

• Basic notions:
• Entities (and entity-types), describing the “objects”
• Relationships (and relationship-types), describing the

“relationships” between them

4/44



Goals

What are the goals of a good schema design?

• Being complete, i.e., can represent everything that is needed
• Being clear to developers and as simple as possible
• Being precise: clear how to map actual business needs to data
• Not being too broad, i.e., correctly reflect constraints that are assumed
• Avoiding redundancy: make sure every data item is in one place
• Ensuring good performance (often linked to simplicity)

5/44



Not being complete vs being too broad

Say you have customers, identified with an ID, having a name and a phone
number. Here are three options, which is the best?

One table:
• Customer(id, name,

phone)

Two tables:
• Customer(id, name)
• Phone(id, phone)

Two tables:
• Customer(id, name)
• Phone(id, phone)

Fine if every customer
has exactly one phone
number (or none, if NULL
is OK)

Fine if customers can
have zero, one, or many
phone numbers

Fine if customers can
have one phone number
or none

Sometimes, there are multiple possible choices!

6/44



Not being complete vs being too broad

Say you have customers, identified with an ID, having a name and a phone
number. Here are three options, which is the best?

One table:
• Customer(id, name,

phone)

Two tables:
• Customer(id, name)
• Phone(id, phone)

Two tables:
• Customer(id, name)
• Phone(id, phone)

Fine if every customer
has exactly one phone
number (or none, if NULL
is OK)

Fine if customers can
have zero, one, or many
phone numbers

Fine if customers can
have one phone number
or none

Sometimes, there are multiple possible choices!
6/44



Problems with redundancy

Student

id name email email type

41 John Student john.student@telecom-paris.fr pro
41 John Student johndu91@hotmail.fr perso
42 Jane Student jane.student@telecom-paris.fr pro

• Say we want to rename “John Student” to “Jean Student”
• We must do it in all tuples!
• Otherwise, inconsistent! (update anomaly)

7/44



Problems with redundancy

Student

id name email email type

41 John Student john.student@telecom-paris.fr pro
41 John Student johndu91@hotmail.fr perso
42 Jane Student jane.student@telecom-paris.fr pro

• Say we want to rename “John Student” to “Jean Student”
• We must do it in all tuples!

• Otherwise, inconsistent! (update anomaly)

7/44



Problems with redundancy

Student

id name email email type

41 Jean Student john.student@telecom-paris.fr pro
41 John Student johndu91@hotmail.fr perso
42 Jane Student jane.student@telecom-paris.fr pro

• Say we want to rename “John Student” to “Jean Student”
• We must do it in all tuples!
• Otherwise, inconsistent! (update anomaly)

7/44



Problems with redundancy

Student

id name email email type

41 Jean Student john.student@telecom-paris.fr pro
41 John Student johndu91@hotmail.fr perso
42 Jane Student jane.student@telecom-paris.fr pro

• Say we want to rename “John Student” to “Jean Student”
• We must do it in all tuples!
• Otherwise, inconsistent! (update anomaly)

7/44



Other problems

Student

id name email email type

41 John Student john.student@telecom-paris.fr pro
41 John Student johndu91@hotmail.fr perso
42 Jane Student jane.student@telecom-paris.fr pro

• We cannot insert a student who does not have an email address (insert
anomaly)

• If we remove all email addresses of a student then we lose all information
about the student (delete anomaly)

8/44



A better schema design

Solution: use two tables!

Student

id name

41 John Student
42 Jane Student

Email

id email type

41 john.student@telecom-paris.fr pro
41 johndu91@hotmail.fr perso
42 jane.student@telecom-paris.fr pro

9/44



Basic Entity Relationship notions

Translating an ER diagram to a schema

10/44



Basic Entity Relationship notions

11/44



Entities and entity-types

• An entity is a concrete object that we will have to manage. Examples:
• A person, a company, e.g., a customer, a supplier
• An actual object
• A location, a house, a building, a room...
• A file, a dataset, a data item
• An event
• An order, a request...

• Entities have attributes, e.g., name, size, date of birth, color, geographic
coordinates, path, date, etc.

• An entity-type is a type of entity, e.g., a “class” in software engineering
• Customer, Supplier, Location, File, Order, etc.

• All entities in the same entity-type have the same attributes

12/44



Composite attributes

The attributes of an entity-type can be sometimes subdivided, e.g., “address”
becomes (in France) something like:

• number
• street
• extra info

• building
• floor
• apartment number

• city
• post code

These are called composite attributes
13/44



Attribute types

When we have an attribute we must think about its type:

• String (which language? which text encoding?)
• Integer
• Decimal
• Date/Time
• Geographical coordinates, etc.

We must also think about:

• The domain of the attribute (which values are allowed?)
• Whether the attribute is mandatory (can we have no value?)
• Which attribute(s) are the key that uniquely identifies the entity

• There cannot be two different entities with the same values on all attributes
• Either add the missing attributes, or add a surrogate key attribute

14/44



Two “special” kinds of attributes

• Derived attributes: can be deduced from other attributes
• e.g., an “age” attribute can be deduced from a “date of birth” attribute

→ We will often not store the derived attribute, but compute it on the fly

• Multi-valued attributes: there can be more than one value
• e.g., email address, phone number...

→ We will often store these attributes in a separate table

15/44



Two “special” kinds of attributes

• Derived attributes: can be deduced from other attributes
• e.g., an “age” attribute can be deduced from a “date of birth” attribute

→ We will often not store the derived attribute, but compute it on the fly

• Multi-valued attributes: there can be more than one value
• e.g., email address, phone number...

→ We will often store these attributes in a separate table

15/44



Drawing entities and attributes

• Entities (formally entity-types) are often drawn in a rectangular box
• Attributes of the entity-type can be oval nodes, or lines in the box

Customer

id
name

first name
last name

date of birth
age()
address

number
street
extra info

building
floor
apartment number

city
post code

{ phone }

Customerid

date of birth

age

namefirst name

last name

phone

address

number

street

city

postcode

extra info

building

floor

aptnum

16/44



Relationships

• A relationship connects two or more concrete entities
→ e.g., “Customer 42 placed order 45”
→ e.g., “Professor Patricia supervised student John on topic 44”

• A relationship-type is a set of relationships with the same attributes and
connecting the same entity-types
→ e.g., placesOrder, advises

• The possible participating entities are called roles
→ customer (Customer), order (Order)
→ advisor (Professor), advisee (Student), topic (Topic)
→ Can have the same entity-type twice, e.g., “isMentoring” with mentor (Employee)

and mentee (Employee)
• A relationship (and relationship-type) can also have attributes

→ e.g., date
17/44



Drawing relationships

• Relationships (formally relationship-types) are often drawn in a diamond box
• Relationships are connected to the entities that are involved in them
• Attributes are connected to the relationship
• Roles are written on the edges connecting the relationship and entity

placesOrder OrderCustomer

date

ordercustomer

18/44



Cardinality constraints

For a given entity-type in a relationship-type, there can be cardinality constraints
to describe if an entity can be:

• In no relationship
• In one relationship
• In multiple relationships

Beware of confusion:

• A given relationship always has one entity of each role!
• This is about the number of relationships to which a given entity participates
• Cardinality constraints apply per relationship (type), not across all

relationships
19/44



Drawing cardinality constraints: partial/total

Indicate whether 0 is acceptable or not:

• Total participation: 0 is not acceptable, every entity must be in a relationship
→ Represented by a double line in an ER diagram

• Partial participation (default): 0 is acceptable, some entities are not in a
relationship

placesOrder OrderCustomer

date

ordercustomer

20/44



Drawing cardinality constraints: one/many to one/many (1)

One-to-one

Relation is functional and injective

One-to-many

Relation is injective but not functional

Can you give examples?

21/44



Drawing cardinality constraints: one/many to one/many (2)

Many-to-one

Relation is functional but not injective

Many-to-many

Relation is arbitrary and not functional

• These relation types are everywhere
• There are arrow notations for these cardinality constraints, but not universal

22/44



General cardinality constraints

For each role, write below the role the minimal and maximal number of
relationships to which an entity can participate, with “*” meaning “no limit”

placesOrder OrderCustomer

date

order
1..1

customer
0..*

• This indicates both total/partial and one/many to one/many
• Exercise: which kind of relation is this?

Beware, it is one-to-many

23/44



General cardinality constraints

For each role, write below the role the minimal and maximal number of
relationships to which an entity can participate, with “*” meaning “no limit”

placesOrder OrderCustomer

date

order
1..1

customer
0..*

• This indicates both total/partial and one/many to one/many
• Exercise: which kind of relation is this? Beware, it is one-to-many

23/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures

→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*
• Class occurrences must have a room reservation

→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1
or 0..1

• Room reservations are associated to a room
→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some

point in time) or 0..* (in general)
• Students are associated in student groups

→ The constraint on Student depends on the semantics, the constraint on Groups
is 1..*

• Each employee is managed by an employee
→ The constraint on the “manager” role is 0..*, the constraint on the “managee”

role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups
→ The constraint on Student depends on the semantics, the constraint on Groups

is 1..*
• Each employee is managed by an employee

→ The constraint on the “manager” role is 0..*, the constraint on the “managee”
role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation

→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1
or 0..1

• Room reservations are associated to a room
→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some

point in time) or 0..* (in general)
• Students are associated in student groups

→ The constraint on Student depends on the semantics, the constraint on Groups
is 1..*

• Each employee is managed by an employee
→ The constraint on the “manager” role is 0..*, the constraint on the “managee”

role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1

• Room reservations are associated to a room
→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some

point in time) or 0..* (in general)
• Students are associated in student groups

→ The constraint on Student depends on the semantics, the constraint on Groups
is 1..*

• Each employee is managed by an employee
→ The constraint on the “manager” role is 0..*, the constraint on the “managee”

role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups
→ The constraint on Student depends on the semantics, the constraint on Groups

is 1..*
• Each employee is managed by an employee

→ The constraint on the “manager” role is 0..*, the constraint on the “managee”
role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups
→ The constraint on Student depends on the semantics, the constraint on Groups

is 1..*
• Each employee is managed by an employee

→ The constraint on the “manager” role is 0..*, the constraint on the “managee”
role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups

→ The constraint on Student depends on the semantics, the constraint on Groups
is 1..*

• Each employee is managed by an employee
→ The constraint on the “manager” role is 0..*, the constraint on the “managee”

role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups
→ The constraint on Student depends on the semantics, the constraint on Groups

is 1..*

• Each employee is managed by an employee
→ The constraint on the “manager” role is 0..*, the constraint on the “managee”

role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups
→ The constraint on Student depends on the semantics, the constraint on Groups

is 1..*
• Each employee is managed by an employee

→ The constraint on the “manager” role is 0..*, the constraint on the “managee”
role is 1..1 (or is it?)

24/44



Cardinality exercises

What are the cardinality constraints on the following relations:

• Classes are composed of lectures
→ The constraint on Class is 0..* or 1..* and on Lecture it is 1..1 or 1..*

• Class occurrences must have a room reservation
→ The constraint on ClassOccurrence is 1..1 or 1..* and on RoomReservation it is 1..1

or 0..1
• Room reservations are associated to a room

→ The constraint on RoomReservation is 1..1 or 1..* and on Room it is 0..1 (at some
point in time) or 0..* (in general)

• Students are associated in student groups
→ The constraint on Student depends on the semantics, the constraint on Groups

is 1..*
• Each employee is managed by an employee

→ The constraint on the “manager” role is 0..*, the constraint on the “managee”
role is 1..1 (or is it?) 24/44



Cardinality constraints and non-binary relations

In a ternary relationship between professor, student, and topic...

advisesProfessor Student

Topic

advisor advisee

topic

• Cardinality constraints cannot express that every student on every topic is
supervised by at most one professor

25/44



Cardinality constraints and non-binary relations

In a ternary relationship between professor, student, and topic...

advisesProfessor Student

Topic

advisor advisee

topic

• Cardinality constraints cannot express that every student on every topic is
supervised by at most one professor

25/44



Weak entities (motivation)

• Some entities only make sense in the context of other entities. For instance:
• “A course has a id, a name, and has several numbered sessions having a title”

containsCourse

name

id

Session

name

num

Do you see the problem?

• The Session entities do not have a key! We can have sessions with the same
name and number in different courses

• Each Session is unique in the context of a course

26/44



Weak entities (motivation)

• Some entities only make sense in the context of other entities. For instance:
• “A course has a id, a name, and has several numbered sessions having a title”

containsCourse

name

id

Session

name

num

Do you see the problem?

• The Session entities do not have a key! We can have sessions with the same
name and number in different courses

• Each Session is unique in the context of a course
26/44



Weak entities (solution)

• The Session entity is a weak entity
• The “contains” relationship is the identifying relationship of Session
• These are materialized using double lines

containsCourse

name

id

Session

name

num

1..1

The key of the weak entity will be the key of the other entity in the identifying
relationship plus a set of attributes called discriminator which is dash-underlined

27/44



Specialization and Generalization

• A special kind of relationship: is-A
• Every professor is an employee
• Every employee is a person
• Lab sessions and lectures are classes

Employee

Professor Secretary

isA

• We could represent, e.g., each professor with two entities
(e.g., a professor entity and an employee entity), and have an
is-A relationship between the two

• Sometimes more legible to write them with an “isA triangle”
• The subclass inherits attributes from the superclass
• Related to inheritance in object-oriented programming

• Specialization: top-down design process subdividing entities in subclasses
• Generalization: bottom-up design process regrouping entities sharing

common attributes 28/44



Constraints on specialization/generalization

• Completeness:
• Complete: “each employee is either a professor or a secretary”
• Not complete: “there can also be other kinds of employees”

• Disjointness:
• Disjoint: “an employee cannot be both a professor and a secretary”
• Not disjoint: “an employee can be both”

29/44



Aggregation

In complex cases, we may want to handle relationships as entities in another
relationship

Professor books Room

approves

Secretary
30/44



Eliminating aggregation with reification

• Introduce a new entity-type for the relationship with a surrogate key
• Introduce it as a member of the relationship
• Use the entity in the other relationship

Professor books Room

Booking

1..1

approves Secretary

31/44



Reification

Reification can also transform non-binary relationships into binary relationships

advisesProfessor Student

Topic

AdvisingisAdvisorProfessor isAdvised Student

isTopic

Topic

1..1 1..1

1..1

32/44



Basic Entity Relationship notions

Translating an ER diagram to a schema

33/44



Translating an ER diagram to a
schema

34/44



Translating entities

Create one table per entity-type with all of the attributes

Customer

id
name

first name
last name

date of birth
age()

becomes

CREATE TABLE Customer(

id SERIAL PRIMARY KEY,

name_first_name VARCHAR,

name_last_name VARCHAR,

date_of_birth DATE);

• We drop the attribute hierarchy (we can remove prefixes if unambiguous)
• Derived attributes are not stored but computed on the fly
• See next slide for multi-valued attributes

35/44



Translating multi-valued attributes

• Add an extra table with a foreign key for multi-valued attributes:
• Can also handle extra information

Customer

id
{phone number}

becomes

CREATE TABLE Customer(id SERIAL PRIMARY KEY);

CREATE TABLE Customer_phone_number(

customer INT REFERENCES Customer,

phone_number VARCHAR

-- can add, e.g., phone_number_type VARCHAR

);

36/44



Basic translation of relationships

Most naive idea: create one table per relationship

idStudent

follows

Class id

becomes
CREATE TABLE Follows(

student INT REFERENCES Student,

class INT REFERENCES Class);

This is the proper solution, e.g., for many-to-many relationships

37/44



Key choices when translating relationships

When we create a new table for a (binary) relationship, what is the key?

• In the general case of many-to-many relationships, the pair of identifiers
• For one-to-one, one-to-many, many-to-one relationships, an identifier on

the “many” side is enough
• Note: always possible to create a surrogate key

38/44



Simpler translation of relationships (1)

In some cases we can avoid creating an additional table:

• One-to-many or many-to-one relationship: store the other objects and
relationship attributes in attributes of the “many” side

Professor

advise

0..*

Student

1..1

becomes

CREATE TABLE Professor (...);

CREATE TABLE Student(

id SERIAL PRIMARY KEY,

advisor INT REFERENCES Professor,

-- add attributes of the advise relationship

);

Note: if the relation is not total on the “many” side, then the corresponding
attributes may be null 39/44



Simpler translation of relationships (2)

In some cases we can avoid creating an additional table:

• Total one-to-one relationships: merge in one table

AdvisingisAdvisor

Professor

isAdvised

StudentisTopic

Topic

1..1 1..1

1..1

CREATE TABLE Advising(

advisor INT REFERENCES Professor,

advisee INT REFERENCES Student,

topic INT REFERENCES Topic);

40/44



Translating weak entities

When translating weak entities, add a column or columns for the key of the other
entity in the identifying relationship

containsCourse

name

id

Session

name

num

1..1

CREATE TABLE Course(

id SERIAL PRIMARY KEY,

name VARCHAR);

CREATE TABLE Session(

course INT REFERENCES Course,

num INT,

name VARCHAR,

PRIMARY KEY (course, num));

The key is constituted of this foreign key plus the discriminator
41/44



Handling specialization/generalization

Say Employee has two subclasses, Professor and Secretary. Several options:

• Forget about Employee, and create tables Professor and Secretary, each
containing the common attributes
→ Good for disjoint and complete inheritance (every Employee is a Professor or

Secretary)
• Create tables Employee, Professor, and Secretary, with the common

attributes in Employee
→ Each Professor, and each Secretary, also has a record in Employee with the

common attributes
• Create table Employee, put the Professor and Secretary attributes in this

table
→ Some of these attributes will be NULL

42/44



Eliminating redundancy

What should be removed at the end of the process?

• Useless relations, e.g., created for relationships that can be represented with
a foreign key instead

• Redundant attributes, e.g., that are also present in a relationship
• For instance, if students are advised by professors, and this is represented both

as a relationship and an attribute

Student

id

advisor

advises Professor
1..1

43/44



Sources

• Database System Concepts, Seventh Edition
https://www.db-book.com/db7/slides-dir/index.html

• Wikipedia
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

• https://www.tutorialspoint.com/dbms/er_diagram_representation.htm
• https://www.cs.uct.ac.za/mit_notes/database/htmls/chp07.html#
mapping-specializationgeneralization-to-relational-tables

44/44

https://www.db-book.com/db7/slides-dir/index.html
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://www.tutorialspoint.com/dbms/er_diagram_representation.htm
https://www.cs.uct.ac.za/mit_notes/database/htmls/chp07.html#mapping-specializationgeneralization-to-relational-tables
https://www.cs.uct.ac.za/mit_notes/database/htmls/chp07.html#mapping-specializationgeneralization-to-relational-tables

	Basic Entity Relationship notions
	Translating an ER diagram to a schema

