BIG GRAPH DATABASES Lab: Obi-Wan

Garima Gaur Inria and Ecole polytechnique garima.gaur@inria.fr

Recap to Heterogenous DS Integration System (from Lecture)

• Key components of an integration system: data sources, mediator and wrappers

Ínnía-

2

New GLAV mapping: Q3Mediator: select * from SuperOffer where hCity='Lyon' Q3Sources: select lh.name, r.name, lh.roomPrice * 0.5 as hPrice, r.rating as rRating from LyonHotel lh, Restaurants r where r.city='Lyon' and r.name='Lion d'Or' and r.street=lh.street This mapping says: "each result of Q3Sources leads to a SuperOffer in Lyon".

^E Other mappings could define more SuperOffers in Lyon, or in other cities, or with rRating=3...

Obi-Wan: RDF Integration System

- An RDF integration systems that supports:
 - Global-Local-As-View mappings with an simple syntax Ο
 - Ο
 - Supports RDFS ontologies Supports BGP queries (SPARQL core) Ο
- Each project contains the following files:
 - obi-wan.properties the file defines the query answering properties, Ο
 - ris.json the file defines the RIS (mappings), Ο
 - ontology.nt the RDFS ontology of the RIS in NT format, Ο
 - querysession.properties the file needed for technical reasons related to Ο the materialization approaches.

Innía

-Mapping Format

- Each mapping contains a pair of query (q_m, q_s) where q_s is the query over the source data and q_m specifies the BGP that populates the integrated graph.
- In ris.json, each mapping is a key-value pair with 3 keys: name, head, body
- Head specifies the q_m and body specifies q_s.

Ontology and Entailment

- Here, ontology specifies mainly 4 properties about classes and properties:
 - rdfs:domain, rdfs:range, rdfs:subproperty, rdfs:subclass
- Entailment: Using a set of entailment rules, to infer new data triples and ontology triples

	Rule name	Entailment rule	
R	rdfs5	$(p_1, :subproperty, p_2), (p_2, :subproperty, p_3) \rightarrow (p_1, :subproperty, p_3)$	
	rdfs11	$(s, :subclass, o), (o, :subclass, o_1) \rightarrow (s, :subclass, o_1)$	
	ext1	$(p,:domain, o), (o,:subclass, o_1) \rightarrow (p,:domain, o_1)$	
	ext2	$(p, :range, o), (o, :subclass, o_1) \rightarrow (p, :range, o_1)$	(^{<i>n</i>onto}
	ext3	$(p, :subproperty, p_1), (p_1, :domain, o) \rightarrow (p, :domain, o)$	
	ext4	$(p, :subproperty, p_1), (p_1, :range, o) \rightarrow (p, :range, o)$	J
	rdfs2	$(p,:domain, o), (s_1, p, o_1) \rightarrow (s_1,:type, o)$)
	rdfs3	$(p,:range, o), (s_1, p, o_1) \rightarrow (o_1,:type, o)$	
	rdfs7	$(p_1, :subproperty, p_2), (s, p_1, o) \rightarrow (s, p_2, o)$	(^{<i>n</i>} data
	rdfs9	$(\mathbf{s},: \mathrm{subclass}, \mathbf{o}), (\mathbf{s}_1,: \mathrm{type}, \mathbf{s}) \rightarrow (\mathbf{s}_1,: \mathrm{type}, \mathbf{o})$	J

6